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Abstract. We explore a transformational approach to the problem of
verifying simple array-manipulating programs. Traditionally, verification
of such programs requires intricate analysis machinery to reason with
universally quantified statements about symbolic array segments, such
as “every data item stored in the segment A[i] to A[j] is equal to the
corresponding item stored in the segment B[i] to B[j].” We define a simple
abstract machine which allows for set-valued variables and we show how
to translate programs with array operations to array-free code for this
machine. For the purpose of program analysis, the translated program
remains faithful to the semantics of array manipulation. Based on our
implementation in LLVM, we evaluate the approach with respect to its
ability to extract useful invariants and the cost in terms of code size.

1 Introduction

We revisit the problem of automated discovery of invariant properties in simple
array-manipulating programs. The problem is to extract interesting properties
of the contents of one-dimensional dynamic arrays (by dynamic we mean arrays
whose bounds are fixed at array variable creation time, but not necessarily at
compile time). We follow the array partitioning approach proposed by Gopan,
Reps, and Sagiv [9] and improved by Halbwachs and Péron [11]. This classical
approach uses two phases. In a first phase, a program analysis identifies all
(potential) symbolic segments by analyzing all array accesses in the program.
Each segment corresponds to an interval Ik of the array’s full index domain, but
its bounds are symbolic, that is, bounds are index expressions. For example, the
analysis may identify three relevant segments I1 = [0, . . . , i − 1], I2 = [i], and
I3 = [i + 1, . . . , n − 1]. After this the original array A is considered partitioned
into segments AIk corresponding to the identified segments and each segment is
replaced with a summary variable ak. In the second phase, the analysis aims at
discovering properties ψ(ak) on each summary variable ak such that

∀ ℓ ∈ Ik(ψ(ak) ⇒ ψ(A[ℓ])) (1)
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By partitioning arrays into segments, the analysis can produce stronger separate
analyses for each segment rather than a single weaker combined result for the
whole array. In particular, we can identify singleton segments (AI2 in the ex-
ample) and translate array writes to these as so-called strong updates. A strong

update benefits from the fact that the old content of the segment is eliminated by
the update, so the new content replaces the old. For a segment that may contain
multiple elements, an assignment to an array cell may leave some content un-
changed, so a weak update must be used, that is, we must use a lattice-theoretic
“join” of the new result and the old result associated with ℓ.

Although very accurate, array partitioning methods have their drawbacks.
Partitioning can be prohibitively expensive, with a worst-case complexity of
O(n!), where n is the number of program variables. Moreover, partitioning must
be done before the array content analysis phase that aims at inferring invariants
for the form (1), which could be less precise than doing both simultaneously [5].
To mitigate this problem, the index analysis, used to infer the relevant symbolic
intervals, is run twice: once during the segmentation phase and again during the
array content analysis, which needs it to separate the first fixed point iteration
from the rest. In the more sophisticated approach of Halbwachs and Péron [11,
16], the transfer functions are much more complex and a concept of “shift vari-
ables”, representing translation (in the geometric sense) of segments. This is not
easily implemented using existing abstract interpretation libraries.

Contribution.We present a program transformation that allows scalar analysis
techniques to be applied to array manipulating programs. As in previously pro-
posed array analyses [9, 11, 16], we partition arrays into segments whose contents
are treated as sets rather than sequences. To maintain the relationship among
corresponding elements of different arrays, we abstract the state of all arrays
within a segment to a set of vectors, one element per array. Thus we transform
an array manipulating program into one that manipulates scalars and sets of
vectors. A major challenge in this is to encode the disjunctive information car-
ried by each array segment. We propose a technique that splits basic blocks. It
has been implemented using the LLVM framework.

Importantly, a program transformation approach allows the separation of
concerns: existing analyses based on any scalar abstract domains can be used
directly to infer array content properties, even interprocedurally. While other ap-
proaches lift a scalar abstract domain to arrays by lifting each transfer function,
our approach uses existing transfer functions unchanged, only requiring the ad-
dition of two simple transfer functions easily defined in terms of operations that
already exist for most domains. The approach is also parametric in the granu-
larity of array index sets, ranging from array smashing [2] to more precise (and
expensive) instances. When we go beyond array smashing, the transformational
approach inherits the exponential search cost present in the Halbwachs/Péron
approach, as for some programs P , the transformed programs P ′ are exponen-
tially larger than P . However, for simple array-based sort/search programs [9,
11], a transformational approach is perfectly affordable, in particular as we can
capitalize on code optimization support offered by the LLVM infrastructure.



Instructions I → v1 = constant | v1 = ◦ v2 | v1 = v2 ⋄ v3 | A
Array assignments A → v1 = arr[v2] | arr[v1] = v2
Jumps J → If (v1 ⊲⊳ v2) label1 label2 | Jmp label | error | end
Blocks B → label : I* J

Programs P → B+

Fig. 1. A small control-flow language with array expressions

head :
i = 0
x = ⋆

Jmp guard

guard :
v = A[i]

If (v 6= x) body tail

body :
i = i+ 1
Jmp guard

tail :
end

head∅ :
i = 0
x = ⋆

a0 = ⋆

Jmp guard0=i

guard0=i :
v = a0

If (v 6= x) body0=i tail0=i

body0=i :
i = i+ 1
A0 = {a0}
a1 = ⋆

Jmp guard0<i

tail0=i :
end

guard0<i :
v = a1

If (v 6= x) body0<i tail0<i

body0<i :
i = i+ 1

A0 = A0 ∪ {a1}
a1 = ⋆

Jmp guard0<i

tail0<i :
end

(a) (b)

Fig. 2. (a) An array program fragment and (b) the corresponding set-machine program.

