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Introduction
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Concept of View Factor

o Have a mesh with its boundary elements. Pick one.
o Heat as blackbody radiation radiates from this face
o Heats up other faces the radiation impinges

A view factor quantifies radiation transfer between areas:
radiation leaving A; and impinging upon As

F(A1,A) =
(A1, Az) all radiation leaving A4

J. Droba (NASA JSC) Turbocharging View Factors, 7/3/2015



Introduction
[e] lele}

Binary Trees, Quadtrees, and Octrees

o Can compute view factors by Monte Carlo ray casting
e No info in ray on where it lands; must check all faces in set
X Ok for small meshes, but gets glacially slow quickly
o Binary trees used in computer science for efficient searches
o Because meshes are 2D and 3D, quadtrees and octrees are
the weapon of choice to speed up the searches
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“Glacially Slow”?

Orion tile cavity problems
take too long:

“The Monster”
26,000+ faces

“The Nightmare”

Bonus: add capability to solve
75,000+ faces

Eric’s fiber problem.
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A Tree Grows in Data

Suppose a data set that has some sort of spatial association.
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Binary trees are formed by dividing data set in half repeatedly.
Do that in each dimension until each box has b items.

Data associated with space: Boundary faces F
Placement criterion: F < Bif [FnB|,_; >0
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Tree Building
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The Hyperplane Separation Theorem

We pull out the artillery: convex analysis. We will power our
intersection algorithm with this theorem:

Theorem (Hyperplane Separation Theorem)

Let A c R be closed and K ¢ R? be compact with both convex.
Then ANK =0 if and only if there is a separating hyperplane
P={xeR?:x-p=a} for some a € R and p e R"\{0} such that

Q@ pa>aforallpeP,acdand p-k<aforallpeP, kel
or
Q@ pra<aforallpeP,acAand p-k>aforallpeP, kel

Theorem (Plain Language Version)

Two nice sets A and K don’t intersect if we can divide space
into A’s half and K’s half with a line (2D) or plane (3D).
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The Separating Axis Theorem

Two vectors span a plane in 3D, so testing for hyperplanes
directly is expensive. Cheaper to test for separating axes:

Definition (Separating Axis)

Let P c R? be a separating hyperplane. &€ c R? is a separating
axis if € L P.

Because dimP =d -1, dim& = 1. This leads to an obvious result:

Theorem

Let A c R be closed and K c R? be compact with both convex.
Then there exists a separating hyperplane for A and K if and
only if there exists a separating axis between them.

The key: when A and K are orthogonally projected onto &,
AN K =0 if and only if the projection intervals do not overlap.

J. Droba (NASA JSC) Turbocharging View Factors, 7/3/2015



Tree Building
[o]e] lele]e]

Collecting the Candidates

There are six ways for intersection to occur:

o face—face v/ facenode

o face—edge _Sar;]; v edge—node
in

o edge-edge v/ node-node

Can perturb non-intersecting faces and still maintain
separation. Gives these candidate separating axes:

@ Face normals from K

© Face normals from K’ nr o

@ Cross product of edge from IC
with one from K (3D only)

In 2D, these are sufficient. In 3D, they cover facefa@
face—edge cases. Edge—edge cases can look like this
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SAT for Symmetric Objects

Algorithm (SAT for Symmetric Objects)
Q Let c; € K and cir € K be the centroids of K and K.
@ Let II(x) denote the projection of x € R? onto &. Define

A . £ '._
k= 0dieN 1 (i e i 0SSN 1 ‘H(nz k')

p = [(ck - cxr)|
@ If rp + rir < p, then £ is a separating axis.
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How It Works

The SAT for symmetric objects works so efficiently because
O K and K’ are symmetric about centroids ¢, and c¢j.

= Projection intervals symmetric about II(cy) and II(c}).

= It is sufficient to project the “radii” of K and K'.

© By linearity of projection operator, we can project the
centroid-to-centroid segment.

For non-symmetric objects, it is a bit more complicated:

@ Must project every node of K and K'.

@ Must project every node of the convex hull of K and K'.

Because K and K’ are convex, extreme points of convex hull

come from nodes of K and K’. Can reuse values from Step 1.

