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 21 

Abstract 22 

While the ability of land surface conditions to influence the atmosphere has been 23 

demonstrated in various modeling and observational studies, the precise mechanisms by which 24 

land-atmosphere feedback occurs are still largely unknown – particularly the mechanisms that 25 

allow land moisture state in one region to affect atmospheric conditions in another.   Such remote 26 

impacts are examined here in the context of atmospheric general circulation model (AGCM) 27 

simulations, leading to the identification of one potential mechanism: the phase-locking and 28 

amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at 29 

the land surface.  This mechanism, shown here to be relevant in the AGCM, apparently also 30 

operates in nature, as suggested by supporting evidence found in reanalysis data. 31 

 32 

  33 
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1. Introduction 34 

Numerous studies with atmospheric general circulation models (AGCMs) have 35 

demonstrated the ability of soil moisture variations to affect the overlying atmosphere (e.g., 36 

Shukla and Mintz 1982, Delworth and Manabe 1989, Koster et al. 2000, Douville et al. 2001, 37 

Guo et al. 2012).  Observations-based studies are also suggestive of such impacts (e.g., Betts and 38 

Ball 1995, Findell and Eltahir 1997, Koster et al. 2003, 2011, Taylor et al. 2011).  The impacts 39 

are often discussed in the context of “land-atmosphere feedback” because the affected 40 

atmospheric variables (e.g., air temperature, precipitation) are often the ones that helped produce 41 

the soil moisture variations in the first place. 42 

The impacts identified in the literature are generally at the local scale.  A wetter-than-43 

average soil might change the relative magnitudes of the surface turbulent fluxes, which in turn 44 

might induce changes in the overlying boundary layer, perhaps leading to conditions more 45 

conducive to moist convection (Betts et al., 1994).  A higher evaporation rate from a wetter-than-46 

average soil would also reduce surface temperature through evaporative cooling, which in turn 47 

could reduce the temperature of the overlying air (e.g., Seneviratne et al. 2010). 48 

The ability of soil moisture, however, to have a remote impact on the atmosphere – an 49 

impact, for example, on air temperatures a thousand kilometers away – is still largely 50 

undetermined, addressed by only a handful of studies (e.g., van den Dool et al. 2003).  Taylor et 51 

al. (2011) examine mechanisms for remote impacts at the mesoscale (tens to hundreds of 52 

kilometers).  At even larger scales, the mechanisms must involve changes in the large scale 53 

circulation.  How this would work is still largely unexplored. 54 
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We examine this question here.  We use an AGCM to explore one potential mechanism 55 

for remote soil moisture impacts on meteorological fields, a mechanism involving the phase-56 

locking of a planetary wave over a specific soil moisture pattern.  We start in section 2 with a 57 

diagnostic analysis of AGCM simulations.  This analysis provides the information needed to 58 

design specialty simulations (section 3) that confirm the operation of the mechanism within the 59 

model.  Supporting evidence that the mechanism operates in nature as well – i.e., evidence that it 60 

is not simply a model construct – is extracted from reanalysis data in section 4. 61 

 62 

2. Analysis of Atmospheric Model Simulations 63 

The modeling system utilized throughout this study is the GEOS-5 system of the National 64 

Aeronautics and Space Administration Global Modeling and Assimilation Office 65 

(NASA/GMAO).  All simulations examined use only the coupled atmospheric and land model 66 

components of the system, prescribing sea surface temperatures (SSTs) from observations using 67 

AMIP-style (Atmospheric Model Intercomparison Study; Gates et al. 1992) protocols.  The 68 

atmospheric model is described in some detail by Rienecker et al. (2008) and Molod et al. 69 

(2012), and the land surface model is the Catchment model of Koster et al. (2000). 70 

The present section focuses on the analysis of an archived ensemble of ten simulations 71 

covering the period 1871-2011 [Schubert et al. 2014].  Monthly data from these simulations are 72 

available at a resolution of 1.25°×1°.   We focus here on monthly averages of root zone soil 73 

moisture (WRZ), 2-meter air temperature (T2M), and meridional wind velocity at 250 mb 74 