2 Source and target language

Our implementation uses LLVM IR as source and target language. However, as
the intricacies of static single-assignment (SSA) form obscure, rather than clarify,
the transformation, we base our presentation on a small traditional control flow
language, whose syntax is given in Fig. 1. We shall usually shorten “basic block”
to “block” and refer to a block’s label as its identifier.

Source. Each block is a (possibly empty) sequence of instructions, followed by
a (conditional) jump. Arithmetic unary and binary operators are denoted by
◦ and ⋄ respectively, and logical operators by ⊲⊳. We assume that there is a
fixed set of arrays {A1, . . . , Ak}, which have global scope (and do not overlap in
memory). The semantics is conventional and not discussed here. Fig. 2(a) shows
an example program in diagrammatic form.

Target. The abstract machine we consider operates on variables over two kinds
of domains: standard scalar types, and sets of vectors of length k, where k is
the number of arrays in the source. The scalar variables represent scalars of the
source program, including index variables, as well as singleton array segments;
sets of vectors represent non-singleton segments of all extant arrays. LetV be the



Instructions I → v1 = constant | v1 = ◦ v2 | v1 = v2 ⋄ v3 | S
Set operations S → S1 = nondet-subset(S2) | S1 = S2 ∪ S3 | (v1, . . . , vk) = nondet-elt(S1)
Jumps J → If (v1 ⊲⊳ v2) label1 label2 | Jmp label | error | end
Blocks B → label : I* J

Programs P → B+

Fig. 3. Control-flow language for the set machine.

S [[S1 = S2 ∪ S3]] 〈σ, ρ〉 = 〈σ, ρ[S1 7→ ρ(S2) ∪ ρ(S3)]〉
S [[S1 = nondet-subset(S2)]] 〈σ, ρ〉 = 〈σ, ρ[S1 7→ s]〉, s ⊆ ρ(S2), s 6= ∅

S [[(v1, . . . , vk) = nondet-elt(S1)]] 〈σ, ρ〉 = 〈σ[v1 7→ x1, . . . , vk 7→ xk], ρ〉, (x1, . . . , xk) ∈ ρ(S1)

Fig. 4. Semantics for set manipulating operations.

set of scalar variables and S be the set of vector set variables. The runtime state
of the machine is given by a pair 〈σ, ρ〉 consisting of a variable store σ : V → Z,
and a set store ρ : S → P(Zk).

A control flow language for set machine programs is given in Fig. 3. Arith-
metic and logical operations affect only the variable store σ; the semantic rules
for these operations are standard. The set machine also has set operations union
(∪), subset (nondet-subset) and element of (nondet-elt). Fig. 4 gives their seman-
tic rules, distinguishing scalar variables v and (vector) set variables S.

The union update S1 = S2 ∪ S3 maps S1 to the union of values of S2

and S3. The subset and element operations are non-deterministic: executing
S1 = nondet-subset(S2) assigns to S1 some non-empty subset of elements from
S2, but makes no guarantee as to which elements are selected. Similarly, the el-
ement operation (v1, . . . , vk) = nondet-elt(S1) nondeterministically selects some
element of vector set S1 to load into v1, . . . , vk.

Translation. Fig. 2(a)’s program scans an array for the first occurrence of value
x, assumed to occur in A. The constraint A[i] = x ∧ ∀ k ∈ [0, i) (A[k] 6= x) is
the desired invariant at tail. A corresponding array-free program is given in
Fig. 2(b). The example illustrates some key features. Each contiguous array
segment is represented by a set variable Ai. Each original block is duplicated
for each feasible ordering of interesting variables. In the initial ordering (0 = i)
the only interesting segment is A[0], represented as the singleton a0; the read
v = A[i] is replaced by an assignment v = a0. At guard0<i, A[i] is represented
by a1 so the read is replaced by v = a1. When i is updated at body0=i, the
previous singleton a0 becomes part of an “aggregate” segment A[0, i−1]. We then
transform singleton a0 to set A0 and introduce a new singleton a1 (representing
A[i] in the updated ordering). Similarly, when we update i in body0<i, segments
A[0, i − 1] and A[i] are merged (yielding A0 = A0 ∪ {a1}), and a new singleton
a1 is introduced. Consider the resulting concrete set-machine states. At tail0=i,
we have a0 = x, corresponding to A[0] = x in the original program. At tail0<i,
we find x /∈ A0 and a1 = x. These correspond, respectively, to array invariants
∀ℓ ∈ [0, i− 1] . A[ℓ] 6= x and A[i] = x in the original program.



3 From scalar to set machine transfer functions

We now show how to lift a scalar domain for use by set machines. Essentially, we
use a scalar variable to approximate each component of each set; approximation
of set-machine states can then be obtained by grouping states by values of the
(original) scalar variables. Essentially, we approximate a set-machine state 〈σ, ρ〉
with set variables {S1, . . . , Sm} by a set of scalar states {S⋄

1 , . . . , S
⋄
m} represent-

ing the possible results of selecting some element from each set:

α⋄(〈σ, ρ〉) = {σ ∪ {S⋄
1 7→ y1, . . . , S

⋄
m 7→ ym} | y1 ∈ ρ(S1), . . . , ym ∈ ρ(Sm)}

Transfer functions for set operations then operate over the universe of possible
states, rather than apply element-wise to each state.