J. Droba (NASA JSC)
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SAT for Non-symmetric Objects

Algorithm

@ Let {ni}ial and {ng}Z;l be nodes
of K and K'. Put
pitm;i-§ pi=m;-§

@ Compute lengths of proj. intervals:

r. = max p; — min p;
= oian 1P T oaieng P
a V4 .
r 2 max p; — min
OgisN—lp Y 0<isN-1""

a !
= max max i max 9
p { osien1 PP OsiSN—lpZ}

o o g /
— 1Min min ; min .
ocien1 0313N71p1}

@ & is separating axis if rg + ri < p.
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SAT for Insertion in 2D

Candidates for separating axes are face normals of box and
normal to the face/edge w = nj — ng:

& =(1,007 &=  &=(-w® @)’

Both B and F are symmetric: can use SAT for symmetric
objects. Project w, box radius d 2 Xpyax — Xmin, and
centroid-to-centroid vector m £ ng + nj — Xyax — Xmin onto &:

Axis 3 Tk TE! p
1 (1,0)T |d© | |w© | |m©)
9 0,17 £ |w® | |m )]
3| (—w®,w®)" | [dOw®|+]dDuw®@ || 0 ||w@Qmn® - pOnO)|

Because d() > 0, we can lose some absolute values in column 3.
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SAT for Insertion in 3D

In 3D, we do not expect F to be symmetric. But B is! Can
compute the max and min of projection nodes v; of B directly:

Mémax(vi-s):ﬁ-x+ mémjn(vi-ﬁ)zf-x_

o [#hs D20 o [0 ie® >0
X = x€T. =
' fﬁfn if €D <0 xfnzm if €0 <0

First set of candidate are B’s face normals &; = (1,0,0)7,
€,=(0,1,0)7, and &5 = (0,0,1)” and normal v from F:

Axis 13 Tk TR p
1 (1,0,0) d©® max n,Z(U) — min ngo) max {T,,,(m, maxmn, (U)} min {Tmm, min n(o)}
2 (0,1, O)T a® max ngl) — min nfl) max {"cmax, max n( )} min {lmm7 min n( )}
3 (0,0,1)7 d® max ngz) - Ininngz) max {T,,,ax,maxn( )} mm{Tm mlnn(2)}
4 v M-m | max v-n; —min v-n; max {]\1 ,maxv - ni} — min {m, minv - ni}

J. Droba (NAS

Turbocharging View Factors, 7/3/2015

13/25



Tree Building
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SAT for Insertion in 3D (continued)

Second set of axes given by cross products of box edges with
face edges f; 2 n;;1 — n;:

€5, = (17070)T x £ oji=n;- &5
6= (0,1, 0)" xf; Bji=nj-&g;
&7, = (0,0, )7 xf; Vi =15 &7

Can compute everything without forming f; or ever computing
cross product. Also have «;; = aj41,4, similarly for 8;; and ; ;.

Axis 5 Tk Tk P

. 2 O\T . . .
5,0 (07 _fi( )’ fi( )) Ms; —ms; mgx j; —mina;; [ max {]Lf[)‘i, m_i_x a]-_,,-} — min {m;_,;, min oz]-‘i}
J#i J#i J#l J#i

; (2) (0T I . ) . in B I s o i min B,
6,1 (fl 0, f; ) Me ; —me,; nJlix Bji— njlgl Bji | max {]\r[ﬁ,“ n;;a.ix /3],1} —min {mb-,z, IIJli{l 3],1}

7,1 ( - ji(l), fi(o)7 0) Mz7;—mz; | max~y;;—minvy;; | max {]me max "y’jll} — min {mu, min qjyi}
d ’ g J#t : JF

J#i

M;; and m;; are defined/computed like M and m of last slide.

J. Droba (NAS . Turbocharging View Factors, 7/3/2015 14/25



Traversal Algorithm
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Trees Are Made for Climbing

o Have a mesh. With a tree built from it.
@ Shoot a ray from one of the faces.
o Now want to identify which boxes the ray visits.

J. Droba (NASA JSC) Turbocharging View Factors, 7/3/2015
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(o] Jelele]e]

Intersection with Child Boxes

SAT gives no info about intersection point, so poor for
recursion. Traversal algorithm will look like “first attempt.”

