
(Preprint) AAS 15-662

COMBINING SIMULATION TOOLS FOR END-TO-END
TRAJECTORY OPTIMIZATION

Ryan Whitley ∗, Jeffrey Gutkowski †, Scott Craig ‡, Tim Dawn †, Jacob Williams§,
William B. Stein ‡, Daniel Litton ¶, Rafael Lugo‖, and Min Qu‖

Trajectory simulations with advanced optimization algorithms are invaluable tools
in the process of designing spacecraft. Due to the need for complex models, simu-
lations are often highly tailored to the needs of the particular program or mission.
NASA’s Orion and SLS programs are no exception. While independent analyses
are valuable to assess individual spacecraft capabilities, a complete end-to-end tra-
jectory from launch to splashdown maximizes potential performance and ensures a
continuous solution. In order to obtain end-to-end capability, Orion’s in-space tool
(Copernicus) was made to interface directly with the SLS’s ascent tool (POST2)
and a new tool to optimize the full problem by operating both simulations simul-
taneously was born.

INTRODUCTION

Up to this point, Orion and SLS have maintained separate toolsets to conduct their optimization
analyses. Orion primarily focuses on the in-space phase of flight and thus uses an advanced astro-
dynamics tool known as Copernicus1 to design maneuvers and conduct trajectory optimization for
a problem that often features multiple gravitational bodies. SLS deals primarily with ascent and
Earth departure sequences thus requiring both advanced Earth models to predict gravitational forces
and atmospheric properties as well as complex propulsion and structural system models. SLS uses
the simulation tool POST2 (Program to Optimize Simulated Trajectories)2 which contains built in
models suited for ascent optimization.

As performance of the combined system has become critical, it is vital to construct a complete
end-to-end trajectory from launch to splashdown in order to maximize overall performance and en-
sure a continuous solution. For instance, if the ascent is optimized to a fixed main engine cutoff
(MECO) state independent of that state’s effect on in-space cost, vital performance gains that could
result from optimizing the MECO state for both the ascent and in-space phases could remain unre-
alized. Figure 1 displays an example of the independently optimized components of a sub-optimal
mission trajectory. Unfortunately, the tools most equipped to do the individual optimization analy-
ses cannot simulate the end-to-end trajectory. Copernicus is not currently equipped to model ascent
while POST2 is not suited for modeling complex in-space maneuvers. Instead of embarking on a

∗Aerospace Engineer, Exploration Mission Planning Office, NASA JSC, Houston, TX, 77058
†Aerospace Engineer, Flight Mechanics and Trajectory Design Branch, NASA JSC, Houston, TX, 77058
‡Aerospace Engineer, ERC Inc./Jacobs ESSSA Group, Huntsville, AL, 35812
§Aerospace Engineer, ERC Inc. (JSC Engineering, Science, and Technology Contract), Houston, TX, 77058
¶Aerospace Engineer, Atmospheric Flight & Systems Branch, NASA LaRC, Hampton, VA, 23681.
‖Aerospace Engineer, Analytical Mechanics Associates, 21 Enterprise Parkway, Suite 300, Hampton, VA 23666.

1

https://ntrs.nasa.gov/search.jsp?R=20150016036 2019-08-31T07:23:02+00:00Z

new development program to create a single simulation tool that can handle optimizing both phases
of flight in the manner required to obtain the best performance estimates, a path was pursued to al-
low Copernicus to interface directly with POST2 and become the full problem optimization engine
to operate both simulations simultaneously.

Optimized Ascent
Trajectory

Optimized Parking
Orbit

Optimized In-
Space Trajectory

Liftoff

Figure 1: Example of independently optimized trajectory segments

In this paper, the ability for a new approach to end-to-end trajectory optimization will be eval-
uated. First, a decision matrix of options will be shown that gives an overview of the many ways
existing tools could be used as a framework for end-to-end optimization. An overview of Coper-
nicus and POST2 will then provide the context for how these tools can be merged into one overall
optimization simulation. One of the options pursued required significant modifications to Coperni-
cus with the addition of a generalized plugin feature. The plugin feature is described in detail in a
separate paper.3 The plugin feature allows Copernicus to seamlessly interface not only with POST2
but any other simulation tool that has input and output capability. In addition, the Copernicus plugin
enables other approaches to trajectory optimization including the use of curve-fiitted datasets and
other ascent or entry simulation tools. A second method for merging the simulations that utilizes a
third party optimizer known as Isight will then be discussed. Preliminary results showing increased
optimality in the production of actual SLS and Orion trajectories for both methods will be given,
focusing on the relative performance improvement due to the use of an end-to-end optimizer. While
the pros and cons of these two methods will not be compared directly, ample discussion regarding
the operation challenges of each approach will provide insight into the different end-to-end op-
timization implementations including quantitative metrics associated with time spent and relative
quality of the results. The performance gain showed in the results along with the challenges of
implementing the optimizer will provide a benchmark for future work to improve the end-to-end

2

tool.

