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ABSTRACT 

 

The helicity condensation model has been proposed by Antiochos (2013) to explain the 

observed smoothness of coronal loops and the observed buildup of magnetic shear at filament 

channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes 

the magnetic stress injected by photospheric motions to collect only at those special locations 

where prominences form. In this work we present the first detailed quantitative MHD 

simulations of the reconnection evolution proposed by the helicity condensation model. We use 

the well-known ansatz of modeling the closed corona as an initially uniform field between two 

horizontal photospheric plates. The system is driven by applying photospheric rotational flows 

that inject magnetic helicity into the system. The flows are confined to a finite region on the 

photosphere so as to mimic the finite flux system of, for example, a bipolar active region. The 

calculations demonstrate that, contrary to common belief, coronal loops having opposite helicity 

do not reconnect, whereas loops having the same sense of helicity do reconnect. Furthermore, we 

find that for a given amount of helicity injected into the corona, the evolution of the magnetic 

shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-

random.  In all cases, the shear propagates via reconnection to the boundary of the flow region 

while the total magnetic helicity is conserved, as predicted by the model. We discuss the 

implications of our results for solar observations and for future, more realistic simulations of the 

helicity condensation process. 
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1. INTRODUCTION 

 

High spatial resolution observations of the Sun have revealed at least two major, puzzling 

features of the corona. XUV and X-ray images have shown that coronal loops are smooth and 

laminar, with little or no tangling (Schrijver et al. 1997). This result is difficult to understand, 

given that the quasi-random motions of the photosphere continuously drive the field. In fact, the 

tangling of the field by photospheric motions is widely believed to be essential for the observed 

coronal heating (Parker 1988; Klimchuk 2006). Another long-standing puzzle is the magnetic 

shear in filament channels (Martin et al. 1992; Zirker et al. 1997; Martin 1998; Mackay & van 

Ballegooijen 2001; Pevtsov et al. 2003a). Multi-wavelength observations ranging from white 

light to X-ray have shown that wherever the normal flux at the photosphere changes sign, at so-

called polarity inversion lines (PILs), strongly sheared field inevitably builds up in the corona 

leading to the well-known phenomenon of prominences and filaments (Priest 1988; Tandberg-

Hanssen 1995). 

In recent work, Antiochos (2013) proposed that a single process, helicity condensation, 

explains both the laminar coronal loops and the filament channel shear.  Magnetic helicity is the 

topological measure of the total linkages of the field lines in any flux system, and has been 

defined rigorously for a coronal domain (Berger & Field 1984; Finn & Antonsen 1985). The 

arguments leading to the helicity condensation model are straightforward. First, the small-scale 

granular and supergranular flows at the photosphere must continually stress the coronal magnetic 

field, building up small-scale current sheets that inevitably dissipate by reconnection. This is the 

basic scenario behind the so-called nanoflare model for coronal heating (Parker 1988; Klimchuk 

2006): the free energy injected into the corona by photospheric motions is continuously 

dissipated by impulsive reconnection events. Second, if these photospheric motions also inject a 

net helicity into the coronal field, then the helicity can only accumulate because it is conserved 

under reconnection (Woltjer 1958; Taylor 1974, 1986; Berger 1984). In fact, a large number of 

observations ranging from subsurface flows (Duvall & Gizon 2000; Gizon & Duvall 2003; 

Komm et al. 2007), to sunspot whorls (Pevtsov et al. 2003b), to filament channel chirality 

(Martin et al. 1992; Zirker et al. 1997; Martin 1998; Mackay & van Ballegooijen 2001; Pevtsov 

et al. 2003a) show a predominant net helicity in each solar hemisphere, with negative-helicity 

(left-handed) structures in the north and positive- (right-handed) in the south. The puzzle, 
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however, is that coronal loops do not show the tangling or twisting that is expected due to this 

helicity buildup. 

Third, in systems evolving via turbulent reconnection, the helicity undergoes an inverse 

cascade in phase space and “condenses” at the largest system wavelength (Biskamp 1993). In the 

case of the corona, the relevant largest wavelength is the scale of the whole flux system, which is 

defined by the PIL (Antiochos 2013). As a result of this helicity condensation process, the 

magnetic flux tubes far from the PIL remain relatively unstructured, whereas the flux near the 

PIL becomes strongly sheared. This is exactly what is needed to account for both laminar loops 

and filament channels. Furthermore, Mackay et al. (2014) incorporated helicity condensation into 

large-scale magneto-frictional simulations of filament-channel formation, and showed that the 

process can reconcile major discrepancies between observations and previous theories in the 

dominant skew of polar-crown filaments. 

In this paper, we investigate several critical assumptions underlying the helicity condensation 

model using full MHD simulations, described in Section 2, that capture rigorously the injection 

and reconnection dynamics. First, we test in Section 3 the conjecture presented by Antiochos 

(2013) that only flux tubes with the same sign of helicity reconnect, and that tubes with opposite 

helicity do not. This result seems highly counterintuitive, but if correct, it places important 

constraints on coronal evolution: it implies that helicity cannot simply be canceled by 

reconnection. Second, we investigate in Section 4 the effect of the pattern of photospheric flows 

on helicity condensation. The results derived in Antiochos (2013) were based on modeling the 

photospheric flows as spatially fixed rotations, but observed granular and supergranular flows 

are clearly much more complex, appearing and disappearing quasi-randomly on the photosphere 

(Rieutord & Rincon 2010). The helicity condensation model is robust if the process is insensitive 

to whether the pattern of flows is stationary or time-varying; the only requirement is that the 

flows must inject a consistent handedness of helicity over an extended region large compared to 

the individual rotations. To test the model, we simulate helicity injection and evolution using 

both fixed and random patterns of photospheric flows. The results are compared to determine, in 

particular, whether the helicity condenses along the PIL as predicted, irrespective of temporal 

variations in the flow pattern. Finally, we discuss the implications of our results for solar 

observations and for future theoretical and modeling studies. 
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Figure 1. Schematic of the simulation system consisting of a uniform vertical magnetic field 

between two horizontal, photospheric plates. The system is stressed by applying rotational 

motions at the photosphere, indicated by the circles and arrows. Left panel: co-helicity case; 

right panel: counter-helicity case. 

 

2. NUMERICAL MODEL 

 

In this exploratory numerical investigation of magnetic helicity injection and evolution, we 

adopt the simplest possible coronal model consisting of an initially uniform magnetic field with a 

gravity-free Cartesian atmosphere bounded by planar “photospheres” at both the top and bottom 

of the domain. For such a system, a coronal “loop” corresponds to a straight flux tube extending 

from the bottom plane to the top plane of the domain.  The initial field is vertical and the field 

strength, plasma density, and temperature are uniform throughout. This model was originally 

proposed by Parker (1972) for investigating the effects of photospheric motions on coronal 

heating and has been used by a number of authors in numerical studies of the corona (Mikić et al. 