Example 1. Consider a program with one scalar variable x, and one set variable
S, with initial state 〈{x 7→ 0}, {S 7→ {1, 2}}〉. If we introduce a scalar variable y
that selects a value from S via a we have two possible states:

〈{x 7→ 0, y 7→ 1}, {S 7→ {1, 2}}〉
〈{x 7→ 0, y 7→ 2}, {S 7→ {1, 2}}〉

If we represent S by scalar variable S⋄, we have initial states 〈{x 7→ 0, S⋄ 7→ 1}〉
and 〈{x 7→ 0, S⋄ 7→ 2}〉. When we wish to select a value for y, it is chosen
nondeterministically from the possible values of S⋄, resulting in the states:

〈{x 7→ 0, y 7→ 1, S⋄ 7→ 1}〉, 〈{x 7→ 0, y 7→ 1, S⋄ 7→ 2}〉
〈{x 7→ 0, y 7→ 2, S⋄ 7→ 1}〉, 〈{x 7→ 0, y 7→ 2, S⋄ 7→ 2}〉

If we group states with equal values of x and y, we can see that these correspond
to the final states of the original set-machine fragment. �

Note that this is an (over-)approximation.We can only infer the set of values that
may be elements of S—this representation cannot distinguish sets of elements
which may occur together, nor the cardinality of S. For example, assume we
have possible set-machine states 〈∅, {S 7→ {1}}〉 and 〈∅, {S 7→ {2}}〉. The scalar
approximation is 〈{S⋄ 7→ 1}, {S⋄ 7→ 2}〉 which covers the feasible set-machine
states, but also includes 〈∅, {S 7→ {1, 2}}〉, which is not feasible. More generally,
if the set ϕ of concrete states allows sets S 7→ X1, . . . , S 7→ Xk, we have:

∀X (X ⊆ X1 ∪ . . . ∪Xk ⇒ (S 7→ X) ∈ γ ◦ α(ϕ))

Consider a (not necessarily numeric) abstract domain A, with meet (⊓), join (⊔)
and rename operations, as well as a transfer function F : I → A → A for the
scalar fragment of the language. The rename operation constructs a new state
where each variable xi is replaced with yi (then removes the existing bindings
of xi). Formally, the concrete semantics of rename is given by

rename(σ, [x1, . . . , xk], [y1, . . . , yk]) = σ

[

y1 7→ σ(x1), . . . , yk 7→ σ(xk),
x1 7→ ⋆, . . . , xk 7→ ⋆

]

For each set variable S, we introduce k scalar variables [s1, . . . , sk] denoting the
possible values of each vector in S. We then extend F to set operations as shown
in Fig. 5.



F [[S1 = nondet-subset(S2)]] ϕ = ϕ ⊓ rename(ϕ, [s12, . . . , s
k
2 ], [s

1
1, . . . , s

k
1 ])

F [[S1 = S2 ∪ S3]] ϕ =

(

F [[S1 = nondet-subset(S2)]] ϕ
⊔ F [[S1 = nondet-subset(S3)]] ϕ

)

F [[(v1, . . . , vk) = nondet-elt(S1)]] ϕ = ϕ ⊓ rename(ϕ, [s11, . . . , s
k
1 ], [v

1
1 , . . . , v

k
1 ])

Fig. 5. Extending the transfer function for scalar analysis to set operations

4 Orderings

The transformation relies on maintaining a single ordering of index variables at
each transformed block. We now discuss such total orderings.

Our goal is to partition the array index space (−∞,∞) into contiguous re-
gions bounded by index variables. For index variables i and j, we need to be
able to distinguish between the cases where i < j, i = j and i > j. However,
this is not enough; if we assign A[i] = x, but only know that i < j, we cannot
distinguish between the cases i = j− 1 (every element between i and j is x) and
i < j−1 (there are additional elements with some other property). So, for index
variables i and j, we choose to distinguish these five cases:

i+ 1 < j i+ 1 = j i = j i = j + 1 i > j + 1

For convenience in expressing these orderings, we will introduce for each index
variable i a new term i+ denoting the value i+1, and for a set of index variables
I we will denote by I+ the augmented set I∪ {v+ | v ∈ I}. We can then define a
total ordering of a set of index variables I to be a sequence of sets [B1, . . . , Bk],
Bs ⊆ I+, such that the Bs’s cover I

+, are pairwise disjoint, and satisfy i ∈ Bs ⇔
i+ ∈ Bs+1.

The meaning of the ordered list π = [B1, B2, . . . , Bk] is parameterised by
the value of program variables involved, that is, it depends on a store σ. The
meaning is: [[π]](σ) ≡

∧

s,t∈[1..k]

(∀e, e′ ∈ Bs (σ(e) = σ(e′)) ∧ ∀e ∈ Bs ∀e′ ∈ Bt (s < t→ σ(e) < σ(e′)))

An ordering π (plus virtual bounds {−∞,∞}) partitions the space of possible
array indices into contiguous regions, given by [σ(e), σ(e′)) for e ∈ Bi, e

′ ∈ Bi+1.
For any index variable i, a segment containing i+ in the right bound is necessarily
a singleton segment; all other segments are considered aggregate.