END-TO-END SIMULATION OPTIONS

Simulation tools currently available for trajectory design come in various forms and meet varying
analysis needs. There are many commercial available software tools as well as tools built in-house
for NASA or privately for use solely by independent aerospace contractors. Some tools feature
complex models while some focus on optimization capability with less complex subroutines. With
so many tools available to use, it can be a daunting task to choose the best simulators to use to build
an end-to-end tool with combined optimization capability. To aid in this process from the onset, the
number of tools was reduced to focus on those familiar to the team or which were readily available
to NASA. In the end, it was this familiarity that was the driving force behind the choices made for
the optimizer. Those were: 1) Copernicus,1 2) POST2,2 3) OTIS,4 4) SORT,5 and 5) MALTO.6

There are many ways to combine these sims, so to simplify the selection process the methods were
downselected a priori to the 10 combinations shown in Figure 1.

#
Ascent

Sim
Orbit
Sim

Primary
(ETE)

Optimizer
Platform(s)

of Op-
timizers

Type of
Optimizers

Third
Party
Code

Primary
Coders

1
Linux or
Windows

3
E.G.

Newton’s
Method

Matlab
Either

MSFC or
JSC

2
Linux or
Windows

1
SNOPT
(other

options...)
None GRC

3 Linux 1 – 3
Several
Options

Isight
NESC (w/
MSFC/JSC

support)

4
Linux or
Windows

2
Copernicus
Optimizers

None
JSC (some

MSFC)

5
Linux or
Windows

1 – 2
Copernicus
Optimizers

None
JSC,

MSFC, and
LaRC

6 Windows 1
Copernicus
Optimizers

None JSC

7
Human in
the Loop

Linux or
Windows

3
Human in
the Loop

None
Individual
Analyst

8 Windows 2
Copernicus
Optimizers

None JSC/MSFC

9 Linux 1
NPSOL

and others
None LaRC

10 MALTO MALTO Linux 2
Several
Options

None
JSC with

JPL
Support

Table 1: Initial Set of ETE Options Considered

From these 10, a number of metrics were evaluated to determine which option to select including
a) Effort to Implement, b) Quality of Solution, c) Ease of Use and d) Analyst Time. While all 10
options were viable, the emphasis on effort to implement narrowed the choices significantly. For
example, the ideal end-to-end optimizer would have all phases of flight in the same simulation, but
this was not viable without creating either an ascent or in-space sim in another tool. The only tool

3

that could do both from the list was OTIS and OTIS was not ready to do either the SLS or Orion
analyses. Thus, it is no surprise that in the end methods to combine POST2 and Copernicus were
selected listed as options 5 and 3 respectively in Figure 1. Option 5 has been constructed by the SLS
and Orion teams as part of the overall program core analysis capability, referred in this paper as the
End-to-End Plugin Optimizer (ETE Plugin Optimizer). In addition, Option 3 has been adopted by
the NASA Engineering & Safety Center (NESC) for use in independent comparative analysis and
is referred to as the ETE Isight Optimizer in this paper.

COPERNICUS AND POST2 OVERVIEW

To get a sense of the challenges of merging two separate and quite disparate simulation tools,
a brief discussion of each base simulation is given below. Copernicus is primarily an in-space
trajectory tool and POST2 is primarily an atmospheric ascent and entry tool. A discussion of these
tools will demonstrate how the type of problem has shaped the architecture of each simulation and
why merging the optimization processes together is challenging.

Copernicus

Copernicus is a generalized spacecraft trajectory design and optimization application.1, 7 The
original prorotype was developed at the University of Texas at Austin, and subsequent releases have
been developed and maintained at the NASA Johnson Space Center (JSC). The most recent release
was version 4.2 (July 2015). Copernicus is actively developed, and has become one of the main
software tools at JSC for advanced mission design for future manned missions.8, 9

Copernicus is capable of solving a wide range of 3-DOF trajectory design and optimization prob-
lems. These include trajectories centered about any planet or moon in the solar system, trajectories
influenced by two or more celestial bodies such as libration point trajectories (halo orbits), dis-
tant retrograde orbits or other trajectories that exist only in at least a restricted three body model,
Earth-Moon and interplanetary transfers, asteroid and comet missions, and more.