1989). At both bounding photospheric planes, we impose horizontal cyclonic flows that are 

incompressible and so leave the normal component of the magnetic field undisturbed.  These 

simple flows minimize the complexity of the simulated evolution, but capture the properties of 

the solar surface convection that are critical to the injection of magnetic helicity into the corona. 

Figure 1 is a schematic diagram of the simulation setup that we use.  The twisting flows are 

imposed at both planes simultaneously, with the sense of rotation reversed from one plane to the 

other as viewed from outside of the Cartesian domain, to maximize the helicity injection. For 
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clarity, we show only two rotations, but given sufficient computational resources one could 

impose an arbitrary number. From the perspective of the figure, we are looking down upon the 

“photosphere” that is the bottom plane, but up from below through the “photosphere” that is the 

top plane.  Thus, as seen from within the corona – e.g., from the center of the domain, at the 

“apex” of our “loop” – the sense of the cyclonic motions is the same at both footpoints, inducing 

maximum twist within the loop. 

We calculate the resultant evolution of the coronal magnetic field and plasma by solving the 

magnetohydrodynamics (MHD) equations in three Cartesian dimensions and time in the form 

     (1) 

     (2) 

     (3) 

     (4) 

All symbols have their usual meanings: ρ is mass density, T is temperature, P is thermal 

pressure, γ is the ratio of specific heats, v is velocity, B is magnetic field, and t is time.  The 

ideal-gas equation of state relates the first three variables through the gas constant R, 

     (5) 

Our focus in this paper is on understanding the magnetic-helicity injection, accumulation, and 

transport, not the details of the thermal response of the coronal plasma, so we adopt the adiabatic 

description of the plasma energy evolution. 

We solve the prescribed time-dependent equations of MHD with the Adaptively Refined 

Magnetohydrodynamics Solver, ARMS (DeVore & Antiochos 2008), which employs Flux-

Corrected Transport algorithms (DeVore 1991) and a finite-volume representation of the 

variables to obtain its solutions.  The integration methods introduce necessary, stabilizing 

numerical dissipation terms into the nominally ideal equations written above.  These terms are 
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large enough to keep the solution stable and monotone in regions where any variables change 

substantially on the grid scale.  At electric current sheets associated with discontinuities in the 

direction of the magnetic field, the numerical dissipation term in the induction equation allows 

reconnection to occur.  This will be evident in the results presented below. 

Due to the homogeneity of the MHD equations, scale factors for mass, length, and time – or 

any equivalent combination of those three fundamental scales – can be extracted from the 

variables and removed from the equations.  This means that any solution to the equations that is 

obtained actually represents an entire family of solutions that adhere to the underlying scaling 

relations.  We exploit this freedom to extract scale factors as, ρs, and Bs for length, mass density, 

and magnetic field strength, respectively, from the equations.  The ideal gas law allows us also to 

extract a temperature scale factor Ts. 

After performing this rescaling, we prescribe the initial state of our system to be 

     (6) 

The vertical direction of our domain lies along the x coordinate.  We set the constants in the 

initial state, together with the radius a0 of our cyclonic convection cells (see below), to the values 

     (7) 

These choices fix the values of the gas constant, R = 0.05; the initial uniform Alfvén speed, cA0 = 

B0/√4πρ0 = 1; and the initial uniform plasma beta (ratio of thermal to magnetic pressure), β0 = 

8πP0/B0
2 = 0.1.  The last selection ensures that the evolution is magnetically dominated, as is 

generally true in the corona.  In addition, our simulation domains all have unit height, so Alfvén 

waves in the initial configuration require one unit of time to propagate between the top and 

bottom of the domain; i.e., the simulation time is expressed in Alfvén transit times. 
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We impose open-boundary, zero-gradient conditions at all four side walls (the y and z 

bounding planes) of our domain, on all variables.  That is,  

     (8) 

where n = y,z is the normal coordinate.  We apply the same conditions at the top and bottom (the 

x bounding planes) of our domain, with the exception of the velocity, where we prescribe 

     (9) 

for the normal (vn) and tangential (vt) components, respectively.  This incompressible flow 

pattern leaves the values of the scalars (ρ and T) and the normal magnetic field (Bn) undisturbed 

at our photospheric planes, but induces a tangential component of the magnetic field (Bt) 

wherever the stream function χ has a finite gradient.  We impose a superposition of simple, 

separated, cylindrically symmetric flows centered at positions (y0,z0) and having finite radial 

extent r2 ≡ (y−y0)2+(z−z0)2 ≤ a0
2, taking the form 

     (10) 

where f(t) is a prescribed temporal profile (given below) and the spatial profile g(r) is  

     (11) 

Beyond r = a0, we fix g(r) = 0.  The corresponding angular rotation rate is 

     (12) 

which vanishes both at the center of the circle (r = 0) and at the edge of the circle (r = a0).  For 

large l and m, the fall-off near both the center and edge is steep, so that the maximum linear 
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The maximum linear and angular speeds of the flow patterns are found to be 
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     (14) 

We chose v0 = +0.938, so that |v|max = 0.200; this value is sufficiently sub-Alfvénic to allow the 

field to evolve approximately quasi-statically, but large enough to yield amply twisted magnetic 

fields in modest-duration simulation runs.  The corresponding maximum rate of the clockwise 

rotation, |Ω|max = 1.876, corresponds to a full rotation period 2π/|Ω|max = 3.35.  Finally, to ramp 

the flows smoothly up from zero and/or back down to zero, we used a cosine temporal profile 

     (15) 

over intervals t ∊ [t1,t2].  Outside of such intervals, we fix f(t) = 0 or 1, as desired.  For example, 

to obtain one half-turn of twist at each footpoint over a full ramp-up/ramp-down cycle beginning 

at some time t1, we simply set t0 = t1 and t2 = t1 + 2π/|Ω|max = t1 + 3.35. 

We used the adaptive mesh refinement capabilities of ARMS to resolve very finely the 

volume of the domain where the photospheric flows were imposed and where the coronal flux 

tubes were twisted, with allowance toward the sides to accommodate flux tube expansion.  The 

mesh was composed of 8×8×8 blocks of uniform, cubic grid cells.  We used 4 blocks, or 32 grid 

points, to span the radius a0 of each of our cyclonic convection cells.   The full convection 

pattern of multiple cyclonic cells, the narrow lanes between them, and a buffer zone around the 

perimeter of the pattern were covered by fine grid blocks.  This finely gridded region extended 

vertically throughout the corona.  Outside of this region, the grid was allowed to coarsen by two 

levels toward the side walls, with the spacing increasing by a factor of two at each refinement 

change.  The resulting grids were about 50% smaller than uniformly refined grids. 