When a new index variable k enters scope, several possible orderings may
result. Fig. 6(c) gives a procedure for enumerating them. When an index variable
k leaves scope, computing the resulting ordering consists simply of eliminating
k and k+ from π, and discarding any now-empty sets. Assignment of an index
variable is handled as a removal followed by an introduction.3

3 If the assigned index variable appears in the expression, we assign the index to a
temporary variable, and replace the index with the temporary in the expression.



We can discard any ordering that arranges constants in infeasible ways, such
as 4 < 3. If we have performed some scalar analysis on the original program, we
need only generate orderings which are consistent with the analysis results.

5 The transformation

We now detail the transformation from an array manipulating program to a
set-machine program, with respect to a fixed set of interesting segment bounds.
Section 6 covers the selection of these bounds. Intuitively, the goal of the trans-
formation is to partition the array into a collection of contiguous segments, such
that each array operation uniquely corresponds to a singleton segment. Each
singleton segment is represented by a tuple of scalars; each non-singleton seg-
ment is approximated by a set variable. There are two major obstacles to this.
First, a program point does not typically admit a unique ordering of a given
set of segment bounds; second, as variables are mutated in the program, the
correspondence between concrete indices and symbolic bounds changes.

The transformation resolves this by replicating basic blocks to ensure that, at
any program point, a unique partitioning of the array into segments is identifi-
able. Any time a segment-defining variable is modified, introduced or eliminated,
we emit statements to distinguish the possible resulting partitions, and duplicate
the remainder of the basic block for each case. For each partition, we also emit
set operations to restore the correspondence between set variables and array
segments, using nondet-elt and nondet-subset when a segment is subdivided,
and ∪, when a boundary is removed, causing segments to be merged. This way
every array read/write in the resulting program can be uniquely identified with
a singleton segment. As singleton sets are represented by tuples of scalars, we
can finally eliminate array operations, replacing them with scalar assignments.

In the following, we assume the existence of functions next block, which allo-
cates a fresh block identifier, and push block, which takes an identifier, a sequence
of statements and a branch, and adds the resulting block to the program. We
also assume that there is a mutable global table T mapping block identifier and
index variable ordering pairs 〈id, π〉 to ids, used to store previously computed
partial transformations, and an immutable set I of segment bound variables and
constants. The function get block takes a block identifier, and returns the body of
the corresponding block. The function vars returns the set of variables appearing
lexically in the given expression. The function find avar gives the variable name
to which a given array and index will be translated, given an ordering.

Fig. 6 gives the transformation. Procedure transform takes a block and trans-
forms it, assuming a given total ordering π of the index variables. It is called
once with the initial block of each function and an ordering containing only the
constants in the index set. As there are finitely many 〈id, π〉 combinations, and
each pair is constructed at most once, this process terminates.

The core of the transformation is done by a call to transform body(B, π, id, ss).
Here B is the portion of the current block to be transformed and π the current
ordering. id and ss hold the identifier and body of the partially-transformed



% Check if the block has already been transformed
% under π. If not, transform it.
transform(id, π)

if ((id, π) ∈ T )
return T [(id, π)]

idt := next block()
T := T [(id, π) 7→ idt]
(stmts , br) := get block(id)
transform body((stmts , br), π, id, [])
return idt

% Evaluate a branch.
transform body(([], Jmp b), π, id, ss)

idb := transform(b, π)
push block(id, ss , Jmp idb)

transform body(([], If l then t else f), π, id, ss)
if vars(l) ⊆ I

dest := if eval(l, π) then t else f

iddest := transform(dest, π)
push block(id, ss , Jmp iddest)

else

idt := transform(t, π)
idf := transform(f , π)
push block(id, ss , If l then idt else idf )

% (Potentially) update an index.
transform body(([x = expr|stmts ], br), π, id, ss)

if x ∈ I

split transform(x, (stmts , br), π, id, ss : :[x = expr])
else

transform body((stmts , br), π, id, ss : :[x = expr])
% Transform an array read...
transform body(([x = A[i]|stmts ], br), π, id, ss)

Ai := find avar(π,A, i)
transform body((stmts , br), π, id, ss : :[x = Ai])

% or an array write.
transform body(([A[i] = x|stmts ], br), π, id, ss)

Ai := find avar(π,A, i)
transform body((stmts , br), π, id, ss : :[Ai = x])

(a) The top-level transformation process

split transform(x, (stmts , br), π, id, ss)
Π ′ := feasible orders(π, x)
split rec(x,Π ′, (stmts , br), π, id, ss)

split rec(x, [π′], (stmts , br), π, id, ss)
asts := remap avars(π, π′)
transform body((stmts , br), π′, id, ss : : asts)

split rec(x, [π′|Π ′], (stmts , br), π, id, ss)
idπ′ := next block()
idΠ′ := next block()
cond := ord cond(x, π′)
push block(id, ss , If cond then idπ′ else idΠ′)
asts := remap avars(π, π′)
transform body((stmts , br), π′, idπ′ , asts)
split rec(x,Π ′, (stmts , br), π, idΠ′ , [])

