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Abstract

Recursive branch and bound algorithms are often used to refine and isolate
solutions to several classes of global optimization problems. A rigorous com-
putation framework for the solution of systems of equations and inequalities
involving nonlinear real arithmetic over hyper-rectangular variable and pa-
rameter domains is presented. It is derived from a generic branch and bound
algorithm that has been formally verified, and utilizes self-validating enclo-
sure methods, namely interval arithmetic and, for polynomials and rational
functions, Bernstein expansion. Since bounds computed by these enclosure
methods are sound, this approach may be used reliably in software verification
tools. Advantage is taken of the partial derivatives of the constraint functions
involved in the system, firstly to reduce the branching factor by the use of bi-
section heuristics and secondly to permit the computation of bifurcation sets
for systems of ordinary differential equations. The associated software devel-
opment, Kodiak, is presented, along with examples of three different branch
and bound problem types it implements.
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1 Introduction

Branch and bound is a numerical computation method for successive refine-
ment of a solution set over a bounded domain, whereby the starting search
space is recursively partitioned (branching) into sub-domains, over which solu-
tions can be more tightly enclosed (bounding) and then combined. This method
yields a search tree, where every branch in the tree represents a sub-domain
of the original problem. Some of these sub-domains are provably inconsistent
with the solution sought and may thus soundly be pruned from the tree. This
branching and bounding process leaves zero or more sub-domains remaining
as solution candidates for the original problem. A formally verified depth-first
branch and bound algorithm with generic types for problem domains and so-
lution types is presented in [1]. That algorithm is the basis of a family of
proof-producing strategies for the PVS theorem prover [2] that automatically
discharge singly quantified Boolean expressions over real numbers.

For many applications, a suitable starting search domain is a box (hyper-
rectangle) subset of Rn, which is bounded and connected, where n is the num-
ber of variables. This starting box is recursively subdivided into sub-boxes,
typically by performing a single bisection of one of the component intervals
at each branch. Over each box, outer approximations for the range of a real-
valued function may be computed by employing a suitable enclosure method.
Boxes that are thereby proven not to contain a solution to the problem are
discarded. Several kinds of problems involve a set of constraints that can
be expressed by a predicate formed from simple Boolean combinations of rela-
tional expressions involving nonlinear functions over Rn. If both the branching
and bounding steps are implemented rigorously, so as to exclude numerical er-
rors, the method may be used reliably to attempt formal proofs of theorems
asserting the validity or satisfiability of such formulas. The method can also
be used to compute guaranteed upper and lower bounds of real-valued mul-
tivariate functions over box domains subject to constraints, a type of global
optimization problem. Both applications are common in the verification and
analysis of safety-critical systems that interact with the physical environment.

This paper also presents a software development, called Kodiak, that closely
follows the formally verified PVS branch and bound algorithm described in [1].
The software implementation takes advantage of the genericity of the PVS al-
gorithm to propose a number of refinements for specific instantiations of the
algorithm. In particular, Kodiak implements several pruning strategies based
on the monotonicity properties of the expressions involved in the original prob-
lem.

The rest of this paper is organized as follows. Section 2 provides an
overview of the branch and bound method and two rigorous enclosure tech-
niques, interval arithmetic and Bernstein expansion. The generic branch



and bound algorithm, and its implementation in Kodiak, is detailed in Sec-
tion 3. Section 4 explores three specific instantiations of the branch and bound
method, with examples using the Kodiak library. The paper concludes with a
summary and directions for future work.

2 Branch and Bound and Enclosure Methods

Let IR be the set of closed non-empty intervals with real endpoints. A member
of this set is written as x = [x, x] ∈ IR. A Cartesian product of n intervals, a
hyper-rectangle or box, is written as X = [x1, x1]× . . .× [xn, xn] ∈ IRn. A set
of nearly-disjoint boxes of the same dimension, where any two different boxes
may intersect only at their boundaries, is termed a paving. A valid paving
for a set S ∈ Rn is such that the union of all its members is a superset of
S. Henceforth, it is assumed that S is specified by a set of equalities and
inequalities involving real-valued functions and variables ranging over a box
X ∈ IRn, where n is the number of variables.

The objective of the branch and bound method presented in this paper
is to compute a paving for a set S that is guaranteed to be valid and close
to S up to a given accuracy. The method proceeds by recursively dividing
the original box into sub-boxes, yielding a search space structured in the form
of a tree, which is traversed according to a specified strategy, e.g., recursive
depth-first search, breadth-first, or a mixed strategy. Sooner or later, many of
the sub-boxes can typically be excluded from the search, until a satisfactory
paving, possibly empty, is obtained. If the paving is empty, it holds that S is
empty.