A core element of the program is the “segment”, which is the fundamental building block of
mission design in Copernicus.10 Copernicus assumes that all trajectory problems can be modeled
using a combination of segments, which can include a set of optimization variables that can be
varied, along with an associated set of constraints to be achieved, and a cost function that can be
minimized or maximized. Any number of segments can be defined in a mission, and can represent
multiple spacecraft or multiple stages of a single spacecraft. In support of the studies described in
this report, a recent release also introduced a new “plugin” mission attribute in order to enable the
incorporation of external tools and user-created algorithms into the optimization problem.3

Program to Optimize Simulated Trajectories II (POST2)

POST22 is a trajectory optimization program initially developed by Lockheed Martin and main-
tained at the Langley Research Center. Originally POST2 was two programs, POST3D for 3-DOF
(Degree of Freedom) and POST6D for 6-DOF, but the release of a new version of POST, appro-
priately called POST2, successfully combined the two variants into one tool. POST2 shapes the
trajectory through a list of independent variables, the combination of which was known as a u-
vector in POST3D. In normal operations, POST2 will optimize a given parameter by changing the
independent variables, while meeting one or more constraints. However, for most of the Copernicus

4

plugin related analysis, the POST2 optimizer is disabled and the simulation is run as a trajectory
propagator.

POST2 has seen heavy use in the SLS programs as the primary 3-DOF optimization tool for
ascent trajectories. Its strength lies in the fidelity that can be applied to the launch vehicle. At the
time of this paper, the SLS Block 1 vehicle is at the CDR level of maturity, which requires fairly
detailed modeling of the subsystems. For example, the Core propellant tanks require repressuration,
the thrust vector control system requires power, and design constraints may limit the acceleration of
the vehicle through certain regimes of flight. All of these constraints require advanced models that
exist within the POST2 framework. Without these details, the trajectory may not be feasible and
result in inaccurate predictions of performance, launch time, or some other flight critical parameter
such as the i-loads for the guidance system. Before the development of the end-to-end tools, POST
would be run only to a given ascent target that was defined by the program. The ascent target can
now be optimized to get the most performance out of the launch vehicle for a given flight.

END-TO-END PLUGIN OPTIMIZATION METHOD

By selecting the two simulations that the teams were already using in detailed Orion and SLS
analyses, there was no need to develop advanced new spacecraft models to directly match the cur-
rent trajectories and resultant performance. Instead the primary challenge of creating a new opti-
mizer was in allowing the tools to talk to each other and the ability to solve a much more complex
optimization problem. For the ETE Plugin Optimizer the complexity was minimized by focusing on
the two tools and their respective suite of optimizers. The goal is to maximize the types of problems
that can be solved by giving the advanced optimization tools within Copernicus direct access to the
data coming out of POST2, the ascent simulation. To this end, Copernicus was modified to be able
to call any tool directly through the use of an interface with established function calling and a fixed
data file format.3 The solution flow is given in Figure 2.

Copernicus
.json
Output

.json
Input

.json
Config

1. Generate 3. Read

12. Read 11. Generate

Read once when plugin is loaded

2. Execute 	Module

InputInput

.inp

Input

.inp
Input

.inp

ORIG

MOD

5. Modify Select Vars

4.
Read

6. Run

7.
Read

Output
.out

9. Generate

8. POST2 Executes

10.
Read

POST2 Plugin

Figure 2: End-to-End Plugin Optimization Method Solution Flow

Essentially Copernicus runs the overall optimization problem by generating data files from which
an executable script manages the flow of data to POST2 including its execution and output data
repackaging. Copernicus will call the POST2 Plugin as frequently as needed to get the required
gradients and trajectory data. As a result, there are two modes currently available to run the tool,
1) Single-level Optimization mode (S-OPT) where POST2 is simply a propagator and 2) Bi-level
Optimization (B-OPT) mode where POST2 completes its own optimization cycle and feed backs

5

data into the subsequent combined problem. Both methods are iterative and have pros and cons as
discussed below.

The two main features of the end-to-end simulation are thus the Copernicus plugin and ETE
Python scripts. The structure of the Copernicus plugin feature is documented in detail in a compan-
ion paper.3 To provide needed context for the operation of the end-to-end simulation, an overview
of Copernicus and the relevant plugin capabilities are given below followed by a discussion of the
python scripts that established the input/output data connections.

Copernicus Plugin Overview

The Copernicus 4.1 release (March 2015) included a new capability for user-created plugins,
which can be used to extend the capabilities of the tool.3 The Copernicus-Plugin interface allows
for the transfer of variables in both directions (from Copernicus to the plugin, and from the plu-
gin back to Copernicus). Various types of plugins are allowed. Plugins can be used to enable
Copernicus to call an external tool (in this case, POST) as part of an overall optimization problem.
For the application described in this study, the plugin is a Python script, and data is exchanged by
reading and writing JSON11 data files. Plugins allow Copernicus to be used to handle an overall
optimization problem that can include both Copernicus-native segments, as well as external mission
phases produced by other means. The emphETE Plugin Optimizer is one example of this capability,
with Copernicus calling a plugin (which in turn calls POST). The POST run is a “black box” to
Copernicus, which is only concerned with the input and outputs to and from the plugin.