To monitor and diagnose the simulations, we use five global quantities: the total kinetic (K) 

and magnetic (M) energies and magnetic helicity (H) in the volume, and the average magnetic 

flux densities through the vertical y = 0 (Fy) and z = 0 (Fz) planes.  The energies and flux 

densities were computed directly as volume and area integrals over the grid during the runs, 

     (16) 
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     (18) 

     (19) 

We calculated the magnetic helicity both as a volume integral of the instantaneous value (Finn & 

Antonsen 1985) and as a surface integral of the corresponding injection rate, 

     (20) 

     (21) 

In these formulae, B is the instantaneous magnetic field in the system with vector potential A, 

and Bp is the potential field with the same normal component at the boundary as B. Note that in 

our case Bp is constant in time and is simply the initial uniform field. Both integrals were 

evaluated numerically in a post-processing step using the ARMS simulation data; the surface 

integral also can be performed analytically.  We chose for the vector potential Ap of our uniform 

initial potential field the symmetric form 

     (22) 

then Bp = ×Ap = B0 , and Ap Bp = 0.  The instantaneous vector potential at later times was 

computed by integration on the adapted grid, using Ap as the boundary value at our bottom 

photosphere at x = 0: 

     (23) 
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where φ is the cylindrical angular coordinate about the cell center, whence  

     (25) 

where we have used the fact that our prescribed vector velocity v averages to zero over each cell 

and substituted its explicit radial dependence.  The average helicity injection rate is one-half of 

the above peak rate over a ramping cycle for the flows of duration τ, during which the helicity 

injected is  

     (26) 

For our parameters, these expressions yield dHc/dt = 6.0×10−3 for the peak rate, and ∆Hc = 

1.0×10−2 for the total helicity injected over a full cycle of duration τ = 2π/|Ω|max = 3.35, by each 

rotation comprising the flow pattern.  We note for completeness that at our top photosphere the 

vector potential in general will differ from its initial value used in the helicity surface integral 

above, but only by the horizontal gradient of some scalar function ψ(y,z), since the normal 

magnetic field Bn is unchanged.  The helicity injection rate also is unchanged, as we intuitively 

expect, because the additive term vanishes: 

     (27) 

since v is incompressible and tangential to (indeed, vanishes at) its perimeter curve Lc.  Finally, 

the sign of B  reverses at the top boundary (  is the normal direction into the coronal 

volume), but we also reverse the sign of v0 (and thus v) there to compensate; consequently, the 

helicity injection rate has the same sign and magnitude at the top and bottom photospheres for 

each of our cyclonic convection cells. 
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3. INTERACTIONS OF TWO TWISTED FLUX TUBES 

  

To gain physical insight into the helicity condensation process, and to test the conjecture in 

Antiochos (2013) that only like-helicity loops reconnect, we first investigate the most basic 

configuration having only two rotations at each of our photospheres (Figure 1). This flow pattern 

produces two twisted flux tubes in the corona of our numerical model.  The domain is the unit 

cube [0,1]×[−0.5,+0.5]×[−0.5,+0.5] which, if uniformly gridded, would have been spanned by a 

2563 grid. Paired flow circles at the bottom (x = 0) and top (x = 1) planes are positioned at 

identical horizontal centers (yc, zc), which for these two-flow cases are set at yc = ±a0, zc = 0, 

where a0 = 0.125.  Thus, the vertical y = 0 plane separates our initially straight flux tubes that 

become twisted, with the outer edges of the two tubes just touching at (y,z) = (0,0) for all x at t = 

0. Note that the plane y = 0 is a symmetry plane for the given domain and imposed rotational 

motions, irrespective of the sense of the motions (see Figure 1). This condition is very useful for 

analyzing the resulting evolution, in particular for determining exactly when and how much 

reconnection occurs. 

In these simulations, the twisting flows were ramped up to full speed over time t ∊ [0.0,0.5], 

using t0 = t1 = 0 and t2 = 1 in (15), and then held fixed thereafter.  For small twist, i.e., at early 

times t in the simulation, the imposed footpoint motions create a single flux tube in each of the 

two half-volumes, y < 0 and y > 0.  Therefore, we expect to find By ≡ 0 at y = 0 to a very high 

degree of approximation, with no magnetic flux crossing the plane y = 0 or linking the flux tubes 

to each other.  On the other hand, for sufficiently large twist, at late times t, the two tubes will 

expand to come into contact and interact.  If they reconnect, then linkages will form across the y 

= 0 plane; in other words, the twist flux injected into each axial flux tube separately will merge, 

so that it encompasses both tubes. If there is no reconnection, it will eventually become 

energetically favorable for the tubes to kink by bending around each other and becoming helical. 

Such an ideal evolution also will break the symmetry about the y = 0 plane, but will not establish 

any linkages between the tubes.  In either case, the evolution is expected to develop nonzero By at 

y = 0 at some point in the simulation; that this indeed occurs is shown below. 
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3.1 Co-Helicity Case 

 

Let us first consider the interaction of two flux tubes with the same sense of twist, i.e., sign of 

helicity. We apply the boundary flows shown in the left panel of Figure 1, counterclockwise at 

the top plane (x = 1) and clockwise at the bottom (x = 0). Because the flows are identical for the 

two flux tubes, the twist component in each is identical, at least during the early ideal evolution. 

As is evident from the left panel of Figure 1, this implies that the twist components are 

oppositely directed at the contact line between the two flux tubes, (y,z) = (0,0), so that a large 

current builds up there. Alternatively, we note that stagnation points occur in the flow at their 

contact points, y = 0, on the boundary planes, which implies that an exponentially growing 

current will form in the corona along the (y,z) = (0,0) line (Antiochos & Dahlburg 1997). The 

growth of the currents eventually will lead to reconnection, but only the twist components of the 

field in the flux tubes can reconnect; the axial components are always parallel, as is evident from 

Figure 1. 

Figure 2 shows the evolution of six selected field lines in response to the boundary driving. 

Results are shown at five representative times during the simulation (t = 3, 4.25, 4.5, 6, and 10). 

The field lines in each frame of the figure are traced from the footpoints on the x = 0 plane along 

the z = 0 line, at positions y = ±0.005, ±0.0625, and ±0.245. These positions also determine the 

colors of the lines in each frame and are marked by the colored beads; note, however, that the 

field lines are traced from fixed grid positions, not from fixed footpoints that convect with the 

flow.  Consequently, the field lines in the various frames are not the same, even if they have the 

same color. 

The left column shows magnetic field lines and contours of plasma velocity magnitude on the 

x = 0 plane viewed from above.  The right column shows a side view of the two flux tubes in 

which the x = 0 (bottom) and x = 0.9 planes are drawn with contours of velocity magnitude on 

both planes.  At t = 3 and t = 4.25, the magnetic field lines in each flux tube are clearly twisted, 

but confined to their individual flux tubes. Near the y = 0 plane, the field lines (white and black) 

from the y > 0 and y < 0 domains have already developed opposite tangential components, 

however there is not yet any evidence for reconnection. 
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Figure 2. Evolution of six field lines at selected times t during the co-helicity simulation. Left: x 

= 0 plane viewed from above; right: x = 0 (bottom) and x = 0.9 planes.  Velocity magnitude is 

color-contoured on the planes. 
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By time t = 4.5 (∆t = 0.25 later), the dark-blue field line rooted in the left-side flux tube has 

crossed the y = 0 plane to circle the right flux tube and, symmetrically, the light-blue field line in 

the right-side flux tube has crossed that plane to surround the left tube. The penetration of these 

field lines through the y = 0 plane is a definitive indicator of magnetic reconnection. This 

reconnection is exactly the type of evolution required by the helicity condensation model 

(Antiochos 2013). By time t = 6, all the field lines at the selected positions have reconnected and 

crossed from one flux tube to the other. Finally, by time t = 10, we observe a clear trend for the 

field lines to twist around the outer boundaries of the two flux tubes. Note especially the dark- 

and light-blue lines, which nearly encircle the two tubes. 