The two essential steps in a branch and bound algorithm are:

• A subdivision (or branching, splitting) step, which partitions the current
sub-box into two or more smaller sub-boxes.

• A bounding (or pruning) step, where sub-boxes are either safely dis-
carded, when they are proven not to contain a solution, or retained,
when they may either possibly or definitely contain a solution.

Some approaches also incorporate a contraction step, whereby a sub-box is
reduced in size, by shrinking one or more of its component intervals, e.g.,
by the use of constraint propagation techniques [3, 4], prior to performing a
subdivision.

A subdivision strategy specifies the variable(s) in which a sub-box is to
be subdivided and whether this subdivision results in sub-boxes of the same
size or not. Termination criteria are generally required, which stipulate when
sub-boxes become satisfactorily small, or the computed paving is close to S for
a given accuracy such that no further subdivision is required. Additionally, a
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maximum search depth may be specified. At the end, zero or more sub-boxes
of small size remain and these boxes are used to compute the output. The
output of the method depends on the specific problem. It can be either a
concrete paving, the search tree, or any other information derived from the
paving.

At the core of the bounding step there is an approach for computing guar-
anteed upper and lower bounds for a family of functions f : Rn → R over a box
X. An obvious choice for this approach is interval arithmetic [5], but other en-
closure methods are possible. An interval extension for f is an interval-valued
function, f : IRn → IR, such that

∀X ∈ IRn : x ∈ X =⇒ f(x) ∈ f(X). (1)

Furthermore, to be used in the context of branch and bound, an enclosure
method has to satisfy the property of inclusion isotonicity.

∀X,Y ∈ IRn : X ⊆ Y =⇒ f(X) ⊆ f(Y). (2)

This property guarantees that box subdivision can only improve the precision
of the paving computed by the branch and bound method. As a result of
the fundamental theorem of interval arithmetic, the natural interval extension,
obtained by replacing the real variables and operations in a function expression
by their corresponding interval equivalents, is inclusion isotone.

Since the enclosure method is employed at every recursive step, it is es-
sential for the performance of the method that each evaluation requires little
computational effort. However, if the enclosures computed are too crude,
too many spurious boxes will be retained, degrading the overall performance
by increasing the branching factor and number of boxes that are processed.
Therefore there is a trade-off between the tightness of intervals produced by
an enclosure method, and the computational cost incurred.

The most straightforward way of performing arithmetic with intervals on
a computer is to use the natural interval extension for each real-valued func-
tion. There are standard interval definitions for many useful mathematical
operations, such as logarithmic and trigonometric functions, exponentiation,
square root, etc. There are also definitions for relational operators, which are
more nuanced than for real numbers. It is beyond the scope of this work to
list all of these, but a comprehensive list may be found in [6]. For a further
introduction to interval arithmetic, see [5]; treatments specific to branch and
bound computation may be found in [7, 8].

It is well-known that the usual arithmetic laws for real numbers must be
relaxed whenever an independent variable appears more than once in an in-
terval expression. This phenomenon is known as the dependency problem. For
example, the distributive law becomes: x ·(y+z) ⊆ x ·y+x ·z for x,y, z ∈ IR.
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As a consequence of the dependency problem, natural interval extensions for
functions with long expressions can exhibit a significant amount of overesti-
mation.

If the set of constraints defining S is restricted to polynomial constraints,
Bernstein polynomial expansion yields an enclosure method that converges
faster than interval arithmetic, at the expense of extra computational effort.
A univariate polynomial p of degree d is typically presented in power form as
a sum of terms p(x) =

∑d
i=0 aix

i, where the ai, i = 0, . . . , d, are the usual
power-form coefficients. The same polynomial may be rewritten in Bernstein
form, i.e., p(x) =

∑d
i=0 biBi(x), where the Bi(x), i = 0, . . . , d are the set of

d + 1 Bernstein basis polynomials, forming a basis for the vector space of
polynomials of degree d, and where the bi are the Bernstein coefficients.