(b) Fan-out of a block when an index variable is changed

feasible orders(k, π) : insert(k, π, [])

insert(k, [], pre) : return {pre : :{k} : :{k+}}
insert(k, [Si|S ], pre)

low := insert+(k, [Si | S ], pre : :{k})
high := insert(k,S , pre : :Si)
if ∃ x . x+ ∈ Si

return low ∪ high

else

return low ∪ high ∪
insert+(k,S , pre : :(Si ∪ {k}))

insert+(k, [], pre) : return {pre : :{k+}}
insert+(k, [Si | S ], pre)

if ∃ x . x+ ∈ Si

return {pre : :(Si ∪ {k+}) : :S}
else

return {pre : :(Si ∪ {k+}) : :S} ∪
{pre : :{k+} : :Si : :S}

(c) Enumerating the possible total orderings upon
introducing a new index variable k

Fig. 6. Pseudo-code for stages of the transformation process.

block. As a block is processed, instructions not involving index or array vari-
ables are copied verbatim into the transformed block. During the process, we
ensure that each (transformed) statement is reachable under exactly one index
ordering π. Singleton segments under π are represented by scalar variables, and
aggregate segments by set variables. Array reads and writes are replaced with



π = [{0} < {1} < {i} < {i+} < {n}]

transform body : π

x := A[i]
B[i] := x
i := i+ 1

x = a2
transform body : π

B[i] := x
i := i+ 1

x = a2
b2 := x
transform body : π

i := i+ 1

(a) Original (b) After Step 1 (c) After Step 2

Fig. 7. Transformation of array reads and writes under ordering π. As the segment
[i, i+] is a singleton, the array elements are represented as scalars.

accesses and assignments to the corresponding scalar or set variable, as deter-
mined by find avar. Conditional branches whose conditions are determined by
the current ordering are replaced by direct branches to the then or else part,
as appropriate. Once no instructions remain to be transformed, the block id is
emitted with body ss, together with the appropriate branch instruction.

Whenever an index variable is modified, the rest of the current block must
be split, and the set variables must be updated accordingly. The rest of the
block is then transformed under each possible new ordering π′. This is the job
of split transform shown in Fig. 6(b), while the job of feasible orders in Fig. 6(c)
is to determine the set of possible orders. The function ord cond(x, π′) generates
logical expressions to determine whether the ordering π′ holds, given that π
previously held. ord cond checks the position of both x and x+. If x is part of
a larger equivalence class in π, ord cond generates the corresponding equality;
otherwise, it checks that x is greater than its left neighbour; similarly, it checks
that x+ is in its class or less than its right neighbour. Fig. 6(b) shows the process
of splitting a block upon introducing an index variable x.

5.1 Reading and writing

Transformation of array reads and writes is simple, if the array index is in the set
I of index variables. Fig. 7(a–c) shows the step-by-step transformation of a block,
under the specified ordering. After Step 1, reference A[i] has been transformed
to scalar a2, since {i} is a singleton. Similarly, Step 2 transforms B[i] to b2.

If the index of the read/write operation has been omitted, we must instead
emit code to ensure the operation is dispatched to the correct set variable. The
dispatch procedure is similar in nature to split transform, as given in Fig. 6(c);
essentially, we emit a series of branches to determine which (if any) of the current
segments contains the read/write index. Once this has been determined, we
apply the array operation to the appropriate segment. If the selected segment is
a singleton, this is done exactly as in transform body. For writes to an aggregate
segment, we must first read some vector from the segment, substitute the element
to be written, then merge the updated vector back into the segment.4

4 Detailed pseudo-code for this is in Appendix A.



π = [{0} < {1} < {i} < {i+} < {n}]

π
′
0 = [{0} < {1} < {i} < {i+} < {n}]

π
′
1 = [{0} < {1} < {i} < {i+, n}]

...
transform body : π

i := i+ 1
Jmp guard

(a) Original

...
i := i+ 1
split rec : π 7→ [π′

0, π
′
1]

Jmp guard

(b) After Step 1

...
i := i+ 1
If i+ 1 < n then sπ′

0

else split1

[sπ′

0
]

remap avars : π 7→i π
′
0

transform body : π′
0

Jmp guard

[split1]
split rec : π 7→i [π

′
1]

Jmp guard

(c) After Step 2

...
i := i+ 1
If i+ 1 < n then sπ′

0

else split1

[sπ′

0
]

remap avars : π 7→i π
′
0

transform body : π′
0

Jmp guard

[split1]
remap avars : π 7→i π

′
1

transform body : π′
1

Jmp guard

(d) After Step 3

Fig. 8. Example of updating an index assignment. We assume an existing scalar anal-
ysis which has determined that, after i = i+ 1, we have 1 < i < n.

5.2 Index manipulation

The updating of index variables is the most involved part of the transformation,
as we must emit code not only to determine the updated ordering π′, but also
to ensure the array segment variables are matched to the corresponding bounds.

Fig. 8 illustrates this process, implemented by the procedure remap avars, as
it splits a block into three: one to test an index expression to determine what
ordering applies, and one for each ordering. In the original code, ordering π ap-
plies, but following the assignment, either ordering π′

0 or π′
1 may apply. The test

inserted by Step 2 distinguishes these cases, leaving only one ordering applicable
to each of the sπ′

0
and split1 blocks.