An effective procedure for analyzing the reconnection evolution of the two flux tubes is to 

examine the behavior of the magnetic field component By. As described above, any linkage 

between the two flux tubes that forms as a result of reconnection will be seen immediately as the 

appearance of By flux crossing the y = 0 plane. Figure 3 displays the By and Bz components on the 

horizontal plane one quarter of the way above the bottom boundary, at x = 0.25, at the simulation 

times t = 3, 4.25, 5.5, 6, and 10. At the early times t = 3 and 4.25, we see the signatures expected 

for two separate twisted flux tubes. There is no apparent By flux crossing the y = 0 plane and Bz is 

well-organized and symmetrical. Furthermore, at t = 3, the By contours in the left panel of Figure 

3 can be obtained simply by rotating the Bz contours in the right panel clockwise by 90°, as 

would be expected for an axisymmetric twisted flux tube. At t = 5.5, well after reconnection has 

set in (at t = 4.5, as shown in Figure 2), a small portion of the By flux contour now crosses the y = 

0 plane, and the Bz flux starts becoming less organized. By time t = 6, the two same-signed By 

patterns that earlier belonged to the two separate flux tubes have coalesced, forming a complete 

circle with a single positive By pattern on one side and negative on the other, indicating that the 

two flux tubes have merged. Meanwhile, the Bz distribution also shows a dramatic change in 

Figure 3. At the outer boundaries of the two flux tubes along the y direction, Bz increases in 

strength; at the interface region between the two tubes, near y = 0, the Bz patterns fade and then 

disappear by time t = 10.  The final pattern of Bz again resembles that of By rotated by 90°, but 

now for a single twisted flux tube rather than two tubes. 

The evolution of the magnetic field is even clearer from side views.  Figure 4 shows By 

through the y = 0 plane (left column) and Bz through the z = 0 plane (right column), at t = 3, 4.25, 

5.5, 6, and 10. We note that at t = 3, there is no flux through the y = 0 plane, and the flux through 
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Figure 3. Left: color contours of By on the x = 0.25 horizontal plane at selected times t during 

the co-helicity simulation. Right: contours of Bz on the same plane. 
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Figure 4. Left: color contours of By on the y = 0 vertical plane at selected times t during the co-

helicity simulation. Right: contours of Bz on the z = 0 vertical plane. 
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the z = 0 plane appears relatively straight and unstructured. This is exactly what is expected for a 

force-free vertical twisted flux tube, which should have Bz = constant along the axial direction. 

By t = 5.5, however, a significant normal field through the y = 0 plane appears, and the normal 

field through the z = 0 plane shows signs of becoming asymmetric. Later on (t = 6.0), the By 

pattern at the y = 0 plane becomes stronger, while the pair of Bz patterns at the outer boundaries 

of the two tubes become dominant while the pair at the inner boundaries between the tubes 

gradually merge and cancel. Finally, at t = 10, the By field through the y = 0 plane consists of two 

strong, equal and opposite components at the edges of the merged flux tube. The Bz patterns in 

the right panel of the figure generally resemble those of By on the left at t = 10, but Bz still shows 

significantly more structure than By. Nevertheless, the trend is clear: the two flux tubes are 

merging to form a single coherent tube, with the twist concentrated at the outside of the merged 

system. 

We find that magnetic helicity is conserved throughout the evolution; this is demonstrated 

below. Consequently, at least for this simplest possible case, reconnection indeed transports the 

shear to the boundary of the stressed flux system, leaving the central portion relatively smooth, 

as predicted by the helicity condensation model. Furthermore, we have shown that two coronal 

loops with the same sign of helicity reconnect effectively, as conjectured by Antiochos (2013). 

 

3.2 Counter-Helicity Case 

 

To examine the interaction of coronal flux tubes with opposite helicity, we simply reverse the 

sense of rotation at the photosphere for one of the flux tubes, as in the right panel of Figure 1, so 

that the two flux tubes are injected with oppositely signed magnetic helicity. Note that the 

geometry and the boundary conditions are kept the exactly the same as in the co-helicity case 

above; the only difference is that the injected helicity has opposite signs in the two flux tubes. 

For comparison with Figure 2, the evolution of the magnetic field is displayed in Figure 5 for 

times t = 3, 4.5, 6, 10.  The field lines shown in white and green are traced from points on the 

bottom plane x = 0, along the line z = 0, with y = ±0.005, ±0.0625, ±0.245; the two blue lines are 

traced from the points x = 0, y = 0, and z = ±0.125.  The left column shows top views of the x = 0 

plane, with the plasma velocity magnitude contoured on the plane. The right column shows side 

views of the field lines, with velocity magnitude plotted on the x = 0 (bottom) and x = 0.9 planes. 
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Figure 5. Evolution of eight field lines at selected times t during the counter-helicity simulation. 

Left: x = 0 plane viewed from above; right: x = 0 (bottom) and x = 0.9 planes.  Velocity 

magnitude is color-contoured on the planes.  Compare with Figure 2 for the co-helicity case. 

 

Because the magnetic field lines in the two neighboring flux tubes are twisted in opposite 

directions, the tangential components of the magnetic field at the interface of the two tubes (y = 0 

plane) are parallel, rather than anti-parallel as in the co-helicity case.  Therefore, we do not 

expect them to reconnect, no matter how much helicity is injected. The results displayed in 
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Figure 5 confirm this expectation: from early on (t = 3) to the final simulation time (t = 10), the 

helicity in each flux tube continuously increases, and the magnetic field lines become more 

twisted.  However, no field lines cross the y = 0 plane between the two flux tubes. This is true 

even for the two lines that are rooted very close to the interface between the flux tubes (y = 

±0.005). There is evidence, however, for reconnection between the twisted flux and the external 

untwisted flux. By t = 10, some of the footpoints inside of the twisting regions on the bottom 

boundary now connect to points outside of the twisting regions on the top boundary. Note also 

that the two blue field lines near, but outside, the twisting regions have changed connectivity, 

indicating that they too have undergone reconnection. The key result is that even at the final 

simulation time, t = 10, when the field lines at the maximum angular rotation speed (Ωmax) are 

twisted by nearly three full rotations (Ωmax×9.75/2π = 1.876×9.75/2π = 2.91), there is no sign that 

reconnection has linked the two flux tubes. The helicity transport in this case is minimal, at best, 

and there is certainly no evidence of any helicity cancellation even though the total helicity in the 

corona is zero. 