For function approximation, a key attribute of the Bernstein expansion is
the range enclosing property, namely that the range of p over the unit interval
is contained within the interval hull of the Bernstein coefficients. Therefore a
rigorous evaluator for p over the unit interval consists of a computation of all
the Bernstein coefficients and taking their minimum and maximum. For other
intervals, the polynomial (and the Bernstein basis polynomials) can be affinely
transformed. The Bernstein coefficients over a generalized interval x = [x, x]
are

bi =
i∑

j=0

(
i
j

)(
d
j

)(x− x)j
d∑

k=j

(
k

j

)
xk−jak, i = 0, . . . , d. (3)

For the multivariate case, i.e., the domain is a box rather than an interval,
the same formula holds, but i is interpreted as a multi-index (vector index),∑

denotes a nested sum, and
(·
·

)
denotes a generalized binomial coefficient

(product of binomial coefficients) [9].

Once the Bernstein coefficients over a starting box have been computed
from the power-form coefficients, coefficients over subdivided boxes can be
obtained from them, using a more efficient difference table scheme. Com-
pared to interval arithmetic, the Bernstein enclosure usually delivers tighter
enclosures, and exhibits second-order convergence to the true range as interval
widths tend to zero, as opposed to first-order convergence for interval arith-
metic. The Bernstein enclosure is also independent of the way the polynomial
is written — although it requires the power-form coefficients to be available
— whereas the quality of the interval enclosure depends upon several factors,
including the sparsity and local monotonicity of the polynomial, as well as the
way in which it is written.

The main computational burden of the Bernstein enclosure is the require-
ment to exhaustively compute all of the Bernstein coefficients, the number
of which exhibits exponential complexity with respect to n. As a result, the
most efficient approach for branch and bound — either interval enclosure or
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Bernstein enclosure — varies from example to example. Further properties of
the Bernstein coefficients, and associated references, may be found in [9]. A
formally-verified treatment of Bernstein polynomials is given in [10].

3 Generic Algorithm and Implementation in

Kodiak

Kodiak is an implementation, written as a C++ library1, of the formally verified
generic depth-first branch and bound algorithm presented in [1]. It provides a
programmatic framework for the implementation of rigorous numerical algo-
rithms based on the brand and bound method.

The pseudo-code of the generic procedure that is implemented is presented
in Algorithm 1. The algorithm takes as input an expression, which is a sym-
bolic representation of a problem such as a system of inequalities, and a box,
which is a list of intervals, each one representing the range of a variable. The
algorithm produces an answer, whose type is generic. It first computes an
over-approximation, which may be crude, to the solution of the input prob-
lem by calling the function bound. Some instances of the branch and bound
method require an early termination condition. This is facilitated by the
global variable exit and the function global exit. Pruning at every recur-
sive step is achieved by the function prune. If none of the conditions for
blocking the recursive call are satisfied, a variable direction is chosen by the
function select and corresponding sub-boxes are computed by the function
split. The function branch adjusts the input expression to each one of the
sub-boxes according to the variable direction. Finally, the function combine

puts together the answers computed at each recursive call and the algorithm
returns that value.

As in the case of the PVS algorithm presented in [1], most datatypes and
functions in Algorithm 1 are generic so that they can be implemented in differ-
ent ways for different instances of the branch and bound method. However, the
Kodiak library includes concrete implementations for these generic datatypes
and functions so that actual branch and bound programs can be constructed.
Examples of such programs are presented in Section 4.

3.1 Real Number Expressions

For each abstract function involved in a problem, a corresponding real number
expression must be input. As noted earlier, foundational interval analysis

1Kodiak is released under NASA’s Open Source Agreement. It is electronically available
from http://github.com/nasa/Kodiak.

5



Algorithm 1 Generic depth-first branch and bound algorithm

Input: expression, box Global: exit
Output: answer

1: answer := bound(expression, box)
2: exit := exit or global exit(answer)
3: if box is empty or maximum depth reached or exit or prune(answer)

then
4: return
5: end if
6: direction := select(expression, box)
7: (box1, box2) := split(direction, box)
8: expression1 := branch(direction, expression, box1)
9: answer1 := first recursive call with arguments expression1 and box1

10: if exit then
11: answer := combine(answer, answer1)
12: return
13: end if
14: expression2 := branch(direction, expression, box2)
15: answer2 := second recursive call arguments expression2 and box2

16: answer := combine(answer1, answer2)
17: return

theory formalizes the relationship between a function, its expression, and the
natural interval extension of that expression.

The Kodiak library provides a concrete representation of real number ex-
pressions. This representation supports numerical literals, which can be either
rational, decimal, or machine floating-point numbers, symbolic variables, sym-
bolic parameters, user-defined constants, the mathematical constants π and e,
the four basic arithmetic operations, the power operator, and a collection of
real-valued functions such as absolute value, square root, trigonometric func-
tions and their inverses, exponential, and natural logarithm. Inexact values
(floating-point numbers) are input and stored as safe intervals. When con-
structing a symbolic expression, Kodiak automatically performs basic arith-
metic simplifications such as addition to 0, multiplication by 0, and multipli-
cation by 1.