Python Bridge Interface

The ETE Plugin Optimizer utilizes a python module which serves as a communication interface
between both Copernicus and POST and forms the core of the ETE plugin. This module consists of
four separate functions, breaking down the Python Module box in Figure 2:

1. cop to post(): Loads JSON file provided by Copernicus and writes a new POST input file
using a template POST input file and the JSON information.

2. runPOST(): Executes POST.

3. post to cop(): Reads copernicus.out and reformats state data and dependent variables into a
JSON format for reading by copernicus.

4. load post data(): Loads time history data of the POST trajectory for trajectory visualization.

Copernicus loads the python module using the plugin interface and executes it as a script; execut-
ing the functions cop to post(), runPOST(), and post to cop() in order. Copernicus initially writes
a JSON file to the working directory, which cop to post() loads along with a template POST input
deck. The function then updates the POST template file text with the new independent and depen-
dent variables provided in the JSON file, writing a new input deck for use during PSOT execution.
POST then executes through the function runPOST(), resulting in both a copernicus.out file as well
as CSV file containing the time histories of given variables throughout the simulation. The python
script finally executes post to cop() in order to parse the copernicus.out file into a JSON format
from which copernicus reads in data and continues the simulation.

6

The plugin allows for POST execution using POST milestone (binary) files as well, which fa-
cilitates faster file I/O. The plugin also can execute POST in two different modes, in a single
run/propagation mode which allows Copernicus and SNOPT12 to provide the optimization, or in
an targeting/optimization mode which utilizes the native optimizer included in POST. As described
previously, the first mode is referred to as Single-level Optimization mode (S-OPT) and the second
mode as Bi-level Optimization mode (B-OPT).

Using this plugin structure for Copernicus also provides future flexibility for integrating other
analysis and trajectory simulations using a similar set of functions which interface with Copernicus
using the JSON format.

END-TO-END ISIGHT OPTIMIZATION METHOD

Another way to implement an end-to-end optimizer is through a third party tool. To that end,
another portion of the team used Isight,13 a commercial software package capable of combining
multi-disciplinary models and applications in a process flow, in this case trajectories from POST2
and Copernicus. In fact, while the Copernicus based tool in the first implementation has only
successfully combined two phases, ascent and on-orbit, the Isight implementation (referred to as
ETE Isight Optimizer in this paper) has taken it a step further by connecting an entry trajectory
also modeled in POST2. In this method, each segment is its own optimization problem, with Isight
doing a combined optimization problem on a set of global optimization variables. Figure 3 shows
the iterative process flow.

Figure 3: Overview of Isight Architecture

The set of global optimization variables depend on the type of problem being solved, but gener-
ally speaking the target state between the ascent and the on-orbit trajectory is included to give the
optimizer the most possible flexibility. The primary constraint between on-orbit and entry is the
Entry Interface (EI) target line that constrains flight path angle, azimuth and longitude based on a
given latitude.

ETE PLUGIN OPTIMIZER RESULTS

As both new ETE optimizers were built to maximize the combined Orion and SLS performance,
various planning analyses used to asses the feasibility of upcoming NASA Exploration Missions
(EM), in particular EM-1 and EM-2, are serving as the testbed for the different methods. The

7

data in this paper conveys relative performance increases but is not intended to provide final results
representing the official NASA programs.

SLS Block 1 Launch Window Study

The ETE Plugin Optimizer was first validated by reproducing a launch window analysis for SLS.
By combining ascent and on-orbit trajectories into one optimization problem, the construction of a
launch window that optimizes the orbit altitude and inclination of the Earth Parking Orbit (EPO)
is enabled. While an actual mission might fix the parking orbit to simplify the guidance target-
ing is sufficient performance margin was available, the ETE optimized the parking orbit targets at
each launch time to show the relative gain if the problem is fully optimized. Figure 4 shows a net
gain in propellant margin (propellant above what is required for the mission) when comparing the
maximums of a given launch window to the original analysis completed.

(a) Launch Window Period (b) Launch Window Performance Difference

Figure 4: ETE Results for EM-1 Launch Window Analysis

SLS Block 1 TLI Performance Study

The ETE Plugin Optimizer was then used to produce performance analysis for SLS and Orion’s
first two missions: Exploration Mission 1 (EM-1) and Exploration Mission 2 (EM-2). This perfor-
mance analysis assessed the maximum payload capability through the Trans-Lunar Injection (TLI)
burn of the SLS Block 1 configuration over a monthly launch period. For both missions, the SLS
Block 1 configuration is required to send Orion on a lunar intercept trajectory. Orion then performs
the remaining burns to complete the desired mission. Payload was maximized through TLI and
Orion propellant usage was minimized in order to complete the mission. Any mass above the mass
of Orion would be considered additional payload. It was conservatively assumed that the respective
EM-1 or EM-2 control mass of Orion was used for the post-TLI portion of each trajectory. By tying
the ascent and on-orbit phases of the mission the tool affords analysts the ability to optimize the
ascent and on-orbit phases at the same time. This produces a valid optimal mission that can be
flown end to end.