(V250) taken from the last 35 years of each simulation.  Focusing on this latter period, which 75 

still provides a full 350 years of data for analysis, allows for more consistency with the MERRA 76 



5 

 

reanalysis period (section 4) and, more importantly, reduces the impact of the long-term 77 

temperature trend on our results. 78 

For convenience, the monthly data were aggregated to a resolution of 2.5°×2°.  Soil 79 

moisture values were then converted to standard normal deviates: 80 

  ZWRZ (i,j,m,n)  =  [ WRZ(i,j,m,n) – MWRZ(i,j,m) ] / σWRZ(i,j,m) ,            (1) 81 

where i and j are the longitudinal and latitudinal indices of the grid cell, m is the month, n is the 82 

year, MWRZ is mean of WRZ over all years, and σWRZ is its standard deviation.  The T2M and 83 

V250 data were converted to simple anomalies: 84 

  T2M(i,j,m,n)´  =  T2M(i,j,m,n) – MT2M(i,j,m),  and                               (2) 85 

  V250(i,j,m,n)´  =  V250(i,j,m,n) – MV250(i,j,m) .                                   (3) 86 

Our analysis focused on identifying the April soil moisture pattern over CONUS (the 87 

conterminous United States) that is most strongly related to July temperature anomalies in the 88 

U.S. Great Plains and thus may someday (with more research) be useful for prediction.  To 89 

simplify and thereby clarify the analysis, we searched for what is arguably the simplest 2-D soil 90 

moisture pattern possible:  a “dipole” of soil moisture anomalies, with a positive anomaly in one 91 

location paired with a negative anomaly in another.  The search proceeded as follows.  For a 92 

given pairing of grid cells (representing the dipole centers), the 350 Aprils were ranked in terms 93 

of dipole strength: 94 

      dipole strength   =    – D1(n) D2(n)          if  D1(n)  > 0                                     (4) 95 

           =         0                        if  D1(n) < 0 , 96 
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where D1(n) is the average value of ZWRZ in April of year n in the 9 grid cells centered on the 97 

first chosen dipole point (so as to consider a spatial scale of ~600 km) and D2(n) is the 98 

corresponding average for the 9 grid cells centered on the second point.  The subset of simulated 99 

Aprils with dipole strengths in the top 20% of all values (70 Aprils in all) comprised a composite 100 

of years over which the subsequent July T2M spatial fields were averaged.  This process was 101 

repeated with both orderings of every possible pairing of grid cells in CONUS, and the particular 102 

dipole that produced the highest composited July T2M anomaly in the Great Plains was 103 

identified. 104 

Results are shown in Figure 1.  Figure 1a shows the April ZWRZ field for the composited 105 

years for the identified dipole, with the centers of this dipole marked as white circles.  The 106 

associated July T2M´ composite for that subset of years is shown in Figure 1b.  According to the 107 

GCM, when April soil moisture is high in the northwestern U.S. and low in the Great Plains, the 108 

subsequent July temperature anomaly in the Great Plains tends to be positive, by more than 2°K 109 

in some places.  Supplemental composites using the same sampling of years but different 110 

ensemble members do not show the same signal; the July temperature signal shown is not 111 

explained by the particular SSTs of the composited years.      112 

The dipole pattern in Figure 1a and its impact on Great Plains temperature is the main 113 

finding of this part of the analysis, and yet two additional points are worth making.  First, an 114 

analogous compositing based on a monopole of April soil moisture (not shown) does not lead to 115 

such large temperature anomalies; the dipole provides the larger temperature signal.  Second, the 116 

composited July V250 anomaly field (Figure 1c) shows a distinct wave pattern, with a positive 117 

lobe of V250 anomalies in the western half of the continent and a negative lobe in the eastern 118 

half.  Together these findings motivate the GCM experiments discussed in the next section. 119 
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 120 