Since polynomials are ubiquitous in engineering problems, Kodiak provides
datatypes and functions that operate directly on polynomials. In particular,
functions are included that recognize polynomial and rational expressions and
store them as a collection of monomials. Furthermore, depending upon config-
uration parameters, polynomials can be automatically rewritten in Bernstein
form using an implicit representation of Bernstein coefficients.

In addition to symbolic real expressions, Kodiak includes datatypes for re-
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lations and systems of relations. For simplicity, and without loss of generality,
only equalities and inequalities with respect to 0 are supported. For all sup-
ported expressions, symbolic partial differentiation functions are provided. As
explained in Section 3.3, information derived from enclosures for the partial
derivatives is convenient for the definition of pruning strategies that improve
the performance of the branch and bound method.

In the case of systems of relations, the Jacobian matrix of the left hand
side of the system is symbolically computed. Functions for symbolic computa-
tion of the characteristic polynomial of a square matrix, its associated Hurwitz
matrix, and corresponding Hurwitz determinants are also implemented in Ko-
diak. These functions are useful when analyzing stability of control systems
by using branch and bound methods, as illustrated in Subsection 4.2.

3.2 Bounding Methods

The function bound in Algorithm 1 represents a generic enclosure method. By
default, Kodiak uses interval arithmetic to bound a symbolic expression within
a given box. For interval computations, Kodiak relies on the C++ library
filib++ [6, 11], which is an efficient implementation of interval arithmetic.
This library utilizes direct floating-point rounding modes to deliver rigorous
approximations.

In the case of polynomials and rational functions, Kodiak can also use an
enclosure method based on Bernstein expansion. In general, this enclosure
method is computationally more expensive than interval arithmetic. However,
for many categories of sparse multivariate polynomials appearing in practical
problems, it is possible to reduce the computational requirement to compute
the entire set of Bernstein coefficients, by the use of an efficient implicit rep-
resentation scheme [9,12]. This allows the determination of the Bernstein en-
closure from a small subset of the Bernstein coefficients, which are computed
explicitly only as needed.

In such cases, the Bernstein coefficients exhibit monotonicity properties
that can be exploited to achieve a reduction in the number of coefficients that
have to be actually computed. In [9, 12], three related tests are presented as
sufficient conditions for the monotonicity of the Bernstein coefficients of the
whole polynomial, potentially restricting the location (in the tensor) of the
minimum and maximum Bernstein coefficients. These tests are based on the
values and ranges of the univariate coefficients only, and are thus relatively
cheap. Where monotonicity is found to hold for one or more of the variables
over a box, that information is retained and inherited by any sub-boxes. All
these tests are implemented in Kodiak.

This implicit representation for Bernstein coefficients also has advantages
with respect to bisection. Whenever a box is bisected with respect to a single
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variable, only the univariate Bernstein coefficients in that variable need to be
recomputed; the others are unchanged. This is a significant improvement over
the usual de Casteljau algorithm for the computation of explicit Bernstein
coefficients over bisected boxes.

In the case of a rational expression, the Bernstein expansions of its numera-
tor and its denominator can be used to compute tighter bounds for the function
over a box. This range is enclosed within the interval hull of the quotients of
the Bernstein coefficients of the numerator and denominator, pointwise [13].
For a rational expression, the same implicit storage mechanism can be used
for the component Bernstein coefficients of its numerator and denominator,
although the monotonicity tests for speedup can no longer be applied.

3.3 Pruning Strategy

The traditional approach in branch and bound is that, when branching, a
box is split (partitioned) into two equally-sized sub-boxes, by bisecting one
of its component intervals (variable ranges), either according to a widest-first
or a round-robin strategy. It is however possible to subdivide a box into two
unequally-sized sub-boxes, either with the aid of a heuristic, or coupled with
a contraction operator. In many cases, round-robin can be improved upon
markedly by the use of a heuristic to select the subdivision direction, i.e., the
variable whose box is split at a given step of the recursion. This is usually done
by computing a measure that assigns a weight to each variable and selecting the
variable according to this measure. There is an overhead cost associated with
computing such a measure, however this is often outweighed by a significant
reduction in the branching factor and therefore the total number of sub-boxes
and overall computation time. Heuristics based upon enclosures for the partial
derivatives of the constraint functions are considered and tested in [14,15].