The reference trajectory for EM-1 assumes that after Main Engine Cut-Off (MECO) of the SLS
core stage, the Interim Cryogenic Propulsion Stage (ICPS) and Orion are placed into a 28.5◦ in-
clined, 22 x 975 nmi altitude orbit. For EM-2 the post MECO orbit is also inclined at 28.5◦ but with

8

a larger relative altitude at 19 x 1175 nmi. The combined spacecraft stack then propagates up to
apogee and ICPS performs the Perigee Raise Maneuver (PRM) to increase the perigee of the orbit
to 100 nmi placing the stack into a closed orbit above the atmosphere which is referred to as the
Earth Parking Orbit (EPO). Then TLI is performed near the second perigee passage by the ICPS to
place Orion on a trajectory towards the moon. The mission profiles post-TLI differ for EM-1 and
EM-2; however the maximum payload study was primarily focused on the common EPO portion of
the two missions.

Figure 5 shows the results of various cases run with the ETE Plugin Optimizer for EM-1 and
EM-2 respectively. Each point on the plots that are above the lightest Orion mass (horizontal lines)
indicates a valid mission that allows a particular mass of Orion to perform its mission and return
back to Earth via an acceptable Entry Interface (EI) condition. All the points shown are above the
lowest Orion mass line, however the optimizer could be run on more launch days on either side of
the current launch dates with decreasing payload performance through TLI. The points shown on
the plots were sufficient for the purposes of these studies. Each study discussed below assessed
three different cases:

• Case 1: Assumes a fixed orbit altitude and inclination.

• Case 2: Assumes a fixed orbit altitude and an optimized inclination.

• Case 3: Assumes an optimized orbit altitude and inclination.

Case 1 for both missions show a variation in the performance through TLI even though the orbit
parameters are fixed. This is due to the change in Earth-Moon geometry throughout the lunar
month. All of the EPOs are elliptical and therefore the Moon has to be in the southern hemisphere
in order to do a TLI burn near perigee instead of at apogee. This is because perigee will always be
in the northern hemisphere since the primary launch site, Kennedy Space Center, is in the northern
hemisphere. This effectively cuts out at least half of the lunar month to perform a mission that is
within reasonable performance requirements.

Case 2 has a different effect for both EM-1 and EM-2. This is due to the lunar declination
difference between launching in 2017 and 2021. The optimal inclination for EM-1 in 2017 is closer
to 32◦ instead of 28.5◦. However, for EM-2 in 2021 the optimal inclination is 28.5◦, which is
the inclination for the reference EPO for both EM-1 and EM-2. Therefore in the middle of the
monthly opportunity window there is minimal difference in performance through TLI. The edges
of the window do see an increase in performance relative to Case 1 because a higher inclination is
more optimal. The edges of the opportunity window have inclinations close to 45◦. This might be
too high of an inclination for the SLS to fly due to launch pad constraints, but for the purposes of
this study the middle of the window is the most important comparison.

Case 3 is where the full power of the optimizer can be realized. By allowing the EPO (both the
perigee and apogee) to be optimized as well as the inclination the launch day specific optimal or-
bit can be found. This allows the full performance margin of the SLS core stage to be applied to
the ICPS and through TLI by adjusting the EPO into an optimal orientation relative to the Moon’s
geometry on that day. It is true that this performance gain could be derived by using POST2 and
Copernicus separately, but a large amount of manual iteration would be required on the part of the
analyst. Using the optimizer also ensures that the optimal trajectory found in Copernicus also cor-
responds to a flyable SLS ascent trajectory and disposal conditions for both the core state and ICPS.

9

(a) EM-1 Results

(b) EM-2 Results

Figure 5: ETE EM-1 and EM-2 Launch Period Analyses

10

Fully optimizing the EPO with Case 3 provides the most payload through TLI and extends high
payload capability farther through the opportunity window in addition to lengthening the opportu-
nity window as well. From an operations/real-time perspective having a different EPO each day
only requires a new set of i-loads to be uploaded to the vehicles prior to that day’s launch attempt.
The apogee altitude of the EPO increased to nearly 1300 nmi for both EM-1 and EM-2, but the op-
timizer maxed out there. Also, an ICPS vehicle propellant penalty was applied to all Case 3 results
to protect for other vehicle considerations due to the variation in EPO orbit altitude. This causes
some of the Case 3 TLI payload results to be slightly below the Case 2 payload results. This can be
seen directly in Figure 5b.