If we normalize index assignments such that for k := E, k /∈ E, we can
separate the updating of segment variables into two stages; first, computing in-
termediate segment variables A′

i after eliminating k from π, and then computing
the new segment variables after introducing the updated value of k. Pseudo-code
for these steps are given in Fig. 9(a) and 10(a). In practice, we can often elim-
inate many of these intermediate assignments, as segments not adjacent to the
initial or updated values of k remain unchanged.



remap avars(k, π, π′)
eliminate(k, π) : : introduce(k, π′)

eliminate(k, π)
eliminate(k, π, 0, 0, ∅)

eliminate(k, [], , i′, E)
if(i′ = 0) return []
else return [emit merge(A′

i′−1, E)]

eliminate(k, [{c} | S], i, i′, E)
where c ∈ {k, k+}

return eliminate(k,S, i+ 1, i′, E ∪ {Ai})

eliminate(k, [Sj | S], i, i′, E)
suff := eliminate(k,S, i+ 1, i′ + 1, {Ai})
if(i′ = 0)

% Ignore leading segment.
return suff

else

return emit merge(A′
i′−1, E) : : suff

emit merge(x,E)
return [x =

⋃

E]

(a)

a0 a1

π = [{k} < {k+, n} < {n+}]
a′
0

πr = [{n} < {n+}}]

a′0 := a1

a0

π = [{k, n} < {k+, n+}]
a′
0

πr = [{n} < {n+}}]

a′0 := a0

a0 a1 A2 a3

π = [{i} < {i+, k} < {k+} < {n} < {n+}]
a′
0 A′

1 a′
2

πr = [{i} < {i+} < {n} < {n+}]

a′0 := a0
A′

1 := {a1} ∪A2

a′2 := a3

(b)

Fig. 9. (a) Algorithm for generating instructions to keep segment variables updated;
(b) resulting assignments when k is eliminated from various orderings, also showing
the remaining order πr and scalar or set variables corresponding to each segment.

When we eliminate an index variable k from π, we merge segments that were
bounded only by k or k+. If k or k+ appears alone at the very beginning or
end of π, the segments are discarded entirely. If either appears alone between
other variables in π, the segments on either side are merged to form a single
segment. However, if k and k+ are both equal to some other variables, the
original segments are simply copied to the corresponding temporary variables.
This is illustrated in Fig. 9(b).

The pseudo-code in Fig. 9 and 10 ignores the distinction between singleton
and aggregate segments; the transformed operations differ slightly in the two
cases. If we introduce a singleton segment into an aggregate segment, we select
a single vector from the set ((a′, b′, c′) = nondet-elt(A)); if an aggregate segment
is introduced, we emit a subset operation (A′ = nondet-subset(A)).

The procedure for injecting k into π behaves similarly. If k is introduced
at either end of π, we introduce new segments with indeterminate values. If k



introduce(k, π)
introduce(k, π, 0, 0)

introduce(k, [], , i′)
return []

introduce(k, [{c} | S], i, i′)
where c ∈ {k, k+}

suff := introduce(k,S, i+ 1, i′)
if(i′ = 0)

return [Ai = ⋆] : : suff
else

return [Ai = nondet-subset(A′
i)] : : suff

introduce(k, [Sj | S], i, i′)
suff := introduce(k,S, i+ 1, i′ + 1)
if(i′ = 0)

% Ignore leading segment.
return suff

else

return [Ai = A′
i′ ] : : suff

(a)

πp = [{n} < {n+}]
π = [{k} < {k+, n} < {n+}]

a0 := ⋆
a1 := a′0

πp = [{n} < {n+}]
π = [{k, n} < {k+, n+}]

a0 := a′0

πp = [{i} < {i+} < {n} < {n+}]
π = [{i} < {i+, k} < {k+} < {n} < {n+}]

a0 := a′0
(a1) = nondet-elt(A′

1)
A2 = nondet-subset(A′

1)
a3 := a′2

(b)

Fig. 10. (a) Generating instructions for (re-)introducing a variable k into a given or-
dering, and (b) the resulting assignments when k is introduced into various orderings.
Note the difference between introducing singleton and aggregate segments.

is introduced somewhere within an existing segment, we introduce new child
segments—each of which is a subset of the original segment.

5.3 Control flow

When transforming control flow, there are three cases we must consider:

1. Unconditional jumps
2. Conditional jumps involving some non-index variables
3. Conditional jumps involving only index variables

In cases (1) and (2), the transformation process operates as normal; we re-
cursively transform the jump targets, and construct the corresponding jump
with the transformed identifiers. However, when we have a conditional jump
If i ⊲⊳ j then t else f where i and j are both index terms, the relationship
between i and j is statically determined by the current ordering π. As a result,
we can simply evaluate the condition i ⊲⊳ j under the ordering π, and use an
unconditional branch to the corresponding block. This is illustrated in Fig. 11.



π = [{0} < {1} < {i} < {i+} < n]

...
transform body : π

If i < n
then body
else tail

let bodyπ = transform(body, π) in

...
Jmp bodyπ

Fig. 11. Transforming a jump, conditional on index variables only, under ordering π

6 Selecting segment bounds

Until now we have assumed a pre-selected set of interesting segment bounds.
The selection of segment boundaries involves a trade-off: we can improve the
precision of the analysis by introducing additional segment bounds, but the
transformed program grows exponentially as the number of segment bounds
increases. As do [11], we can run a data-flow analysis to find the set of variables
that may (possibly indirectly) be used as, or to compute, array indices. Formally,
we collect the set I of variables and constants i occurring in these contexts:

A[i] where A is an array (2)

i′ = op(i) where i′ ∈ I (3)

i = op(i′) where i′ ∈ I and i′ is not a constant (4)