The approach pursued in this work is to use single-variable bisection with
a context-insensitive heuristic to select the variable. It is proposed that a
suitable heuristic is obtained where, for each candidate variable, weight is
assigned in proportion to (1) normalized box width in that variable and (2)
normalized change in each involved function over the box with respect to
that variable. In both cases, normalization is with respect to that measure
computed for the starting box. The former imposes a kind of implicit context
sensitivity, in that, if for a given box a variable has been repeatedly selected,
it is increasingly penalized for its sub-boxes. The latter correctly makes the
choice independent of any scalar multiplication of constraint functions. These
weights can be estimated from computed enclosures for the partial derivatives
of the symbolic expressions involved in the problem or from the difference in
the function enclosures over opposite pairs of faces of the box, or by several
other approaches. In the case of polynomial functions, tight enclosures for the
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partial derivatives are obtained readily from simple differences of Bernstein
coefficients [9]. The maximum of this measure over each function separately
can be taken, or the measure can be summed over all functions.

As formally proved in [1], the pruning strategy does not affect the sound-
ness of the branch and bound algorithm, therefore such measures could be
computed using floating-point arithmetic instead of the more expensive inter-
val arithmetic. Experience suggests that the resulting performance improve-
ment, i.e., the level of sensitivity to the direction selection strategy, varies
considerably from problem to problem. Alternative estimates for the rate of
function change can be used in place of the partial derivatives, giving similar
performance.

3.4 Soundness

Although the correctness of the generic algorithm and enclosure methods have
been formally verified in PVS, no formal argument is presented here regard-
ing the correctness of their software implementations. However, the prin-
ciple strictly followed in the implementation is that the only floating-point
operations permitted are those low-level operations executed by the interval
arithmetic library; in other words, all real values are stored as intervals. For
example, directed rounding needs to be used for the new endpoints when an
interval or box is bisected. Such a scheme allows one to reliably exploit the
speed of floating-point arithmetic. As with any computer-aided formal ver-
ification, the correctness argument relies upon sound hardware and libraries
that are bug-free.

4 Examples

Three main instantiations of the branch and bound algorithm have been de-
veloped as part of Kodiak and are detailed in the following subsections.

4.1 Paving Systems of Nonlinear Equalities and Inequal-
ities

A system of relations is a collection of j formulas of the form

fi(x) Ri 0, (4)

where 0 ≤ i ≤ j, fi : Rn → R, andRi is a real-order relation in {<,≤, >,≥,=}.
The solution set S of such a system consists of all points in Rn that simultane-
ously satisfy all constraints. In non-degenerate cases, it exhibits n− l degrees
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of freedom, where l is the number of equalities in the system. Systems of non-
linear relations occur widely in many application areas, including geometric
modeling, chemical engineering, and kinematics. Robust control problems are
often formulated as constraint satisfaction problems of this form.

In general, the solution set S lacks an algebraic description. Hence, it is
often desired to compute reliable over- and under-approximations of S over a
box X. Approaches to compute valid pavings of S include a solver for con-
straint satisfaction problems with nonlinear constraints employing narrowing
and pruning procedures and the interval Newton method [4], and a solver for
systems of polynomial equations utilizing the Bernstein expansion [14].

Kodiak’s generic branch and bound procedure has been instantiated to
construct pavings of a given system of relations over a given initial box. The
output of this procedure is three pavings:

• a paving for the guaranteed solution, where every point in each member
box definitely satisfies all constraints,

• a (borderline) paving of candidate solution boxes, where, in each mem-
ber box, it is possible that some points satisfy all constraints, and it is
possible that some points violate at least one constraint,

• a paving for the complement of the solution, where every point in each
member box definitely violates at least one constraint.

The first paving is a guaranteed inner approximation of S and the union of
the first and second is a guaranteed outer approximation of S. These pavings
can be computed to any given accuracy with respect to S.

Generally, if the system of relations has equalities, the first paving is empty.
In non-degenerate cases where l = n, zero or more point solutions may exist,
and the solution paving consists of one or more boxes of terminal width, some
of which enclose each individual solution. The number of boxes in the paving
does not increase with depth in the search tree. Where l < n, i.e., for under-
determined systems, there is a (possibly empty) continuum of solutions, with
n − l degrees of freedom. Here, the number of boxes in the solution paving
increases with search depth.