ISIGHT ETE OPTIMIZER RESULTS

Launch Period Analysis

Similar to the results described in detail in the ETE Plugin Optimizer results section, the ETE
Isight Optimizer also analyzed EM-1 cases using the Block 1 SLS. The first analysis consisted of
determining the availability of daily opportunities within a given launch period. The optimization
problem consisted of determining the optimal MECO time for a given day within a given launch
period and was solved using the MMFD14 solver. The control variables included launch azimuth
and apogee with the overall optimization objective to minimize TLI propellant. In Figure 6 launch
days 4-7 demonstrate the best TLI performance, with over 25 higher TLI propellant remaining
compared to the rest of the 11 day period shown. These particular days maintain enough of an
optimal alignment within the confines of the Earth-moon geometry that allows maximizing the
performance by aligning the TLI burn closely with the perigee of the intermediate parking orbit.

Figure 6: Isight Results for EM-1 Launch Period Analysis

Launch Window Analysis

While the launch period analysis produced macro results, a more detailed launch window analysis
in which the optimal value was refined within a given time of day, required a more suitable optimizer.

11

Thus, for the launch window analysis, in which the ability to maintain a two-hour launch window
was to be determined, the MISQP15 optimizer was used. Once again the control variables were
launch azimuth and apogee and the objective was to minimize total TLI propellant with a fixed SM
propellant load. As the earth-moon geometry comes out of perfect alignment the TLI cost increases
substantially and thus the window peaks in the middle of the period, as shown in Figure 7a.

In order to compare the effect of different control variables, the analysis was rerun, but with
a fixed apogee target while azimuth remained free. As would be expected, fixing a control vari-
able reduced the performance, but not necessarily significantly. In Figure 7b it can be seen that
the performance gain with a free apogee maxes out at 60 kg. Sensitivities to individual variables
such as these are important to understand to maximize performance for missions where multiple
independent parameters can contribute to a combined net increase in performance.

(a) Launch Window Period (b) Launch Window Performance Difference

Figure 7: Isight Results for EM-1 Launch Window Analysis

ETE OPERATION & CHALLENGES

Each method implemented provided unique challenges for the analysts to tackle. The ability to
achieve convergence still varies from case to case and the techniques to overcome the convergence
challenges are detailed in the following sections for each optimization method. Lessons learned
from these early test cases will aid significantly in solving future optimization problems.

Using the ETE Plugin Optimizer

While the optimization algorithms for the ETE Plugin Optimizer are fairly established, it is the
tuning of the decks that remains a challenge and the lengthy run times that are currently measured
in hours. Up to this point, two types of problems have been solved using the ETE Plugin Optimizer
with varying degrees of success. The first features the Block 1 configuration of the SLS using
the Interim Cryogenic Propulsion Module (ICPS) upper stage and the second features Block 1B
of the SLS using the Exploration Upper Stage (EUS). The Block 1 results have been successfully
generated while Block 1B results are still being developed.

SLS Block 1: ICPS Configuration The implementation used the Copernicus v4.1 program, the
POST2 DAC3 executable, and the Python Module in S-OPT mode. Missions analyzed were the

12

EM-1 Distant Retrograde Orbit (DRO) mission and the EM-2 High Lunar Orbit (HLO) mission.
For both missions, POST2 is used to model the ascent from launch to MECO with Copernicus
driving the optimization. For the in-space portion of EM-1, Copernicus models the complete DRO
mission from MECO to EI while minimizing the Orion total ∆V and maximizing the post-TLI
mass. For EM-2, Copernicus models the first phase of the HLO mission, which is a free return flyby
around the Moon to EI, while maximizing the post-TLI mass. For both cases, EI is a point along a
targetline that ensures a water landing off the coast of southern California.

Depending on the particular problem being solved for Block 1 SLS, Copernicus was programmed
to optimize between 30 and 60 optimization variables along with 25 to 55 constraints and between 1
to 4 variables for the overall objective function. Of these optimization variables, Copernicus passes
13 independent variables and 12 dependent variables (for the constraints) as input to the POST2
sim via the plugin module scripts. POST2 runs and sends back a state vector (with 6 geographic
parameters) and mass at MECO + 20 seconds. These values are then pushed into the initial segment
of the in-space trajectory simulation. This cycle is repeated until an optimal solution is found.
Solution convergence is dependent on the type of problem, how many controls and constraints there
are, as well as the solution tolerance. For example, as the number of modeled maneuvers decreases,
the optimizer will converge faster to a solution. Also, reducing the number of variations to the orbits
(i.e, the orbital elements) can also help the optimizer converge faster. As the tolerance decreases,
the optimizer tends to work harder and longer to converge to a solution.

