
Dynamic Safety Cases for
Through-life Safety Assurance

Ewen Denney and Ganesh Pai
SGT / NASA Ames Research Center

Moffett Field, CA 94035, USA
Email: {ewen.denney, ganesh.pai}@nasa.gov

Ibrahim Habli
Department of Computer Science

University of York, York YO10 5DD, UK
Email: ibrahim.habli@york.ac.uk

Abstract—We describe dynamic safety cases, a novel opera-
tionalization of the concept of through-life safety assurance, whose
goal is to enable proactive safety management. Using an example
from the aviation systems domain, we motivate our approach,
its underlying principles, and a lifecycle. We then identify the
key elements required to move towards a formalization of the
associated framework.

Index Terms—Dynamic safety case, Safety assurance, Lifecycle
processes, Safety management

I. INTRODUCTION

Safety standards not only heavily guide the development
and usage of software systems in safety-critical applications,
but also form the basis for their approval and certification.
Historically, these standards have tended to be highly pre-
scriptive, imposing specific certification requirements and also
specifying the means of compliance [1].

Over the past two decades, however, the practice of safety
certification has been migrating to a goal-oriented paradigm—
placing greater emphasis on explicitly stating safety claims,
and supplying an argument along with evidence that develop-
ers/operators have to generate—to satisfy certification goals
that regulators define [2], as opposed to following a prescribed
process. In general, such (structured) arguments and evidence
are captured in the form of a safety case [3], i.e., a comprehen-
sive, defensible, and valid justification of the safety of a system
for a given application in a defined operating environment.
The rationale for establishing this approach, in part, is to
respond to the challenge of certifying systems that include
novel technologies, e.g., integrated modular avionics (IMA),
and comparatively new software engineering techniques, e.g.,
model-based development and code generation. In particular,
the rate of change of such technologies has outpaced the ability
to prescribe one-size-fits-all certification measures.

A safety case is usually defined prior to system deploy-
ment, and its validity relies on assumptions/predictions about
system behavior (including its interactions with its environ-
ment). Safety-critical software systems are increasingly in-
terconnected and dynamically reconfigurable (e.g., networked
medical devices [4]), possessing greater authority and auton-
omy (e.g., driverless cars). As such, these systems exhibit
emergent behavior along with the capability to learn and adapt
through their usage. In our opinion, the appreciable degree
of uncertainty about the actual operational system behavior

renders existing safety certification approaches deficient. We
believe this applies regardless of whether the underlying safety
argument is implicit—as is the case, largely, in prescriptive
certification—or explicit, where goal-based certification is
concerned. In particular, as the system evolves after deploy-
ment, the mismatch between our understanding of the system
(as documented in the safety case) and actual system opera-
tion, may potentially invalidate many of the prior assumptions
made, undermine the evidence supplied and, thereby, defeat
the safety claims made. Indeed, gaps between the documented
safety reasoning and the actual safety of the system might lead
to “a culture of ‘paper safety’ at the expense of real safety”,
as reported in the inquiry following the RAF Nimrod aircraft
accident [5]. Despite significant improvements in operational
safety monitoring, there is insufficient clarity on evolving the
safety reasoning based on monitored data.

In short, there is a need for a new class of safety certifi-
cation/assurance techniques that are continually assessing and
evolving the safety reasoning, concurrently with the system, to
provide through-life safety assurance. That is, safety assurance
is provided not only during initial development and deploy-
ment, but also at runtime based on operational data. The intent
is to transform safety assurance into a continuous, evolutionary
activity. The safety management system (SMS) concept reflects
the recognition of this need in many safety-critical sectors,
e.g., (civil) aviation [6], and it aspires to similar properties,
i.e., continuous safety assurance with predictive capabilities,
but mainly considering in scope, business processes (including
policies and procedures), and safety management capability.