3. Focused Experiments 121 

A hypothesis consistent with Figure 1 is that the soil moisture pattern seen in Figure 1a 122 

persists into the summer and, during July, affects the surface turbulent fluxes and (perhaps) 123 

precipitation in such a way as to promote the wave pattern seen in Figure 1c – perhaps by 124 

inducing a travelling planetary wave in the troposphere to phase-lock over the continent.  The 125 

wave, in turn, might then exacerbate the surface Great Plains heating, completing a positive 126 

feedback loop.  Both segments of this loop (the land affecting the atmosphere, and the 127 

atmosphere affecting the land) are now addressed in specialized AGCM experiments. 128 

 129 

a. Experiment 1: The Land-Atmosphere Component of the Feedback Loop 130 

To examine how land conditions may affect dynamical patterns in the atmosphere, we 131 

compare two ensembles of GEOS-5 simulations covering April-July of 2012.  The control 132 

ensemble consists of 192 AMIP-style simulations performed on a 1°×1° grid, the simulations 133 

differing from each other in their atmospheric initial conditions, taken from different years of the 134 

MERRA reanalysis (with slight perturbations imposed in each year to increase the ensemble 135 

size).  The experiment ensemble is identical to the control except for the imposition of a soil 136 

moisture dipole pattern: during April in these simulations, any precipitation simulated over a 137 

northwestern region of the U.S. (the blue box in Figure 2a) was artificially increased five-fold 138 

before being applied to the land surface (with the increase deposited as liquid), and precipitation 139 

simulated over the Great Plains (the red box in Figure 2a) was zeroed.  Precipitation was not 140 

modified during the May-July period. 141 
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Shown in Figure 2b,c are the resulting differences in key July fields (experiment minus 142 

control).  The precipitation modifications led to soil moisture anomalies that extended into July, 143 

which in turn induced strong July temperature anomalies, including a heating in the U.S. Great 144 

Plains (Figure 2b).  The imposed soil moisture dipole also had an impact on the atmosphere’s 145 

general circulation, as manifested in the V250 winds – Figure 2c shows a wavelike pattern in the 146 

V250 difference field, similar to that seen in Figure 1c.  Indeed, the source of this pattern can 147 

only be the imposed dipole, as all other aspects of the two ensembles are identical.   148 

Two additional points are worth making about this phase of the analysis.  First, the 149 

wavelike pattern does not appear until June (not shown) and July, which is consistent with the 150 

idea that soil moisture fields influence the atmosphere the most during the warmest months, 151 

when evaporation is highest.  Second, we performed two supplemental 192-member ensembles 152 

(results not shown), one that imposed only the April wetting in the northwestern U.S., and one 153 

that imposed only the April drying in the Great Plains.  Both ensembles show some warming 154 

over the Great Plains.  Although the warm anomaly in the latter is much higher, it is still lower 155 

than that in Figure 2b – again, the dipole pattern produces a greater warm anomaly than the 156 

monopole pattern. 157 

 158 

b. Experiment 2: The Atmosphere-Land Component of the Feedback Loop 159 

The other phase of the feedback loop, i.e., the ability of a specific wavelike structure to 160 

induce surface warming in the Great Plains, is examined here with two additional sets of 161 

ensembles.  The control for this comparison is an AMIP-style 32-member ensemble covering the 162 

period May 21 – July 31, 2012.  The experiment is a 32-member ensemble differing from the 163 
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control in only one way: upstream of North America, within the box outlined in Figure 3a, 164 

atmospheric conditions were forced to agree with conditions captured by the MERRA reanalysis 165 

for the period, using a technique called “replay”
1
.  The motivation for this modification was the 166 

known existence of a Rossby-wave pattern over North America during the hot summer of 2012 167 