Example 1. The safe domain for a certain control system is given by a small
system of two polynomial inequalities in two variables [16]:

x2
1x

4
2 + x4

1x
2
2 − 3x2

1x
2
2 − x1x2 +

x6
1 + x6

2

200
− 7

100
≤ 0 (5)

−x
2
1x

4
2

2
− x4

1x
2
2 + 3x2

1x
2
2 +

x5
1x

3
2

10
− 9

10
≤ 0 (6)

The starting box is [−2, 2] × [−2, 2] and the maximum depth is set to 20.
Results of branch and bound computation using Kodiak (on a 3 GHz Intel
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Table 1. Sizes of final pavings, total numbers of bisections, and computation
time for varying bisection and enclosure techniques

RR, IA RR, BE H, IA H, BE
Strictly feasible boxes 4164 4184 3922 3952

Uncertain boxes 5760 4328 5426 4018
Strictly infeasible boxes 4444 4386 4074 4010

Total bisections 76323 28971 77899 27475
Computation time (s) 2.4 13.4 2.9 13.0

-2
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-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
2

x1

Figure 1. Three pavings for the feasible set (H, IA): boxes that are certainly
feasible (green), possibly feasible (orange), and certainly infeasible (red)

Xeon PC, 4 Gb RAM) with round-robin (RR) or heuristic (H) bisection, and
with interval arithmetic (IA) or Bernstein enclosure (BE) are summarized in
Table 1. The case of heuristic bisection with interval arithmetic is depicted in
Figure 1.

The computation should ideally be fast (efficient) and deliver a paving of
high quality, i.e., a paving that is both tight and that contains few boxes.
It can be seen that use of the heuristic for subdivision reduces the number of
boxes in each category of paving, but there is a small additional computational
cost. For higher-dimensional problems, the improvement often becomes much
more significant and outweighs this cost. Use of Bernstein enclosure tightens
the uncertain paving significantly, but at greater computational cost; the cost-
benefit analysis will vary from example to example.
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4.2 Equilibrium and Bifurcation Analysis of Systems of
Differential Equations

As a sub-category of paving, this problem concerns a set of parameterized
nonlinear ordinary differential equations (equality constraints)

ẋ1 = h1(x1, . . . , xn, q1, . . . , qm),
... (7)

ẋn = hn(x1, . . . , xn, q1, . . . , qm),

where the dot notation indicates differentiation with respect to time, t, x ∈ Rn

is the state vector, and q ∈ Rm is the parameter vector. Given a start-
ing state at time t = 0, these equations define how the state vector changes
with increasing t. Certain state-parameter combinations may correspond to
an equilibrium, which may be either stable or unstable, where ẋ1, . . . , ẋn are
simultaneously zero.

A relatively straightforward task is to compute a paving for the equilibrium
set. In this case, the system (7) can be treated purely as a system of equations,
and a paving for its zero set can be computed, as before. The search space
is a box subset of Rm+n, where variables and parameters are treated equally
with respect to bisection.

The local stability of an equilibrium point is determined by the vector
field associated with (7) in its immediate vicinity. Variations in the parameter
vector q may effect quantitative and qualitative changes in the equilibrium
points. A local bifurcation is a point in the state-parameter space at which a
transition in the number or type of bifurcation points occurs. Such points (or
loci) form a subset of the equilibrium set that is important for the stability
analysis of nonlinear dynamic systems and closely related to safety for many
real-world applications.

This branch and bound instantiation implements sufficient tests for the
existence of two types of local bifurcation. In either case, the existing system
of equations is augmented with additional automatically-derived constraints,
and the same paving procedure is performed. For non-degenerate problems,
the resultant paving for the bifurcation set of either category is a subset of the
paving for the equilibrium set. The bifurcation set itself has one fewer degree
of freedom.

The simpler type to consider is steady-state bifurcations, e.g., pitchfork and
saddle-node bifurcations. They correspond to state-parameter values where
the order n Jacobian matrix of h = (h1, . . . , hn) is singular, i.e., it has a zero
eigenvalue. The Jacobian matrix is obtained from the symbolic partial deriva-
tives of h1, . . . , hn, and a single expression tree — which may be large — for
its determinant can be computed. Wherever the enclosure for the determi-
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nant over a box contains zero, then that box is a candidate for a steady-state
bifurcation.

The more complex type of local bifurcations considered is Hopf bifurca-
tions, which originate limit cycles, and where the characteristic polynomial
associated with the aforementioned Jacobian matrix has a conjugate pair of
complex solutions with zero real part and all other roots have a negative real
part. The coefficients of the characteristic polynomial, as symbolic expressions,
can be assembled into a so-called Hurwitz matrix, and boolean combinations
of sign conditions on the determinants of its minors can be used as sufficient
conditions for a Hopf bifurcation. Further details and references may be found
in [17].