This paper describes dynamic safety cases (DSCs)—along
with a set of core principles and lifecycle activities—as an
engineering solution for through-life safety assurance, where
the data produced from an SMS can be utilized to create a
continuously evolving assurance argument. In particular, we
explore the hypothesis that DSCs can be rigorously imple-
mented based on the following: (1) an explicit safety argument,
annotated with metadata that provides tracing to relevant reg-
ulations, external concerns, requirements, individuals, system
artifacts, and any other information deemed necessary; (2) a
means of determining confidence in claims of the argument;
(3) a collection of monitors providing the link between the
system, argument elements and the confidence structure; and
(4) a collection of update rules triggering actions in response

https://ntrs.nasa.gov/search.jsp?R=20150011054 2019-08-31T07:30:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42708945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

D
yn

am
ic

 S
af

et
y

C
as

e

Mission 1 Safety Argument Mission 2 Safety Argument

Guidance response to (1) or (2):
Flight termination argument leg

Guidance response to (3),
(4): Violation of claim for
return flight

Update rule:
•  (observation > threshold)

! notify maintenance

Guidance response to (6):
Violation of claim supporting

continued airworthiness

Update rule:
(observation > threshold) !

1.  Change safety system
2.  Replace safety system

argument leg with alternative
(from a pattern library)

Guidance response to (5):
Reduced confidence in

hazard analysis

Update rule: Modify
analysis and context

Mission n Safety Argument

Safety argument
evolution

Mission 1

L1

L2

Take off /
Climb

L3

Loiter Descend /
Land

Return Cruise

Cruise

Monitor Types
(1) System Performance: Angle of attack > threshold during
Take off / Climb
(2) Environment: Inclement weather during Return Cruise

System: UAS + Crew + Operations

Monitor Types
(3) Environment: Temperature / Pressure changes during Cruise
(4) System: Altitude variations between redundant altimeters

Mission 2

L1

L2

L3

Cruise

Mission n

L1

L2

L3

Return Cruise

Operational lifetime of the System

System / Environment variables, and events

Monitor Types
(5) Environment: Greater air traffic density during Cruise /
Return cruise
(6) System: Altitude variations between redundant altimeters P

hy
si

ca
l S

ys
te

m

Development End of operations Deployment End of life

(b) Monitor

(c) Analyze

(d) Respond

Safety Case
Development

Process

System /
Operational

Safety Cases

(1), (2), (3), (4): Mission specific monitors [short term]
(5), (6) : Inter-mission monitors [longer term]

Trends, correlations, aggregate
values, real-time status, ...

Formal update rules

• Safety argument with metadata
• Confidence structure (e.g.,

Bayesian Network)
• Assurance deficits

Dynamic Safety
Case Framework

Safety Case Updates
Safety Guidance

S
af

et
y

M
an

ag
em

en
t

S
ys

te
m

(a) Identify

Safety Arguments and Confidence Structures

Continuous, through-life
updates to safety

substantiation assets

Continuous, through-life
updates to safety systems

Fig. 1. Framework for dynamic safety cases (DSCs): Extending the safety management system concept to provide a) continuous, through-life safety updates
to the relevant systems, and b) management of the corresponding safety substantiation artifacts

to changes in the system, its safety argument, or the confidence
in that argument.

II. MOTIVATING EXAMPLE

Typically, Unmanned Aircraft Systems (UASs) consist of
one or more (unmanned) air-vehicles, ground control stations,
flight crew, and communication infrastructure. An example
mission scenario for such a system could be (Fig. 1, top):
a) take-off from a home location L1, b) transit to a loiter
location L2 following a defined heading, c) perform a spe-
cific set of operations at L2, e.g., surveillance, measurement,
payload delivery, etc., d) continue onward to a different
landing location L3, after which e) unload/swap the onboard
payload/instruments. Thereafter, f) take off from location L3,
and g) return home, i.e., back to location L1. Given a UAS
category and its intended operations, flight operations may be
authorized under certain rules that, in turn, are governed by
weather conditions, e.g., visual flight rules (VFR) and visual
meteorological conditions (VMC), in specific airspace classes,

e.g., class G, no higher than a pre-determined altitude, e.g.,
2000 ft., and may be restricted to specific airspace and/or
geographic boundaries.

A. From Operational Monitoring to Safety Updates
During flight operations, both for an individual mission and

over the lifespan of multiple missions (Fig. 1, top), events
occurring in the operating environment and the UAS may
necessitate systemic changes to maintain flight safety.