(Wang et al. 2014) and the expectation that the wave was instigated by conditions somewhere in 168 

this upstream area (e.g., Schubert et al. 2011).  The hope was that with these upstream conditions 169 

prescribed, the V250 wave patterns seen in Figures 1c and 2c would be more prevalent in the 170 

experiment ensemble than in the control ensemble. 171 

This turns out to be the case, especially in June.  Figure 3c shows the difference between 172 

the average June V250 fields from the experiment and control ensembles.  A clear wavelike 173 

pattern is seen, with a positive lobe in the west and a negative lobe in the east.  Furthermore, 174 

surface warming appears in the central U.S. (Figure 3b). 175 

Given the experimental design, this warming is a direct consequence of the upstream 176 

forcing, presumably through the generation of planetary waves; the warming appears roughly 177 

between the positive and negative lobes of the V250 difference field, i.e., at the location of an 178 

increase in the upper level high where: (i) subsidence tends to induce cloudless skies and thus 179 

increased surface radiative forcing, and (ii) surface winds tend to advect warm air in from the 180 

                                                           
1
 The GEOS-5 Data Assimilation system was developed so that analysis increments produced during the assimilation 

cycle are inserted gradually, typically over a 6-hr interval (Bloom et al. 1996). This approach has been generalized so 

that the model can be “replayed” against an existing analysis (e.g., MERRA), i.e., the analysis increments can be 

used to guide the evolution of model state in an (otherwise) free-running AGCM toward that of the analysis. This 

approach has been further generalized so that only certain regions of the atmosphere are constrained to agree with 

the analysis; this is the approach used here.    
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south.  Schubert et al. (2011) found that at monthly time scales, such waves are indeed well 181 

correlated with continental surface temperatures during summer, with correlation patterns that 182 

are consistent with the waves’ largely barotropic structure, with a slight westward tilt with 183 

height. 184 

 185 

4. Supporting Evidence from Reanalysis 186 

It is natural to ask if this mechanism – a soil moisture dipole inducing a planetary wave 187 

pattern, which can in turn amplify Great Plains warming – also operates in nature.  Because 188 

nature does not allow the type of experiments performed in sections 2 and 3, demonstrating this 189 

conclusively is impossible.  Supporting evidence for the feedback is nevertheless found in 190 

MERRA reanalysis data (Rienecker et al. 2011).  Focusing on monthly averages, we processed 191 

the 35 April root zone soil moisture fields in this dataset (covering 1979-2013) into standard 192 

normal deviates and converted the 35 July temperature and V250 fields into anomalies.  We then 193 

identified the 7 Aprils (20% of the total) with the highest soil moisture dipole strength, where 194 

dipole strength is defined as in (4), averaging over the boxes shown in Figure 2a.   195 

Figure 4a shows the average April root zone soil moisture field for the 7-yr composite; 196 

the dipole is, by construct, apparent in the plot.  Figure 4b shows the July T2M anomaly field.  197 

Warm July conditions, with an average anomaly of up to 1K or more, are seen in the Great Plains 198 

for the subsetted years – the historical anomalies were arguably predictable from the presence of 199 

the April soil moisture dipole.  Furthermore, the composite July V250 anomaly field for these 200 

years shows a pattern very similar to that seen in Figures 1c and 2c, supporting the idea that the 201 

soil moisture dipole had an impact on the planetary wave structure. 202 
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MERRA reanalysis data, while not conclusive, are thus consistent with the feedback 203 

mechanism established for the AGCM.  Of course, reanalysis data are not pure observations; 204 

model machinery is reflected to some extent in the data, and indeed the AGCM underlying 205 

MERRA is an updated version of that used in Sections 2 and 3.  Nevertheless, the number of 206 

observations assimilated into the reanalysis over North America gives us confidence that the July 207 

T2M and V250 fields, and even the April WRZ anomalies, in the MERRA dataset are realistic, 208 

reflecting what actually happened. 209 

 210 

5. Summary 211 

Figure 2 shows that in the AGCM, imposing a dipole structure in April soil moisture, 212 

with wet conditions in the northwestern U.S. and dry conditions in the Great Plains, promotes a 213 