Suppose we have ray t(t) = p +tr. p is inside mother box, so we
need to move it out: p < p — nrAt, where

(1) (1)
1 T T
At = — min {22 “min
5 1<i<d ‘r(1)|
z l(r(x)i)u wx(r?i)d 2@,
W ‘ ‘ . Compute times:
o 1 " O 0
| (2) Lentry ~ Po
| Entry: ¢,/ 2 ————
: ntry "0
a0t . o) (1)
Tid ! . (1) 2 Lexit ~ Po
‘ Exit: t; —0
L1 : Midpoint : t%) 2 2[ (l) t(l)]

J. Droba (NASA JSC) Turbocharging View Factors,



2D Ray Traversal

-(0) (0) (0)

. Timin mid / Time spent in:
P 7
A w9 (001N 0.0

= [ N[ ]
= vpr [HO, D] =[O #O7 M [¢V, 0]
vg s [E), 60T = [, 67T [t 4]
g w0 =[] (60,
Child Box Condition for Entry Entry Times | Exit Times

- max {t(()o), t((,l)} < min {tﬁ,?), tﬁi)} " B L CUN S

- max {té°)7 tS,{)} < min {tf,?), tﬁ”} YR AV

s max {tf},’), tél)} < min {tﬁo), tﬁi)} LR B IS

v3 max {t5), ¢6) } <min {6, 602D [ 4

...but this table will only be valid if r(? > 0 for each i.
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2D Ray Traversal

T T 2« Time spent in:
N ‘ /Y
I 1
| . 1 0 (
s e [N
BN I Ly vy [t(o)’tg)] [+ +(0) t(o)]ﬂ [t(l) t(l)]
mi | : m
0 S 0) ,(0) 0) ,(0) 1) (1)
()w | Vg Vg : [t£n)’t1 ] [t()t ]m[t()t ]
RORRES 1 0 1
g we 0 =[O [0
Child Box Condition for Entry Entry Times | Exit Times
N max{t(()o),t(()l)} < min {t(o) t(l)} t[()o) t(l) t(o) tg)
n | wac® d) il OV 0 g [0 0
s max{t(o) t(l)}<min{t§°),t§,?} LR B IS
P I PO B O ) I R O

...but this table will only be valid if r(? > 0 for each i.
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2D Ray Traversal

-(0) (0) (0)

L “mid “’max/« Time spent in:
ey a
0w [t 60] = [ DTN [t 1]
. [t e ] = [ 8” 1N
4.0 = [0 P 1.4
24 [N )
Child Box Condition for Entry Entry Times | Exit Times
- max{t(()o),t(()l)}<min {tﬁ,?),tﬁ,?} " B L CUN S
v max {87,652} <min (¢804} of” AD | AD e
s max{tfﬁ),tf)”}<min{t§°),t§,1)} LR B IS
v | wac @A) cmin OOV O [0 0

...but this table will only be valid if r(? > 0 for each i.
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2D Ray Traversal

1) _

Tmax

Ron
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x !
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.(0)

(0) ©

min

L -0,
0
e

o g [t§0,10]
Vg [tg,?), tfrlb)]
vys [t 1")]
i )

.(0) . .
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(1)
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(0)

‘m

0

!
!
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!

£ 40

N
24710
i0.4710

N
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0]

0,40)

Child Box Condition for Entry Entry Times | Exit Times
N max {t(()o), t(()l)} < min {tﬁ,?), t%)} t[()o) t[()l) tﬁ,?) tg)
- max {té°)7 tS,{)} < min {tf,?), tﬁ”} YR AV
s max {tf},’), tél)} < min {tﬁo), tﬁi)} LR B IS
3 max {ts,?), t&)} < min {t§0)7 tgl)} 57?) 571) tgo) tﬁl)

...but this table will only be valid if r(? > 0 for each i.
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2D Ray Traversal

1) _

Tmax

Ron

mid

Q)
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£, 40
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[
= [£9 4O
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.(0) (0) (0) . .
mid Tmex Time spent in:
T .tg/l) p
v i vy 1 Vg - [t(()l)atgr?)]
% vps [t 1]
‘ 0
! U3 [t,Eg), tg )]
p/{u) ‘ vt )

N
24710
N
N
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0]
[t V]

Child Box Condition for Entry Entry Times | Exit Times
N max {t(()o), t(()l)} < min {tﬁ,?), t%)} t[()o) t[()l) tﬁ,?) tg)
- max {té°)7 tS,{)} < min {tf,?), tﬁ”} YR AV
s max {tf},’), tél)} < min {tﬁo), tﬁi)} LR B IS
3 max {ts,?), t&)} < min {t§0)7 tgl)} 57?) 571) tgo) tﬁl)

...but this table will only be valid if r(? > 0 for each i.
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Traversal Algorithm
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Rays with Negative Components

Consider the reversal of the previous example:

20 20 (0)

Lmin Lmid Tmax p
A . /
' ‘0
E PO v1 (Failure)
“‘mr i Reversal [ 5,(,]) I(U)] N [ (l) l(l)] H
: Previous [ (0) 1‘,(,(,))] N [ ,(,P t<l)]
MONE 1 E
mm’/()
V3 V2 Vo
Reversah{ © 4O A [, 6D ‘ [#9 +O] A [1D, 6] ’ © 10 [t 4D %
Previous ’ (U #0) (U fU) ‘ hsp~ﬁ0q f1[(U fg)] ’ +0) #0) (U fﬂ)
_ f

A simple relabeling of boxes will allow reuse of previous table!