For example, in Fig. 1, during en route flight (i.e., between
locations L1 and L3, and vice versa) the onset of inclement
weather can change the parameters of both weather and
instrument requirements for continued flight safety. Similarly,
temperature and pressure changes beyond the allowed thresh-
olds can potentially violate the operating constraints on aircraft
performance, and affect critical instruments such as altimeters.
Maintaining system safety would, then, require a combination
of short-term changes (e.g., flight termination) together with
longer term system modifications (e.g., replacing a sensor or

actuator, thus requiring a modification to the relevant parts
of the software and the corresponding verification artifacts)
and/or procedural modifications (e.g., reducing the intervals
between scheduled maintenance for instrument calibration).

Even when components of airborne systems function nor-
mally, as well as when there are deviations (from nominal
operations) whose risk has been considered to be acceptable,
there can be violations of the assumptions for continued flight
safety. For instance, inclement weather in en route flight
can affect the restriction of flight under VMC. In turn, a
combination of system-wide changes may be required—such
as the initiation of a flight termination procedure, notifying
air traffic control, and/or updating flight plans—to maintain
system safety. Similarly, variations observed in the density of
air traffic over multiple missions may invalidate the assump-
tions made regarding the risk levels of the associated flight
hazards. Consequently, existing hazard mitigation measures
may turn out to be insufficient, necessitating a revision of the
hazard analysis and, potentially, the introduction of new safety
mechanisms.

B. Updating the Safety Case

We create the safety case for our example system in parallel
with system development, and record it as a structured argu-
ment containing claims, reasoning and evidence that reflect
the results of engineering and safety analyses/verification.
We reflect the updates to the system in its safety argument
(Fig. 1, bottom), based upon monitoring and analysis of the
safety relevant-events/assurance variables, so as to make the
argument consistent with the system, and to inform subsequent
safety activities and system changes.

In general, monitors observe events and/or deviations of
assurance variables from threshold values in a defined time
interval, which can be symptomatic of the need for a safety
related system change. For our example, we can use a variety
of monitors including instruments, process metrics, etc., to ob-
serve: a) the operational environment, i.e., variables pertaining
to weather conditions, air traffic and other airborne phenomena
(e.g., birds); b) the UAS: in particular, performance parameters
(e.g., airspeed), aerodynamic control surface variables (e.g.,
aileron positions), system health (e.g., of the powerplant), and
maintenance status (e.g., maintenance log); c) crew operations,
e.g., crew adherence to communication procedures; and d) the
safety culture, e.g., effectiveness of safety reporting systems.

Based upon monitored data and the corresponding analysis,
we capture the required safety modifications to the system
(Section II-A), and the related modifications to the safety case
by way of update rules (Section III-C). For instance, if greater
than anticipated air traffic in a certain airspace sector during en
route flight were to be observed over the next x flight hours, an
update rule would be to notify the safety case team to revisit
the hazard analysis within a certain time frame t. The eventual
update to the safety case would be the argument that justifies
the safety claims corresponding to any newly introduced safety
mechanisms (resulting from the revised hazard analysis).

III. FRAMEWORK

A. Principles
Based on our example, we believe that a framework for dy-

namic safety cases must support three fundamental principles:
1) Proactively compute the confidence in, and update the

reasoning about, the safety of ongoing operations: DSCs go
beyond conventional safety/health monitoring that largely deal
with faults/failures to address leading indicators of, and pre-
cursors to, hazardous behaviors [7]. These relate to different
types of uncertainty—i.e., aleatory (randomness in the system)
and epistemic (incomplete knowledge about the system)—
changes in which should challenge our confidence in system
safety, prompting action on the indicators/precursors before
they potentially develop into hazards. The ability to compute
confidence from operational data is necessary to evolve safety
reasoning and enable continuous safety assurance.

2) Provide an increased level of formality in the safety
infrastructure: Here, the goal is to enable automated support
for safety reasoning. To support automated analysis, e.g., de-
termining dependencies between the system and corresponding
argument fragments, and automatically updating the argument
based on operational data, we need to move towards a more
formal basis: not necessarily of the argument itself, but rather
the infrastructure for creating the argument.

3) Provide a mixed-automation framework: The idea is to
generalize from the notion of a complete standalone argument
to a partially-developed, but well-formed, argument with open
tasks assigned to various stakeholders. In general, the response
to a change can be an automated update to the argument, or
even the system itself, but may require human review/action
depending on the nature and criticality of the change.