This result can be seen more definitively by examining the evolution of By and Bz, as we did 

in Figure 3.  Figure 6 shows the contours of those magnetic tangential components on the 

horizontal plane x = 0.5, at the same times as in Figure 5.  Unlike Figure 3, there is almost no By 

flux crossing the y = 0 plane at any time during the simulation. For large twist, the By and Bz 

contours become more complex and appear to extend beyond the initial twisting regions due to 

reconnection with external flux, but there are no signs of merging between the two flux tubes. As 

expected, the twisted flux tubes begin to kink and wrap around each other, which causes flux to 

break the y = 0 plane but does not establish any linkages between the tubes.  These results 

confirm the conjecture by Antiochos (2013) that opposite-helicity coronal loops do not reconnect 

and, therefore, coronal helicity cannot simply cancel out via reconnection. Furthermore, this 

counter-helicity simulation does not produce magnetic structure compatible with that in the 

observed corona: there is no buildup of twist (shear) at the boundary of the flux system, and the 

flux in the interior becomes increasingly tangled. 

In order to compare the two cases more quantitatively, we plot the evolution of some key 

global quantities for both simulations in Figure 7: (a) total kinetic energy K; (b) total magnetic 

energy M; (c) average magnetic flux density Fy through the y = 0 plane; and (d) total magnetic 

helicity H. At early simulation times, the kinetic energy “rings” with small-amplitude peaks at t 
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Figure 6. Left: color contours of By on the x = 0.75 horizontal plane at selected times t during 

the counter-helicity simulation; right: contours of Bz on the same plane. Compare with Figure 3 

for the co-helicity case. 

 

≈ 0.75, 1.75, 2.75, and 3.75.  The unit period, ∆t = 1, is precisely the time required for an Alfvén 

wave to propagate from one photosphere to the other, or from either to the loop apex in the 

corona and back.  These peaks evidently result from constructive interference at the loop apexes 

of the waves launched from the photospheres, with a time delay ∆t ≈ 0.25 before the first peak; 
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Figure 7. Global quantities throughout the co-helicity (solid curves) and counter-helicity 

(dashed curves) cases: (a) kinetic energy, K; (b) magnetic energy, M; (c) average magnetic flux 

density through the y = 0 plane, Fy; and (d) magnetic helicity, H. 

 

t = 0.25 is the time at which the imposed photospheric flows attain their maximum acceleration.  

It is evident that over the first three full periods, up to t ≈ 3.75, the kinetic and magnetic energies 

of the two cases are indistinguishable. After this time, the counter-helicity case begins to undergo 

a kink instability, so its kinetic energy starts to rise, whereas its magnetic energy levels off. The 

co-helicity case, on the other hand, continues its early-time behavior until t ≈ 5.5, at which time 

it undergoes a burst of reconnection that sharply increases the kinetic energy and reduces the 

magnetic energy by time t ≈ 6. We note from panel (c) that |By| increases dramatically over this 

interval as a result of the reconnection. 
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Figure 7(d) shows the time variation of the total magnetic helicity in the two cases. The 

points correspond to values measured at discrete times during the evolution by numerically 

integrating the helicity in the coronal volume, whereas the curves indicate the values expected by 

analytically integrating the helicity injected at the boundary. Of course, for the counter-helicity 

case the total helicity should vanish, and this is exactly what we find. More important, we see 

that the co-helicity simulation accumulates helicity at the peak rate 4×dHc/dt = 2.4×10−2 after the 

ramp-up phase, so that even though it exhibits copious reconnection, the helicity is conserved 

very accurately. This result is critical: it verifies that our MHD simulations are capturing the 

effects of helicity-conserving reconnection, which is expected to occur in the solar corona, rather 

than dissipating helicity via resistive diffusion of magnetic flux. 

 

4. INTERACTIONS OF SEVERAL TWISTED FLUX TUBES 

 

Having established that like-helicity loops within a unipolar region reconnect pairwise, we 

now proceed to test the further conjecture by Antiochos (2013) that the reconnection will 

progress to ever-larger scales, until the twist attains the greatest spatial extent that is available.  

On the Sun, the largest scale is the polarity inversion line (PIL) at the boundary of the unipolar 

region, where the parallel twist fields inside and outside the PIL accumulate and strengthen.  Our 

uniform-field configuration has no PIL; rather, we model the effect of the finite extent of a 

unipolar region by limiting the area over which the rotational flows are imposed.  In particular, 

we adopt the simplest possible arrangement of a central rotational cell surrounded by six other, 

identical rotations arrayed in a close-packed, regular hexagonal pattern on each photosphere.  

This minimally complex model enables us to examine interactions between multiple like-helicity 

twisted flux tubes within a unipolar region encompassing numerous convection cells. 

The simulation setup and early evolution of this system are shown in Figure 8.  We used the 

same vertical extent of the domain as before, but increased the horizontal extent to accommodate 

the larger number of rotations.  The resulting domain size is [0,1]×[−0.75,+0.75]×[−0.75,+0.75], 

which, if uniformly gridded, would have been spanned by a 256×3842 grid.  Paired rotations at 

the bottom (x = 0) and top (x = 1) planes were positioned at identical horizontal centers (yc,zc), as 

before; for the pattern shown, they were set at yc = 0, zc = 0; yc = ±2a0, zc = 0; and yc = ±a0, zc = 

±√3a0, with a0 = 0.125.  Vertical planes tangent to each pair of flow circles separate the initially 
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Figure 8. Early evolution (cycle n = 0.5, time t = 1.675) of the simulation with seven rotations in 

a hexagonal pattern.  Six field lines with color contours of velocity magnitude on the (a) x = 0 

plane viewed from above and (b) x = 0 (bottom) and x = 0.9 planes.  Contours of (c) By and (d) 

Bz on the x = 0.75 horizontal plane.  Contours of (e) By on the y = 0 and (f) Bz on the z = 0 

vertical planes.  The By and Bz images were enhanced to improve the visibility of the weak fields. 

straight flux tubes that become twisted, with the outer edges of the tubes just touching at those 

planes, as in our earlier experiments with two rotations. 

The rotational flows are smoothly ramped up from zero, to maximum speed, and then back 

down to zero, over twelve cycles (n = 1, 2, …, 12) each having duration ∆t = 2π/|Ω|max = 3.35.  

This procedure induces a maximum twist of one full turn within each flux tube over each cycle.  

The results in Figure 8 were obtained at the midpoint of the first cycle, n = 0.5 (t = 1.675).  At 

this twist, the imposed footpoint motions have created seven distinct, separated flux tubes in the 

volume having up to one-half turn of twist each.  These features are illustrated by the six field 

lines, one originating in each of the outer flux tubes, drawn in Figures 8(a) and 8(b), and by the 
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views from above of the color-contoured horizontal field components, By and Bz, on the x = 0.75 

plane in Figures 8(c) and 8(d), respectively.  On the tangent planes (e.g., y or z) at the boundaries 

between flux tubes, the normal field (By or Bz) is zero to a high degree of approximation during 

this early evolution, and negligible flux crosses the planes to link the tubes to one another.  