Two advantages of this approach, as compared to the usual numerical
continuation method for the computation of bifurcation sets, are that a guar-
anteed enclosure is obtained, without missing any branches of the bifurcation
set, and that the bifurcation set can be computed directly, without needing to
first compute the equilibrium set.

Example 2. Kodiak has been successfully applied to the bifurcation analysis
of a detailed model for the longitudinal dynamics of a jet airliner [17]. The
model consists of highly non-trivial functions in four variables and five param-
eters; the longest symbolic expressions for the coefficients of the characteristic
polynomial and the Hurwitz determinants occupy several lines and about a
page, respectively. In the studied test case where two parameters are free, the
bifurcation set has one degree of freedom in 6D space; good-quality pavings
for both bifurcation categories are computed in about two hours, requiring
seven million bisections. In the case where all five parameters are allowed to
vary simultaneously, a sizable guaranteed exclusion box is computed, thereby
verifying the exclusion of these categories of bifurcation in this portion of the
state-parameter space for the model.

4.3 Constrained Global Optimization Problems

To a system of relations (4) an objective function f : Rn → R may be added,
to obtain a constrained global optimization problem:

min
x∈S∩X

f(x) (8)

It is often desired to compute both an interval enclosure for the minimum
value and a paving for the minimizers of f , i.e., the points in S ∩X at which
the minimum is attained. Application areas of global optimization include the
optimization of manufacturing, chemical processes, logistics, and trajectories,
amongst many others.
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Branch and bound techniques for global optimization problems [7,18] rely
not just on pruning boxes according to feasibility, but also according to opti-
mality. Over each box, a lower bound for the objective function is computed.
This is compared against a global variable which records the minimum up-
per bound for boxes processed so far which definitely contain a feasible point;
where the lower bound for a box exceeds this, it can safely be discarded.
Related solvers, e.g., [19, 20] commonly use a mixture of techniques, such as
interval arithmetic, constraint propagation, automatic differentiation, interval
Newton methods, and relaxations; some are fully rigorous, but most only de-
liver numerical approximations. A wide range of alternative techniques exist,
including evolutionary algorithms, simulated annealing, and stochastic and
algebraic approaches.

A strict depth-first search is not generally best suited to solve global opti-
mization problems. It is inefficient to traverse a large portion of the feasible
set that may be far from the actual solution. In particular, depth-first search
can perform poorly in the presence of multiple local minima. Instead, it is
more important to accelerate the reduction of the bound for the minimum
and bypass as many feasible but non-optimal boxes as possible.

In Kodiak, the constrained global optimization problem is solved by adding
a local exit condition to the pruning strategy, i.e., boxes are pruned with re-
spect to optimality, based upon a computed enclosure for the objective func-
tion, as well as feasibility. This requires an upper bound for the minimum
to be stored and updated during the recursion. In the case of boxes that
are feasible everywhere (all inequality constraints are satisfied and there are
no non-degenerate equality constraints), monotonicity information enables a
useful contraction operator. When the objective function is found to be mono-
tone with respect to one or more variables over a box, the box can be reduced
in dimension, or, if a previous subdivision assures the existence of a suitable
neighbor, eliminated entirely. The heuristic for subdivision can be chosen with
respect to the objective function, or the constraint functions, or some combi-
nation thereof. Both possibilities are enabled in Kodiak. It is not immediately
clear which approach is superior as the best approach likely depends on the
particular problem to be solved.

Example 3. It is desired to compute tight outer bounds for the range of a ra-
tional function of 12 variables, representing a property of a biological signaling
network2. Both the numerator and denominator are lengthy high-degree Kirch-
hoff polynomials of directed graphs; the formulas and variable ranges are given
in the appendix. Bounding the range of such a function has an application in
reliable model rejection for certain types of steady-state biochemical models

2The authors would like to thank Pencho Yordanov (ETH Zurich) for providing this
example by personal communication.

14



abstracted by directed graphs. The numerator and denominator have wide
ranges over the box, but are highly correlated, such that the range of the quo-
tient is dozens of orders of magnitude less wide than the quotient of the ranges.
Without subdivision, the computed enclosures are [5.16 × 10−41, 2.41 × 1041]
using interval arithmetic (in less than 0.1s) and [1.66, 156.17] using the ra-
tional Bernstein form (in 5m 14s). Both enclosures can be tightened further
using branch and bound. With a search depth of 20, the former enclosure is
improved to [1.02× 10−34, 1.90× 1035] (after 220 − 1 bisections and 53m 8s).