B. Lifecycle
Now, we suggest a lifecycle (Fig. 1, middle) comprising

four continuous activities.
1) Identify: The sources of uncertainty in the safety case,

i.e., so-called assurance deficits (ADs) [8], can weaken our
confidence in safety. As the system and its safety argument
change, so will the assurance deficits.

2) Monitor: We collect data at runtime related to both
system and environment variables, events, and the ADs in
the safety argument(s). To enable monitoring, we periodically
interrogate both the argument and its links to external data,
e.g., using argument querying [9].

3) Analyze: To understand the impact on safety reasoning,
we analyze the operational data to examine whether the thresh-
old defined for ADs are met, and to update the confidence in
the associated claims.

4) Respond: Enabling a proactive response to operational
events that affect safety assurance (by changing the system,
environment, and the safety case, when necessary) is at the
heart of DSCs. Deciding on the appropriate response depends
on a combination of factors including the impact of confidence
in new data, the available response options already planned,
the level of automation provided, and the urgency with which
certain stakeholders have to be alerted.

C. Towards a Formal Basis

We now sketch the key elements of a preliminary imple-
mentation of DSC, building on previous work on a rigorous
approach to safety arguments [9]. In brief, we define an argu-
ment as a labeled tree, which is subject to various structural
restrictions that describe well-formedness conditions. Nodes of
the tree represent argument elements, and the labels give node
descriptions, types, and metadata. We extend this notion for
DSCs by making explicit the tight coupling of the argument
with the system, i.e., we link the system and its argument via
metadata (on argument nodes), and monitors to feed updated
system information into confidence computations.

Thus, a DSC for a given system comprises:
1) A collection of assurance variables (AVs), including

system, environment, and assurance artifacts—i.e., all safety-
relevant artifacts, in general—as well as events (e.g., UAS
landing);

2) An argument structure, with metadata relating its nodes
to AVs, and the nodes of a confidence structure;

3) A confidence structure, e.g., a Bayesian network [10],
whose nodes relate to argument fragments and monitor output;

4) A collection of monitors of type (AVar∗ → EnumVal |
ContinuousVal)×Period which examine AVs and return either
discrete (e.g., warning zones) or continuous output, with a
given period. We use an abstract definition of monitor which,
we assume, can also perform data analysis. Also, since events
are considered as AVs, monitors can be triggered when a
particular event occurs.

5) A collection of update rules of type Condition →
Action∗, with the general form C[x] ⇒ forEach(y :: Q |
A[x, y]). The rule condition C is a formula over the confidence
structure and AVs; Q is a query in the AdvoCATE query
language [9] that lets us determine those parts of the argument
requiring changes (e.g., the evidence below some assumption);
and A is a response action. Specific responses depend on the
precondition and the queried nodes. For example,

a) Remove a branch of the argument depending on an invali-
dated assumption: not(trafficDensity < n) ⇒ forEach(y ::
solves∗ Contextualizes | replaceWith(y, empty)).

b) Create a task for an engineer to inspect evidence items
when the confidence in a particular branch drops below
a threshold: confidence(NodeX) < n ⇒ forEach(E ::
dependsOn(E); traceTo(NodeX)) | createTask(engineer,
inspect(E), urgent)).

IV. CONCLUDING REMARKS

We have described our vision of dynamic safety cases
(DSCs), a novel approach to extend safety management sys-
tems. We are currently exploring different formalizations, in
particular of the update rules, with a view to their imple-
mentation in our toolset, AdvoCATE [11], e.g., it might be
useful to combine rules to define more complex responses.
Although the current definitions do not allow it, monitors
could alternatively feed directly into rule conditions. Rather
than develop new monitors, our framework seeks to enable
the integration of existing monitoring mechanisms [12] and

analysis techniques [13] into safety management. DSCs can
integrate with approaches for assuring open, adaptive systems,
and provide a basis for realizing the concept of runtime certi-
fication [14]. Claims made in DSCs, e.g., about the expected
system behavior under failure conditions, are interlinked with
system requirements and the corresponding verification evi-
dence. Thus, there is a notion of requirements update during
runtime operations, similar to [15], and the opportunity to
include evidence from runtime verification [16]. Intuitively,
a dynamic safety case ought to have some notion of “dynamic
robustness”. For example, safety integrity levels (SILs) [17]
reflect the idea that an increase in risk requires a corresponding
improvement in mitigation. We could formulate this, and other
such properties, as argument constraints and formally verify
that a DSC actively meets those constraints.