However, the y = 0 and z = 0 planes are crossed by the growing twist field within individual flux 

tubes, as shown in the color-contoured views of By and Bz, respectively, in Figures 8(e) and 8(f).  

The y = 0 plane shown in (e) corresponds to a horizontal line when viewed from the top in (c,d). 

This line cuts through only the central rotation and contains one flux tube.  In contrast, the z = 0 

plane shown in (f) corresponds to a vertical line when viewed from the top in (c,d), and cuts 

through three aligned rotations (including the central one) and contains three flux tubes.  At this 

early time, therefore, the magnetic flux densities through the y = 0 and z = 0 planes are 

substantially different. 

In our first experiment described below, we maintain the pattern of seven rotations fixed in 

place as shown in Figure 8, through all eleven successive cycles of ramping up and then ramping 

down the flows.  At sufficiently large twist or late times t, we expect the seven flux tubes to 

expand and come into contact, interacting and reconnecting with each other as occurred in our 

previous two-tube, co-helicity simulation.  New linkages should form across both the y = 0 and z 

= 0 planes.  If the majority of the injected twist flux thereby is transported by the reconnection to 

the outer boundary of the flux region as predicted by Antiochos (2013), furthermore, then the 

entire region should evolve toward a single twisted flux tube, as we observed previously for two 

rotations.  This implies that the qualitatively and quantitatively different flux densities shown in 

Figures 8(e,f) should eventually converge and begin to resemble one another.  That this indeed 

occurs is demonstrated in the next subsection. 

Of course, the Sun does not exhibit a fixed spatial pattern of surface rotations; individual 

granules and supergranules wax and wane, and the global patterns of their motions are constantly 

shifting.  We take into account this stochastic aspect of the solar convection in our second 

experiment described below, to demonstrate that the helicity condensation model is robust under 

this added complexity.  At each transition between successive cycles (i.e., at times t = 3.35n for n 

= 1, 2, …, 11), the pattern of seven rotations is randomly shifted and rotated as described below.  

The resultant tangling of neighboring flux tubes redistributes the twist field independently of the 

reconnection that is the sole mode of flux transfer in the case where the rotation pattern is fixed. 
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Nevertheless, we find that the late-time behavior of the large-scale twist field is very similar for 

our fixed and randomized patterns.  This result is shown in the second subsection to follow. 

 

4.1 Fixed Rotation Pattern 

 

We first consider the case in which the pattern of rotations is spatially fixed, at the location 

whose early evolution was shown in Figure 8.  The flow amplitudes are ramped up and down 

cyclically in time, to enable direct comparisons with the corresponding results for the spatially 

randomized pattern of rotations.  Figure 9 shows the later evolution of six field lines drawn from 

the same positions as those shown in Figures 8(a,b), at the midpoint of selected cycles (n = 1.5, 

4.5, 7.5, and 11.5) during the simulation.  As in the two-tube cases presented earlier, the 

footpoint positions of the field lines are spatially fixed: they are located within the flow annuli of 

the flux tubes, but they do not follow the flow, so in general the field lines are different between 

any two frames.  The field-line color uniquely identifies only the starting position from which the 

line is traced.  We observe an overall, but non-monotonic, increase in the angle of rotation of the 

field lines about the whole pattern of flows.  At n = 1.5, some field lines begin within one flux 

tube at the bottom of the domain (x = 0), but end within a nearby portion of the counter-

clockwise neighboring flux tube at the top (x = 1), indicating that they already have reconnected 

at least once.  The remote end positions of some field lines reaches to the far portion of the 

nearest neighboring flux tube at n = 4.5, and beyond into the second-nearest neighboring tube at 

n = 11.5; but in between, at n = 7.5, the apparent rotation is smaller, more like that at n = 1.5 than 

at the later cycles.  Clearly, field lines rooted in the flow annuli endure multiple reconnections 

during the evolution.  This process transfers magnetic twist flux throughout the volume of axial 

flux linking the surface regions where the rotational flows are imposed, as well as into the 

surrounding line-tied field (note the dark blue field line at n = 11.5).  The twist aggregates 

around the perimeter of the flow pattern: no field line ends within the central flux tube at any 

time shown, and only the green field line at n = 11.5 threads tangentially through its periphery. 

Figure 10 shows views from above of the contours of By (left panels) and Bz (right panels) on 

the horizontal plane x = 0.75, at the same times as the field lines drawn in Figure 9.  The images 

reveal the gradual distortion, partial cancellation, and large-scale merger of the individual flux 

tubes that were so clearly evident (after enhancement to emphasize weak fields) in Figure 8(c,d). 
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Figure 9. Evolution of six field lines at selected cycles n (times t = 3.35n) during the fixed-

pattern simulation. Left: x = 0 plane viewed from above; right: x = 0 (bottom) and x = 0.9 

planes.  Velocity magnitude is color-contoured on the planes. 

 

At the final cycle shown (n = 11.5), the twist components of the field have “condensed” into two 

strong bands of opposite sign, resembling a single flux tube encompassing the entire region of 

flow.  This evolution closely matches that found in our co-helicity simulation (Figure 3), but for 

several more rotational flows (seven vs. two) and, therefore, over a larger range of flux scales. 



27 
 

  

  

  

  

 
Figure 10. Left: contours of By on the x = 0.75 horizontal plane at selected cycles n (times t = 

3.35n) during the fixed-pattern simulation. Right: contours of Bz on the same plane. 

 

As occurred in that previous simulation, the pattern of Bz contours (right) at the last cycle (n = 

11.5) in Figure 10, if rotated clockwise by 90°, would resemble closely that of By (left) at the 

same time in the figure. 
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Figure 11. Left: contours of By on the y = 0 vertical plane at selected cycles n (times t = 3.35n) 

during the fixed-pattern simulation. Right: contours of Bz on the z = 0 vertical plane. 

 

Similar processes of distortion, cancellation, merging, and strengthening of the field patterns 

are observed in Figure 11, which shows the normal By and Bz field components through the y = 0 

and z = 0 planes on the left and right, respectively.  The first signs of formation of outer bands of 

By flux, due to linkages across the y = 0 plane established by reconnections between flux tubes, 

already are evident at n = 1.5.  These linkages compete in strength with the twist field induced 

directly within the central flux tube, whereas only the latter is evident at n = 0.5 in Figure 8(e).  

Meanwhile, the Bz fluxes across the z = 0 plane are strengthening at heights x ≈ 0.5 at n = 1.5 in 

Figure 11, where the flux tubes become crowded together as they expand laterally in response to 

the increased magnetic pressure.  As time progresses, the inner patterns of By and Bz twist field 

associated with individual flux tubes weaken and fade, giving way to a single pair of opposite-

polarity bands of flux at the perimeter of the region of rotational flow.  This late-time structure 
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again resembles a single flux tube encompassing the entire flux system (cf. Figure 4 for the co-

helicity simulation).  As anticipated, the initially very different y and z flux densities have 

changed to resemble one another quite closely at late times in the simulation. 