July wave pattern in the atmosphere.  Figure 3 shows that instigating such a wave pattern (in this 214 

case through a remote mechanism, over Asia) leads to increased 2m air temperatures in the U.S. 215 

Great Plains and, to a small extent, cooler temperatures over the Northwest, bolstering the 216 

surface temperature signal.  While much of the Great Plains temperature anomaly in Figure 2b is 217 

presumably a reflection of drier soil moistures there and the associated decrease in evaporative 218 

cooling, not all of it is; the induced formation of the wave structure and its ability to feed back on 219 

the temperature anomaly constitutes a feedback loop for the model climate, one involving a 220 

change in the large-scale circulation.  Evidence for the mechanism is seen in the MERRA 221 

reanalysis (Figure 4). 222 
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The dipole identified and utilized in our experiments is, of course, only one of potentially 223 

many soil moisture patterns of relevance to land-atmosphere feedback in the climate system.  224 

The approach presented here could prove useful in identifying and analyzing additional patterns. 225 
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Figure Captions 290 

Figure 1.  a. Composite of the standard normal deviate of April soil moisture over the 20% of 291 

simulation years for which the April soil moisture dipole centered on the small white circles is 292 

strongest (see text).  b. Corresponding composite (i.e., for the same simulation years) of July 293 

surface air temperature anomalies.  c. Corresponding composite (i.e., for the same simulations 294 

years) of July 250 mb meridional wind anomalies. 295 

Figure 2.  a. Locations where April precipitation is modified in specialized experiments.  April 296 

precipitation water applied to the land surface is increased five-fold in the blue area, and it is set 297 

to zero in the red area.  b. Resulting July surface air temperature anomalies.  c. Resulting July 298 

250 mb meridional wind anomalies. 299 

Figure 3.  a. Location of the upstream area over which atmospheric states were forced to agree 300 

with states from an analysis (and thus were forced to be realistic), using a technique known as 301 

‘replay’.  b. Resulting June surface air temperature anomalies.  c. Resulting June 250 mb 302 

meridional wind anomalies. 303 

Figure 4.  a. Standard normal deviate of reanalysis April soil moisture, composited over the 20% 304 

of reanalysis years for which the April soil moisture dipole in the outlined areas (same as those 305 

in Figure 2a) is strongest (see text).  b. Corresponding composite (i.e., for the same reanalysis 306 

years) of July surface air temperature anomalies.  c. Corresponding composite (i.e., for the same 307 

reanalysis years) of July 250 mb meridional wind anomalies. 308 

 309 
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Figure 1.  a. Composite of the standard normal deviate of April soil moisture over the 20% of 311 

simulation years for which the April soil moisture dipole centered on the small white circles is 312 

strongest (see text).  b. Corresponding composite (i.e., for the same simulation years) of July 313 

surface air temperature anomalies.  c. Corresponding composite (i.e., for the same simulations 314 
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 316 

Figure 2.  a. Locations where April precipitation is modified in specialized experiments.  April 317 

precipitation water applied to the land surface is increased five-fold in the blue area, and it is set 318 

to zero in the red area.  b. Resulting July surface air temperature anomalies.  c. Resulting July 319 

250 mb meridional wind anomalies.  320 



19 

 

 321 

Figure 3.  a. Location of the upstream area over which atmospheric states were forced to agree 322 

with states from an analysis (and thus were forced to be realistic), using a technique known as 323 

‘replay’.  b. Resulting June surface air temperature anomalies.  c. Resulting June 250 mb 324 

meridional wind anomalies. 325 
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Figure 4.  a. Standard normal deviate of reanalysis April soil moisture, composited over the 20% 327 

of reanalysis years for which the April soil moisture dipole in the outlined areas (same as those 328 

in Figure 2a) is strongest (see text).  b. Corresponding composite (i.e., for the same reanalysis 329 

years) of July surface air temperature anomalies.  c. Corresponding composite (i.e., for the same 330 

reanalysis years) of July 250 mb meridional wind anomalies. 331 