Any variable which does not satisfy these conditions can safely be discarded as a
possible segment bound. For the experiments in Section 7 we used all elements of
I as segment bounds (so I = I), which yields an analysis corresponding roughly
to the approaches of [9, 11]. We could, however, discard some subset of I to yield
a smaller, but less precise, approximation of the original program. The cases (3)
and (4) are needed because of possible aliasing; this is particularly critical in
an SSA-based language, as SSA essentially replaces mutation with aliasing. It is
worth noting that these dependencies extend to aliases introduced prior to the
relevant array operation, as in the snippet “i := x; . . .A[i] := k; . . . y := x+1;”

7 Experimental evaluation

We have implemented our method using the LLVM framework, in two distinct
transformation phases. In a first pass, transformation is done as described above,
but without great regard for the size of the transformed program. At the same
time, we also use a (polyhedral) scalar analysis of the original program (treating
arrays as unknown value sources) to detect any block whose total ordering is
infeasible. In the second pass, we prune these unreachable blocks away. As can be
gleaned from Table 1, these measures reduce the complexity of the transformed
program significantly.



array copy (int* A, int* B, int n) {
int i;
for (i = 0; i < n; i++)

A[i] = B[i];
}
array init (int* A, int n) {

int i;
for (i = 0; i < n; i++)

A[i] = 5;
}
array max (int* A, int n) {

int i, max = A[0];
for (i = 1; i < n; i++) {

if (max < A[i])
max = A[i] }

}
search (int* A, int key) {

int i = 0;
while (A[i] 6= key)

i++;
}
first not null (int* A, int n) {

int i, s = n;
for (i = 0; i < n; i++)

if (s == n && A[i] 6= 0)
s = i;

}
sentinel (int* A, int n, int sent) {

int i;
A[n− 1] = sent;
for (i = 0; A[i] 6= sent; i++);

}

Fig. 12. Simple test programs

To extract array properties from the
corresponding invariants discovered in a
transformed program, we require users to
specify, at transformation time, the range
of array segments that are of interest. In
our implementation, this is described by
a strict index inequality that must ap-
ply to segments in the range. For exam-
ple, specifying 0 < n indicates that we
are interested in invariants of the form
∀ℓ (0 ≤ ℓ < n ⇒ ψ(A1[ℓ], . . . , Ak[ℓ])),
where A1, . . . , Ak are the arrays in scope
and ψ is some property. At the end of the
transformation we use a newly created
block to join all copies of the original exit
block whose total ordering is consistent
with the given range. The various scalar
representations for each array segment,
as well as other variables in scope in each
copy, are merged together in phi nodes
inside this final block. Properties discov-
ered about the segment phi nodes then
translate directly to properties about the
corresponding array segments in the orig-
inal program.

We have tested our method by run-
ning first the polka polyhedra do-
main [12] on the output of our trans-
formation when applied to the programs
given in Fig. 12. The interesting invari-
ants that we infer are as follows (each
property holds at the end of the corre-
sponding function):

array copy : ∀ℓ (0 ≤ ℓ < n⇒ A[ℓ] = B[ℓ])
array init : ∀ℓ (0 ≤ ℓ < n⇒ A[ℓ] = 5)
array max : ∀ℓ (0 ≤ ℓ < n⇒ A[ℓ] ≤ max)
search : ∀ℓ (0 ≤ ℓ < i⇒ A[ℓ] 6= key)
first not null : ∀ℓ (0 ≤ ℓ < s⇒ A[ℓ] = 0)
sentinel : ∀ℓ (0 ≤ ℓ < i⇒ A[ℓ] 6= sent)

Fig. 12 shows test programs from related papers [9, 11]. Table 1 lists sizes of the
original, transformed, and post-processed transformed versions (columns Origi-
nal, Transformed, and Post-processed respectively), as well as the time to per-
form the transformation (column transf). Column polka shows the analysis time
in seconds for running the polka polyhedra domain. uva is explained below.



Program Original Transformed Post-processed Running time (s)
blocks insts. blocks insts. blocks insts. transf. polka uva

array copy 5 12 274 898 33 149 0.80 67.07 0.18
array init 5 11 274 644 33 115 0.94 19.08 0.22
array max 7 19 220 562 51 139 0.95 110.87 0.45
search 5 10 90 167 27 69 0.49 2.05 2.75
first not null 8 17 1057 2217 216 694 3.73 2378.35 4.85
sentinel 5 13 1001 1936 294 765 3.07 1773.01 4.97

Table 1. Sizes of transformed test programs and analysis time for polka and uva

Enhancing an existing analyzer. As a separate experiment we use IKOS [3],
an abstract interpretation-based static analyzer developed at NASA. IKOS has
been used successfully to prove absence of buffer overflows in Unmanned Aircraft
Systems flight control software written in C. The latest (unreleased) version of
IKOS provides an uninitialized variable analysis that aims at proving that no
variable can be used without being previously defined, otherwise the execution
of the program might result in undefined behaviour.

int array init unsafe (void) {
1: int A[6], i;
2: for (i = 0; i < 5; i++)
3: A[i] = 1;
4: return A[5];

}

Fig. 13. Regehr’s example [17]

Currently IKOS is not sufficiently pre-
cise for array analysis. (Fig. 13), IKOS
cannot deduce that A[5] is definitely
uninitialized at line 4. However, us-
ing the transformational approach, IKOS
proves that A[5] is definitely uninitial-
ized. The problem is far from trivial; as
Regehr [17] notes, gcc and clang (with
-Wuninitialized) do not even raise warn-
ings for this example, but stay completely
silent.