It is demonstrated below that the magnetic helicity is conserved throughout this evolution.  

Thus, for the case of several rotational flows in a spatially fixed pattern, we again find that 

reconnection transports the magnetic shear to the boundary of the flux system while leaving the 

central portion relatively smooth.  This result is in accord with the predictions of the helicity 

condensation model (Antiochos 2013). 

 

4.2 Randomized Rotation Pattern 

 

In order to investigate the effect of a constantly shifting pattern of flows, as occurs in the 

Sun’s supergranulation, we repeated the simulation above while adding a random lateral 

translation and angular rotation of the entire hexagonal pattern at the beginning of each flow 

cycle after the first.  The original pattern obviously is invariant to a rotation of 60° about its 

center point.  In addition, a lateral translation of one flow diameter, d0 = 2a0, along any of its 

three symmetry lines separated by 60°, places four of the shifted rotations on top of four of the 

original rotations; thus, if the pattern were unbounded rather than bounded in extent, it would be 

invariant to such a displacement.  Therefore, beginning with the hexagon centered at (yh,zh) = 

(0,0) and having a rotation angle φh = 0 relative to the y axis of the coordinate system, as shown 

in Figure 8, we generated independent sequences of random numbers to set new center 

coordinates yh′,zh′ ∊ [−a0,+a0] and a rotation angle φh′ ∊ [−30°,+30°] for each of the ensuing 

eleven flow cycles. Table 1 lists the resulting set of parameters, which were used to impose the 

same shifted and rotated pattern at both the bottom (x = 0) and top (x = 1) photospheres in each 

cycle.  This randomization process broadly distributed the twist imparted to the magnetic field 

across the footprint of the entire hexagonal pattern of motions, rather than concentrating it in 

seven discrete, fixed flux tubes.  However, as will be seen below, the late-time changes to the 

magnetic field of the randomized-pattern simulation relative to the fixed-pattern case are not 

substantial, having a more quantitative than qualitative character. 
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n yh zh φh 

1 0.0 0.0 0° 

2 +0.1020 +0.0745 −11° 

3 −0.0130 −0.0155 +10° 

4 +0.0320 −0.0480 +22° 

5 +0.1160 −0.0405 +23° 

6 +0.0920 −0.0990 −6° 

7 +0.1070 −0.1100 +27° 

8 −0.0685 +0.0040 −20° 

9 +0.0065 +0.0115 −15° 

10 +0.0760 −0.0110 −24° 

11 +0.1035 +0.0645 −10° 

12 +0.1200 −0.0865 +19° 

Table 1: Parameters yh, zh, and φh of the randomized pattern of rotations vs. convection cycle n. 

 

Six selected magnetic field lines from the randomized-pattern simulation are shown in Figure 

12 at the same selected cycles (n = 1.5, 4.5, 7.5, and 11.5) as were shown for the fixed-pattern 

simulation in Figure 9.  In this case, the footpoint locations are not fixed in space for all time, as 

they were before, but instead are translated and rotated to follow the randomization of the flow 

pattern.  The resultant shifting of the pattern during this sequence is easily seen in the contour 

shading of velocity magnitude on the x = 0 and x = 0.9 planes.  Less obvious, but also apparent, 

is the effect of the pattern shifting on the twist associated with individual field lines: the angular 

rotation of the lines in the early cycles (n = 1.5 and 4.5) is, on average, smaller for the random 

pattern than it is for the fixed pattern at the same time.  This is unsurprising, given the loss of 

coherence of the twist applied to particular magnetic flux surfaces when the pattern of flows is 

periodically shifted, compared to when it is fixed.  Nevertheless, the field line rotation in the late 

cycles (n = 7.5 and 11.5) is quite large and rather similar for the random and fixed patterns, and 

the twist aggregates near the perimeter of the random flow pattern as it did for the fixed. 

These trends are seen more clearly in views of the By and Bz contours from above (Figure 13) 

and from the sides (Figure 14).  The coherent small-scale structure of individual flux tubes in the 
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Figure 12. Evolution of six field lines at selected cycles n (times t = 3.35n) during the 

randomized-pattern simulation. Left: x = 0 plane viewed from above; right: x = 0 (bottom) and x 

= 0.9 planes.  Velocity magnitude is color-contoured on the planes.  Compare with Figure 9 for 

the fixed-pattern simulation. 

 

fixed-pattern simulation (Figures 10 and 11) fragments and fades noticeably more rapidly in the 

randomized-pattern simulation (Figures 13 and 14) throughout the early and middle cycles (n = 

1.5, 4.5, and 7.5).  Consequently, the emerging large-scale structure, which resembles a single, 
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Figure 13. Left: contours of By on the x = 0.75 horizontal plane at selected cycles n (times t = 

3.35n) during the randomized-pattern simulation. Right: contours of Bz on the same plane.  

Compare with Figure 10 for the fixed-pattern simulation. 

 

twisted flux tube encompassing the entire region of rotational flow, is more obviously apparent 

during the middle cycles (n = 4.5 and 7.5) of the random pattern than of the fixed.  By the end of 

the simulations (n = 11.5), however, the large-scale structure has become dominant and the two 

late-time configurations are essentially indistinguishable. 
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Figure 14. Left: contours of By on the y = 0 vertical plane at selected cycles n (times t = 3.35n) 

during the randomized-pattern simulation. Right: contours of Bz on the z = 0 vertical plane.  

Compare with Figure 11 for the fixed-pattern simulation. 

 

A more quantitative comparison of the two cases is shown in plots of the evolution of key 

global quantities.  Figure 15 displays histories of (a) total kinetic energy K, (b) total magnetic 

energy M, and (c) total magnetic helicity H. The kinetic and magnetic energies for the fixed and 

randomized patterns are identical, of course, over the first cycle (to time t = 3.35), and thereafter 

exhibit qualitatively similar behaviors.  The kinetic energies in Figure 15(a) attain maxima at 

approximately the midpoints of the cycles (at times t ≈ 3.35n+1.675, n ≥ 1), followed soon 

thereafter by peaks in the magnetic energies, and minima at approximately the endpoints of the 

cycles (at times t ≈ 3.35n, n ≥ 2).  Decreases in the magnetic energies in Figure 15(b) indicate 

the occurrence of reconnections between flux tubes in the case with fixed rotations (solid curve); 

both reconnections between, and rotation-induced untwisting of, flux tubes occur in the case with 
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Figure 15. Global quantities throughout the fixed-pattern (solid curves; circles) and 

randomized-pattern (dashed curves; squares) simulations: (a) kinetic energy, K; (b) magnetic 

energy, M; and (c) magnetic helicity, H. 