5 Conclusions

This paper presents a programmatic framework for the implementation of
depth-first branch and bound algorithms, together with instantiations for
paving systems of nonlinear equations and inequalities, bifurcation analysis of
systems of ordinary differential equations, and optimization problems. These
algorithms inherit the high-level correctness properties of the generic algo-
rithm, a closely related version of which has been formally verified. Low-level
correctness in numerical computations is ensured by the use of interval arith-
metic instead of floating-point arithmetic.

The main features of the proposed approach are: efficient and rigorous im-
plicit use of floating-point arithmetic for the branching and bounding steps;
interval arithmetic and Bernstein enclosures to compute guaranteed enclosures
for nonlinear real-valued functions; the automatic detection of polynomials and
rational functions and an efficient implicit representation for their Bernstein
coefficients; automatic symbolic generation and simplification of the partial
derivatives of constraint functions; use of enclosures for partial derivatives to
enable the tightening of enclosures for constraint functions using monotonicity
information; an efficient heuristic for the choice of subdivision direction selec-
tion; the ability to pave solution sets for underdetermined systems with one
or more degree of freedom, or compute guaranteed exclusion boxes.

This approach, and the related software tool, Kodiak, have been success-
fully applied to problems involving up to a dozen variables and parameters
with highly non-trivial constraint functions. However the curse of dimension-
ality cannot in general be avoided, meaning that branch and bound approaches
tend to become increasingly unsuitable as the number of variables increase.

In future work, the inclusion of further enclosure methods, such as affine
arithmetic and Taylor models, may potentially improve the computational
performance and paving quality at high search depth. Further work includes
performing branch and bound over non-box domains and extending the soft-
ware library with additional solvers for validity and satisfiability of arbitrary
boolean combinations of relational expressions and quantified expressions.
Furthermore, a mixed search strategy, coupled with contraction and relax-
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ation techniques, could yield a powerful rigorous solver for constrained global
optimization problems.
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16. Crespo, L. G.; Muñoz, C. A.; Narkawicz, A. J.; Kenny, S. P.; and Giesy,
D. P.: Uncertainty Analysis via Failure Domain Characterization: Poly-
nomial Requirement Functions. Proceedings of European Safety and Reli-
ability Conference, Troyes, France, September 2011.
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Appendix

The function and variable ranges for Example 3 are as follows:

F =
N1(N2 + UN3)(N4 + UN5)

D1(D2 + UD3)(D4 + UD5)
, where

N1 =
5

3
(ka + koff),

N2 = d2d3d4 + d3d4kd + d2d3kd1 + d3kdkd1 +
2

15
d2koff(d4 + kd1 + kuoff) +

d2d3kuoff + d3kdkuoff +
5

3
d3Ikon(d4 + kd1 + kuoff),

N3 = kuon(d3d4 + d3kd1 +
2

15
d4koff),

N4 = d2d3d4 + d3d4kd + d2d3kd1 + d3kdkd1 + d2d4koff + d4kdkoff + d2kd1koff

+kdkd1koff + d2d3kuoff + d3kdkuoff + d2koffkuoff + kdkoffkuoff +

d3Ikon(d4 + kd1 + kuoff),

N5 = kuon(d3d4 + d3kd1 + d4koff + kd1koff),

D1 = ka +
2

15
koff ,

D2 = d2d3d4 + d3d4kd + d2d3kd1 + d3kdkd1 + d2d4koff + d2kd1koff + d2d3kuoff

+d3kdkuoff + d2koffkuoff + d3Ikon(d4 + kd1 + kuoff),

D3 = kuon(d3d4 + d3kd1 + d4koff),

D4 = d2d3d4 + d3d4kd + d2d3kd1 + d3kdkd1 + d2d3kuoff + d3kdkuoff +
2

15
koff(d2d4 + d4kd + d2kd1 + kdkd1 + d2kuoff + kdkuoff) +

5

3
d3Ikon(d4 + kd1 + kuoff),

D5 = kuon(d3d4 + d3kd1 +
2

15
d4koff +

2

15
kd1koff),

where d2, d3, d4, ka, kd, kd1, kon, koff , kuon, kuoff ∈ [ 1
100000

, 1], U, I ∈ [ 1
100000

, 1000].
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