We ran IKOS on the transformed version of array init unsafe. IKOS success-
fully reported a definite error at line 4 in 0.22 seconds. Conversely, transformation
enabled IKOS to show that no array element was left undefined in the case of
array init. Finally we ran IKOS on the rest of the programs in Fig. 12. For the
purpose of the uninitialized variable analysis we added loops to force each array
to be treated as initialized, when appropriate. For the transformed version of
array copy, IKOS proved that A is definitely initialized after the execution of
the loop. For the rest of the programs IKOS proved that the initialized array A
is still initialized after the loops. Column uva in Table 1 shows the analysis time
in seconds of the uninitialized variable analysis implemented in IKOS.

Note that the polka analysis does not eliminate out-of-scope variables. Our
program transformation introduces many variables, and since polka incurs a
super-linear per-variable cost, the overall time penalty is considerable. We expect
to be able to greatly reduce the cost by utilising a projection operation and
improving the fixed-point finding algorithm.



8 Related work

Amongst work on automated reasoning about array-manipulating code, we can
distinguish work on analysis from work that focuses on verification. Our paper
is concerned with the analysis problem, that is, how to use static analysis for
automated generation of (inductive) code invariants. As mentioned in Section 1,
we follow the tradition of applying abstract interpretation [4] to the array con-
tent analysis problem [5, 9, 11, 16]. Alternative array analysis methods include
Gulwani, McCloskey and Tiwari’s lifting technique [10] (requiring the user to
specify templates that describe when quantifiers should be introduced), Kovács
and Voronkov’s theorem-prover based method [13], Dillig, Dillig and Aiken’s
fluid updates [7] (supporting points-to and value analysis but excluding rela-
tional analyses), and incomplete approaches based on dynamic analysis [8, 15].

Unlike previous work, we apply abstract interpretation to a transformed pro-
gram in which array reads and writes have been translated away; any standard
analysis, relational or not, can be applied to the resulting program, with negli-
gible additional implementation cost.

There is a sizeable body of work that considers the verification problem for
array-processing programs. Here the aim is to establish that given assertions hold
at given program points. While abstract interpretation may serve this purpose
(given a well-chosen abstract domain), more direct approaches are goal-directed,
using assertions actively, to drive reasoning, rather than passively, as checkpoints.
Many alternative techniques have been suggested for the verification of (some-
times restricted) array programs, including lazy abstraction [1], template-based
methods [14], and, more closely related to the present paper, techniques that
employ translation, for example to Horn clauses [6].

9 Conclusion

We have described a new abstract machine that supports set-valued variables and
shown how array manipulating programs can be translated to array-free code for
this machine. By compiling array programs for this machine, we are able to dis-
cover non-trivial universally quantified loop invariants, simply by analysing the
transformed program using off-the-shelf scalar analysers. As an example of how
this allows an existing analysis to be lifted to array programs in a straightforward
manner, we have extended an uninitialised-variable analysis; Figure 13 showed
the usefulness of this approach. The indisputable price for the ease of imple-
mentation is a potentially excessive size of the transformed program. However,
much array-processing code tends to make simple array traversals and access,
and the transformational approach is viable for more than just small programs.
Future work includes performing the transformation lazily, to avoid generating
unneeded blocks. This should significantly speed up the analysis.
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17. J. Regehr. Uninitialized variables. Web blog, http://blog.regehr.org/archives/

519, accessed 18 June 2014.



Appendix A: Array operations with non-segment variables

Fig. 6(a) assumes that the index variable of every read or write is included in
the set of segment bounds. Fig. 14 gives a revised version of transform body

which handles writes to indices that are not included in the set of segment
bounds. When we transform a write to an index in the set of segment bounds
(determined by the predicate is idx), the transformation is as usual. Otherwise,
we emit code to walk through the current set of segments, and apply the write
operation to the appropriate one. The dispatch process is similar to the operation
of split transform, except that all leaves jump back to the continuation of the
basic block after the write, rather than continuing under the modified ordering.

transform body(([A[i] = x|stmts], br), π, id, ss)
if is idx(i)

Ai := find avar(π,A, i)
transform body((stmts , br), π, id, ss : :[Ai = x])

else

id′ := next block()
transform body((stmts , br), π, id′, [])
dispatch write(A[i] = x, ǫ, π, id, ss , id′)

dispatch write(A[i] = x, sv, [], id, ss, id′)
push block(id, ss, Jmp id′)

dispatch write(A[i] = x, s<, [p, . . .|π], id, ss , id′)
id≥ := next block()
id= := next block()
s= := next svar(s<)
s> := next svar(s=)
if s< = ǫ

push block(id, If i < p then id′ else id≥, ss)
else

id< := next block()
push block(id, If i < p then id< else id≥, ss)
push block(id<, Jmp id

′,
[(v1, . . . , vA, . . . , vk) ∈ s<,
s< = s< ∪ {(v1, . . . , x, . . . , vk)}])

push block(id≥, If i = p then id= else id>, id=, id>)
(. . . , vA, . . .) := s=
push block(id=, Jmp id

′, [vA = x])
dispatch write(A[i] = x, s>, π, id>, [], id

′)

Fig. 14. Revised pseudo-code for transforming array writes, allowing for omitted in-
dices. Array reads are transformed similarly.