 

randomized rotations (dashed curve).  When these processes come into play, early in the second 

cycle, the overall trend lines of increasing magnetic energy adopt gentler slopes and the maxima 

in the kinetic energy increase substantially. 

Figure 15(c) shows the evolution of the total magnetic helicity in the two cases. The points 

correspond to values measured at discrete times during the evolution by numerically integrating 

the helicity in the coronal volume, whereas the curve indicates the common value expected by 

analytically integrating the helicity injected at the boundary. The two sets of data points overlie 

each other, because randomizing the flow pattern does not alter the pace of helicity injection, 
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Figure 16. Global quantities throughout the (a) fixed-pattern and (b) randomized-pattern 

simulations: average magnetic flux densities through the y = 0 plane, Fy (solid curves), and the z 

= 0 plane, Fz (dashed curves). 

 

whose average rate is 0.5×14×dHc/dt = 4.2×10−2. As in the two-tube co-helicity case discussed 

previously, even though both the fixed- and randomized-pattern simulations exhibit copious 

reconnection, the helicity is conserved very accurately throughout. 

Figure 16 displays the average magnetic flux densities, Fy through the y = 0 plane and Fz 

through the z = 0 plane, for the (a) fixed-pattern and (b) randomized-pattern simulations.  At very 

early times, these quantities reflect the formation of the individual twisted flux tubes in response 

to the rotational motions imposed at the photospheres.  As noted in conjunction with Figure 8, 

the initial orientation of the hexagonal flow pattern is such that only one flux tube cuts through 

the y = 0 plane while three tubes cut through the z = 0 plane.  This imparts the difference of a 

factor of three in the initial slopes of the Fy (solid) and Fz (dashed) curves in Figure 16.  During 

the second cycle of flows – at its midpoint for the fixed pattern in 16(a) and at its beginning for 

the randomized pattern in 16(b) – the trend in Fz moderates strongly as reconnections between 

flux tubes cancel flux crossing through the z = 0 plane and, in the case of the randomized pattern, 

the initial alignment of the three rotational flows along the z = 0 line is lost.  In contrast, the 

initial trend in Fy is maintained, with small-amplitude transient oscillations superimposed on the 

trend line.  At late times in the fixed-pattern simulation in 16(a), the two curves converge, 

signaling the final loss of memory of the initially anisotropic configuration during the approach 
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to an isotropic state resembling a single twisted flux tube.  This convergence and loss of memory 

occur quite early in the randomized-pattern simulation in 16(b), due to the periodically shifting 

pattern of flows.  Thereafter, the two curves trend together and oscillate about each other.  At the 

end of the simulations, the flux densities for the fixed and randomized patterns are essentially 

identical along both the y and z directions and to each other. 

These results demonstrate that the long-term averaged behavior of coronal flux systems 

subject to helicity injection, transport by reconnection, and condensation at the boundary is not 

sensitive to the steady or unsteady character of the pattern of surface rotations.  Regardless of 

whether the pattern of flows is fixed or varies randomly, over time the twist field concentrates at 

the perimeter of the region of imposed flows.  Furthermore, at identical rates of helicity injection, 

the accumulated twist flux becomes independent of the fixed or randomized nature of the flows 

once the memory of the particular initial and boundary conditions imposed has been lost.  This is 

an important additional verification of the robustness of the helicity condensation model. 

 

5. DISCUSSION 

 

The results presented in this paper yield several important conclusions on the structure and 

dynamics of the coronal magnetic field. Clearly, these first, exploratory simulations do not 

include all of the observed properties of the coronal field, but they do capture some essential 

features. Perhaps the most essential feature is that the simulations conserve magnetic helicity to 

an excellent approximation, even though there is clearly a great deal of reconnection occurring in 

the coronal domain. We note that in Figure 15c, the points corresponding to the numerically 

measured helicity fall almost exactly on the curve corresponding to the analytic expected value 

(within ≈ 1%). Thus, the evolution determined by our ARMS simulations is dominated by true 

reconnection, rather than diffusion. There is good reason to expect, therefore, that our results are 

robust in that they are unlikely to change when scaled up to a Lundquist number appropriate to 

the real corona, which is orders of magnitude larger than in any possible simulation. One 

uncertainty is whether reconnection occurs as readily in the corona as in our simulations. A 

number of studies, however, have shown that complex photospheric flows with stagnation points 

produce current structures in the corona with widths that decrease exponentially over time (e.g., 

van Ballegooijen 1986; Antiochos & Dahlburg 1997). Consequently, even for coronal Lundquist 
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numbers, we expect that the current structures will thin down to the dissipation scale and start to 

reconnect in only a few rotations. 

A key conclusion of our simulations is that the helicity evolution of the corona is highly 

constrained. We find that the corona clearly does not evolve toward the Taylor (1986) state of a 

linear force-free field. For the simulations with two flux tubes, a Taylor evolution implies the 

complete cancellation of all magnetic twist in the counter-helicity case and the spreading of twist 

uniformly throughout the domain in the co-helicity case. In the counter-helicity case, we find 

instead that the magnetic twist remains concentrated in the two separate flux tubes, with little 

evidence for reconnection even after the tubes kink substantially. In the co-helicity case, the twist 

evolves via reconnection to merge the two flux tubes, but it does not propagate significantly into 

the surrounding field. Note that even the simulations with multiple flux tubes, which involve a 

great deal of reconnection, do not lead to a minimum-energy Taylor state. 

These outcomes occur because line-tying at the photosphere introduces strong dynamical 

constraints on the coronal evolution. As discussed in Antiochos et al. (2002), reconnection 

requires current sheets, but these cannot form freely throughout the corona. They are likely to 

form only where the field has topological singularities, such as null points and separatrices, or 

where the driving motions have topological singularities, such as stagnation points.  For a bipolar 

coronal region with a topologically smooth potential field that is continuously driven by 

photospheric motions, we find that the helicity condenses at the largest system scale, in 

agreement with turbulence theory, rather than evolving toward a Taylor state. 

Even in our simulation with random photospheric motions, which inherently contains many 

stagnation points and consequently numerous current sheets, the system evolves via helicity 

condensation rather than to a linear force-free state. Due to the low beta of our simulation the 

final state is, indeed, force-free to a good approximation, but it is far from a linear force-free 

state.  Also, for the random driving we expect that, in addition to simply helicity, higher-order 

topological features such as braiding are injected into the coronal field. It appears, however, that 

all of these higher-order topologies are destroyed by reconnection and only helicity remains, in 

agreement with other calculations (e.g., Pontin et al. 2011). 

The conclusion that coronal magnetic helicity evolves via condensation to the largest scale is 

the most important result of our simulations. It has far-reaching implications for solar 

observations; in particular, it explains why coronal loops appear laminar while shear collects at 
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polarity inversion lines.  The calculations presented here provide strong initial support for the 

conjectures developed in Antiochos (2013), but much more observational and theoretical work 

remains to be done in order to confirm or refute the helicity condensation model. 
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