ACKNOWLEDGMENT

This work was supported by the SASO project of the NASA
ARMD Airspace Operations and Safety Program.

REFERENCES

[1] R. Hawkins, I. Habli, T. Kelly, and J. McDermid, “Assurance Cases and
Prescriptive Software Safety Certification: A Comparative Study,” Safety
Science, vol. 59, pp. 55–71, 2013.

[2] J. McDermid, “Software Safety: Where’s the Evidence?” in Australian
Workshop on Safety Critical Systems and Software, vol. 3, 2001, pp. 1–6.

[3] M. Sujan et al., Evidence: Using Safety Cases in Industry and Health-
care. The Health Foundation, Dec. 2012.

[4] N. Decker, F. Kühn, and D. Thoma, “Runtime Verification of Web
Services for Interconnected Medical Devices,” in Proc. 25th Intl. Symp.
Software Reliability Engineering (ISSRE 2014), Nov. 2014.

[5] C. Haddon-Cave, “The Nimrod Review: An Independent Review into the
Broader Issues surrounding the Loss of the RAF Nimrod MR2 Aircraft
XV230 in Afghanistan in 2006,” Report, The Stationery Office, London,
UK, Oct. 2009.

[6] International Civil Aviation Organization (ICAO), Safety Management
Manual (SMM), 3rd ed., 2013.

[7] T. Reiman and E. Pietikäinen, “Leading Indicators of System Safety
– Monitoring and Driving the Organizational Safety Potential,” Safety
Science, vol. 50, no. 10, pp. 1993–2000, 2012.

[8] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A New Approach to
Creating Clear Safety Arguments,” in Proc. 19th Safety-Critical Systems
Symposium (SSS’ 11), Feb. 2011.

[9] E. Denney, D. Naylor, and G. Pai, “Querying Safety Cases,” in Com-
puter Safety, Reliability and Security (SAFECOMP 2014), LNCS 8666,
Sep. 2014, pp. 294–309.

[10] E. Denney, G. Pai, and I. Habli, “Towards Measurement of Confidence
in Safety Cases,” in Proc. 5th Intl. Conf. Empirical Software Engineering
and Measurement (ESEM 2011), Sept. 2011, pp. 380–383.

[11] E. Denney, G. Pai, and J. Pohl, “AdvoCATE: An Assurance Case
Automation Toolset,” in Computer Safety, Reliability and Security:
SAFECOMP 2012 Workshops, LNCS 7613, Sep. 2012.

[12] M. Machin, et al., “Specifying Safety Monitors for Autonomous Systems
using Model-checking,” in Computer Safety, Reliability and Security
(SAFECOMP 2014), LNCS 8666, Sep. 2014, pp. 262–277.

[13] J. Krall, T. Menzies, and M. Davies, “Learning the Task Management
Space of an Aircraft Approach Model,” in AAAI Spring Symp. Ser., 2014.

[14] J. Rushby, “Runtime Certification,” in Proc. 8th Intl. Workshop on
Runtime Verification (RV), 2008, pp. 21–35.

[15] K. Welsh, P. Sawyer, and N. Bencomo, “Towards Requirements Aware
Systems: Run-time Resolution of Design-time Assumptions,” in Proc.
26th Intl. Conf. Automated Software Engineering (ASE 2011), Nov.
2011, pp. 560–563.

[16] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive Software needs Quantitative Verification at Runtime,” Commu-
nications of the ACM, vol. 55, no. 9, pp. 69–77, Sep. 2012.

[17] F. Redmill, “Safety Integrity Levels – Theory and Problems,” in Proc.
8th Safety-Critical Sys. Symp. (SSS ’00), 2000, pp. 1–20.

	Introduction
	Motivating Example
	From Operational Monitoring to Safety Updates
	Updating the Safety Case

	Framework
	Principles
	Lifecycle
	Towards a Formal Basis

	Concluding Remarks
	References