J. Droba (NASA JSC)
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The Relabeling Scheme

The general mapping for box relabeling is £ —~ ¢ @ a, where

. [ 20(0)+ o(1) if d=2
YT 40(0) +20(1) +0(2) ifd=3

L0 ifr®@x0
D=1 i<

Written as binary string, a encodes the signs of the components

of r (1 negative, 0 nonnegative). s o
In 3D, the box labeling order " v Lw [y
compatible with the relabeling vl i
scheme is this goofy thing: ot Us

-t |-
With this, we can make a table & 4 u K5
for 3D very similar to 2D one. o v | 8

J. Droba (NASA JSC)
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One Last Thing: Infinite Arithmetic Module

Computation of entry /exit times totally fails if 7(*) = 0.
If ‘r(l) ‘ < e « 1, then the numerics are bad too.
Small (positive) direction value is inducer of exit only if

, A , 1
20 p(’)>(x(’) _p(l)) B |

max max 282

Solution: when ‘r(i) | <, set

£ = —oo #{) = +oo

Says that .CC( ) <t (t) < 28 for all .

Computatlon of t( ") as before is undefined. Instead, define

t%): +00 1fp()<x()
—00 1fp()2xfgd

J. Droba (NASA JSC) Turbocharging View Factors, 7/3/2015
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Rogues Gallery (Part I)

3D Concentric Spheres (5k Rays)
768 faces, Trunk: 47.69s

Bin Size Run Time Speed Up Rays Diff. Corrected

30 9.72s 4.9x

20 7.99s 6.0x )

10 5.97s 8.0x 2452 0.063854%
768 faces 5 4.44s 10.7x

3D Concentric Spheres, 2-Plane Symmetry (5k Rays)
192 faces, Trunk: 20.52s

Bin Size Run Time Speed Up Rays Diff. Corrected

30 2.59s 7.9x

20 2.15s 9.5x . -

10 1.86s 11.0x 2951 0.255420%
5 1.51s 13.6x

192 faces

Turbocharging Vie 7/3/2015
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Rogues Gallery (Part II)

o

3D Cylinder, 1-Plane Symmetry (10k Rays)
764 faces, Trunk: 77.22s

Bin Size Run Time Speed Up Rays Diff. Corrected

30 17.16s 4.5x

20 9.03s 8.5x .

10 7.37s 10.5x 8 0.000104%
764 faces 8 5.90s 13.1x

3D Cylinder (10k Rays)
1528 faces, Trunk: 307.05s

Bin Size Run Time Speed Up Rays Diff. Corrected

30 41.41s 74x

20 21.83s 14.1x N

10 17.95s 17.1x 16 0.000104%
1528 faces 8 14.07s 21.8x

Turbocharging V 7/3/2015
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Rogues Gallery (Part I11)

3D Cylinder, Fine Mesh (10k Rays)
6414 faces, Trunk: 9892.82s

Bin Size Run Time Speed Up Rays Diff. Corrected

30 203.97s 48 5%

20 121.03s 81.5x , .

10 84.40s 117.2x 34 0.000053%
6414 faces 8 75.02s 131.9x

2D Cavity (5k Rays)
216 faces, Trunk: 3.01s

Bin Size Run Time Speed Up Rays Diff. Corrected

30 1.48s 2.0x
20 1.39s 2.2x 0 o
i 10 1.27s 2.4x
216 faces 5 1.02s 3.0x

Turbocharging Vie 7/3/2015
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“The Monster”

The primary motivation for doing all this work was this beast:

26,232 Faces
1,000,000 Rays

“Brute Force” Tree
96 hours 31 minutes
12 Restarts 0 Restarts

J. Droba (NASA JSC) Turbocharging View Factors, 7/3/2015
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Summary and Conclusions

Tree-based search:
o Has three speeds: Fast, Blazing, and Ludicrous
o Numerically robust thanks to Separating Axis Test

@ Pretty simple to implement

J. Droba (NASA JSC) Turbocharging View Factors, 7/3/2015
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