The EM-1 mission is more complicated than the first phase of the EM-2 mission. To meet this
challenge, one must constrain the problem to help the ETE Plugin Optimizer find a non-optimal
solution, then release the constraints to find an optimal solution. Two ways to constrain the problem
is to freeze the POST2 plugin and the other is to freeze the DRO insertion state and epoch. When
the POST2 plugin is frozen, only the in-space trajectory is optimized. When the DRO is frozen,
the outbound trajectory has a consistent target and usually the remaining part of the mission from
DRO insertion to EI does not change much. Since SNOPT is used as the optimizer, one must ensure
that the optimization variables are scaled properly. Most of the time, 1:1 scaling is used so that all
variables will be tweaked to find a feasible and optimal solution. Also, loosening the feasibility or
optimality tolerances has been beneficial in finding an initial solution, and then tightening it back
to get the real solution. Thus, optimizing a run requires quite a bit of user intervention, especially
stopping and restarting a run that is drifting away from a solution. The total run time can vary from
around 30 minutes to 2 hours. In comparison, doing this manually (running each tool separately)
will take several days in order to arrive at a reasonable solution.

SLS Block 1B: EUS Configuration While the SLS Block 1B configuration is not as mature as
the Block 1, there is sufficient data to start modeling the newest configuration in the optimizer.
The Block 1B Core and Solid Rocket Boosters (SRBs) are identical to the Block 1 and the only
difference is the upper stage. The Block 1B is planned to use a larger 4-engine stage Exploration
Upper Stage (EUS) that will perform a significant portion of the ascent to the parking orbit as well
as the TLI burn. This is in contrast to the Block 1 where the upper stage only performs a short burn
to raise perigee to at least 100 nmi.

In modeling the Block 1B, the initial approach was similar to the Block 1; fly the Core and
SRB’s in POST and then model the EUS in Copernicus. This was possible because the EUS is at a
sufficient altitude at its first ignition that atmospheric effects are negligible. Even though the EUS
is only approaching the PDR level, parser plugins in Copernicus were required to adequately model
the propellant boiloff and total fuel consumption. Another challenge was calculating the Flight

13

Figure 8: Plugin List for the SLS Block 1B

Propellant Reserve (FPR), which is typically calculated as a percentage of mission ideal delta-V for
preliminary analysis. All of this was accomplished through the use of the parser plugins and linking
those plugins through the Copernicus GUI. An example of this can be seen in Figure 8 with the
POST2 plugin highlighted to show the inputs to POST and outputs back to Copernicus. To date,
only a handful of point cases have been produced to show that the Block 1B can also be optimized
utilizing the POST-Copernicus combo.

After the preliminary setup, an initial trajectory for a DRO type mission took approximately 5
hours to converge with a significant amount of user intervention required. At times, the gradients can
be very flat and the problem may go beyond the vicinity of the local optimal so the analyst must push
it back closer to a feasible solution. This can either done mathematically or visually depending on
what constraints are being violated. For example, time and mass continuity can typically be fixed
mathematically, but states are easier to match up by using the Copernicus GUI and adjusting the
maneuvers manually until the solution is close.

The launch date was then moved 1 day later and the solution converged in just over an hour
with only limited user intervention. Both trajectories met all constraints and were stated as optimal
by SNOPT. One downside to this optimization and similar to what was seen with the Block 1
trajectories was the inability to fully optimize the launch time of day. To work around this, the
POST plugin was initially frozen and all other segments were optimized to include the launch time
of day. Once that converged to a solution, the POST2 plugin was reactivated and the launch time
was frozen to optimize from liftoff to Earth entry interface.

Future work on the Block 1B includes a full weekly launch period and daily launch window

14

analysis for EM-2 and trading running POST open-loop vs closed-loop in the optimization. The
daily launch window analysis will determine if the launch time was truly optimal or if the launch
time would need to be shifted to take advantage of more better Earth-Moon alignment.

Using the ETE Isight Optimizer

Through the course of setting up a new tool it always takes some time to work out the best set
of optimization algorithms, processes and other problem specific characteristics to achieve conver-
gence. To that end, each phase of the ETE Isight Optimizer had independent optimization algo-
rithms. For the ascent problem while POST2 offers internal optimizers, the Large Scale Gener-
alized Reduced Gradient (LSGRG) optimizer within Isight was selected due to its rapid conver-
gence to the optimal MECO state. For the on-orbit phase the internal Sparse Nonlinear OPTimizer
(SNOPT)12 was used to minimize the amount of TLI propellant required. For the entry phase, the
internal POST2 Projected Gradient Method (PGM) optimizer was used to converge on a landing
location. At this point the entry simulation does not feedback into the global optimization prob-
lem, so Copernicus fed data to Isight for the overall optimization loop directly to minimize the
total propellant. For the overall optimization problem two different optimizers were employed: the
Modified Method of Feasible Dimensions (MMFD)14 and the Mixed Integer Sequential Quadratic
Programming (MISQP)15 optimizer.

The ETE Isight Optimizer process is designed to be easily modified to handle changing program
requirements and trade studies during design cycles. One of the key aspects of this process was for
it to be automatic, as the hallmark of an end-to-end sim should make it easier to use. In order to
do this, it was necessary to use previous Copernicus solutions as seeds for the next iteration. While
Copernicus has global search capabilities, an on-orbit problem should have an initial guess in the
vicinity of the desired local extrema, as gradient or quadratic based methods hone in on these local
points. The branching capability inherent to Isight was useful in making this possible.

CONCLUSION

An end-to-end optimization capability combining simulations designed to run independently has
been demonstrated. Concurrent optimization with a large number of independent variables and
constraints can achieve convergence when the optimization problem is well defined and an initial
guess is in the vicinity of the optimal. The biggest challenge for these large optimization problems
is establishing good initial guesses; to that end a process for building initial guesses is beginning
to form for the problems described. Future analyses will continue to explore the capability of an
end-to-end tool as well as an expansion of the problem to include other phases of flight.

REFERENCES

[1] J. Williams, Copernicus Version 4.2 User Guide. NASA Johnson Space Center, July 2015. JETS-JE23-
15-AFGNC-DOC-0052.

[2] S. Striepe, Program to Optimize Simulated Trajectories (POST2), Vol. 2: Utiilization Manual, Ver 3.0.
NESC, NASA Langley Research Center, May 2014.

[3] J. Williams, “A New Plugin Architecture for the Copernicus Spacecraft Trajectory Optimization Pro-
gram,” AAS/AIAA Astrodynamics Specialist Conference, August 2015. AAS 15-606.

[4] C. Hargraves and S. Paris, “Direct Trajectory Optimization Using Nonlinear Programming and Collo-
cation,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338 – 342.

[5] Simulation and Optimization of Rocket Trajectories, Version 9.0. Houston, TX: Lockheed Engineering
and Sciences Company, 2008. Contract NAS 9-17900.

15

[6] J. Sims, P. Finlayson, E. Rinderle, M. Vavrina, and T. Kowalkowski, “Implementation of a Low-Thrust
Trajectory Optimization Algorithm for Preliminary Design,” AAS/AIAA Astrodynamics Specialist Con-
ference, August 2006. AIAA 2006-6746.

[7] J. Williams, J. S. Senent, and D. E. Lee., “Recent Improvements to the Copernicus Trajectory Design
and Optimization System,” Advances in the Astronautical Sciences, Vol. 143, January 2012. AAS 12-
236.

[8] J. P. Gutkowski, T. F. Dawn, and R. M. Jedrey, “Trajectory Design Analysis over the Lunar Nodal
Cycle for the Multi-Purpose Crew Vehicle (MPCV) Exploration Mission 2 (EM-2),” Advances in the
Astronautical Sciences: Guidance, Navigation and Control, Vol. 151, 2014. AAS 14-096.

[9] J. Williams and G. L. Condon, “Contingency Trajectory Planning for the Asteroid Redirect Crewed
Mission,” AIAA SpaceOps 2014, May 2014. AIAA 2014-1697.

[10] C. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization System,” Pro-
ceedings of the Conference: Libration Point Orbits and Applications (G. Gómez, M. W. Lo, and J. J.
Masdemont, eds.), World Scientific Publishing Company, June 2003, pp. 529–572. Aiguablava, Spain.

[11] The JSON Data Interchange Format. ECMA International, October 2013.
[12] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm for Large-Scaled Constrained

Optimization,” SIAM Review, Society for Industrial and Applied Mathematics, Vol. 47, No. 1, 2005,
pp. 91–131.

[13] Isight 5.0. Providence, RI: Dassault Systèmes Simulia Corp., 2014. Release 5.9-1.
[14] G. N. Vanderplaats, “An Efficient Feasible Directions Algorithm for Design Synthesis,” AIAA Journal,

Vol. 22, No. 11, 1984, pp. 1633–1640.
[15] O. Exler, T. Lehmann, and K. Schittkowski, “A Comparative Study of SQP-Type Algorithms for Non-

linear and Nonconvex Mixed-Integer Optimization,” Mathematical Programming Computation, Vol. 4,
No. 4, 2012, pp. 383–412.

16

	Introduction
	End-to-End Simulation Options
	Copernicus and POST2 Overview
	Copernicus
	Program to Optimize Simulated Trajectories II (POST2)

	End-to-end Plugin Optimization Method
	Copernicus Plugin Overview
	Python Bridge Interface

	End-to-End Isight Optimization Method
	ETE Plugin Optimizer Results
	SLS Block 1 Launch Window Study
	SLS Block 1 TLI Performance Study

	Isight ETE Optimizer Results
	Launch Period Analysis
	Launch Window Analysis

	ETE Operation & Challenges
	Using the ETE Plugin Optimizer
	SLS Block 1: ICPS Configuration
	SLS Block 1B: EUS Configuration

	Using the ETE Isight Optimizer

	Conclusion

