

Reducing the Effect of Transducer Mount Induced Noise (XMIN) on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

25 June, 2015

Andrew J. Herron, Darren K. Reed, and Donald K. Nance NASA/George C. Marshall Space Flight Center 21st AIAA/CEAS Aeroacoustics Conference 22-26 June, 2015 Dallas, Texas

Overview

- Introduction and Motivation
- Test Proposal
- Instrumentation
- Test Operation
- Analysis
- Results

Introduction and Motivation

- Characterization of flight vehicle unsteady aerodynamics is often studied via large scale wind tunnel testing
 - Boundary layer noise is measured by miniature pressure transducers installed in a model
- Noise levels (2-5 dB ref. 20 µPa) can be induced when transducer is mounted out of flush with model outer surface
- This effect must be minimized to accurately determine aerodynamically induced acoustic environments

Introduction and Motivation

- To ensure flush mounting, transducers are ordered without screen and installed in a holder with a single hole
- Narrowband noise is induced by the resulting cavity created by distance from model OML to transducer diaphragm
 - This is difficult to remove from the data

- Use a holder that mimics the Kulite Semiconductors, Inc. B-screen to reduce impact of XMIN on data
 - Replace the single hole with 10 small diameter holes in a circle
 - Either decrease XMIN amplitude or increase XMIN frequency beyond range of interest
- Install four transducers in an acoustic calibration cone
 - Two in standard MSFC holders

Instrumentation

- Kulite XCL-20-IA-072-25D miniature high frequency pressure transducer
 - NASA had used the XCL-072 series in recent unsteady aerodynamic wind tunnel test programs, lending personnel experience and familiarity
 - Transducers with modifications necessary for this test were available from previous testing providing cost savings and schedule relief

• Transducer modifications

- Screens removed and diaphragm cavity backfilled with RTV for use in holders
- Casing length reduced by 0.175" to allow installation into calibration cone
- Recalibrated by manufacturer to 25 psid due to dynamic pressures expected in TWT
- Integrated in-line amplifier and temperature compensation unit

Transducer Checkout

- Vacuum on transducer held for five minutes
- Response with -5, 0, and +5 psi applied
- Response with blast of compressed air blown across transducer

Test Overview

- Test Facility: MSFC 14 x 14-Inch Trisonic Wind Tunnel
- Facility Test Number: XP1.7
- Mach Range: 0.80 1.96
- Angle of Attack: α = 0°, ±1°, ±2°, ±4°, ±8°
- Model Roll: φ = 0°, 90°, 180°
- Number of Runs: 83 (273 test conditions)
- Run Type: Pitch-Pause
- Dwell Times Per Condition:
 - ~60 sec for $\alpha = 0^{\circ}$ runs
 - ~5 sec for α -sweep runs
- Test Length: 3 days (Feb 11-13, 2013)
- High Speed Data Acquisition: Agilent System
 - Eight-channel board
 - 4 transducers, 1 angle of attack, 3 empty
 - Sample Rate: ~196 ksps
 - AC coupled
 - Manufacturer provided transducer calibration data used
- Success Criteria Met
 - Useful data collected over a broad range of transonic Mach numbers

Test Matrix (As Run)

		Mach															
Config	Trip	Alpha	Roll	0.80	0.90	0.95	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.46	1.69	1.96	#runs
XMIN1	N	A0	0	10	11	12	18	17	16	15	14	19	13				10
	N	A0	0	85	86	87	89	90	91	93	92	94	88				10
	N	A1	0				21					20					2
	Ν	A2	0	29	30	31	24	25	26	27	28	33	32				10
	Ν	A1	90	38	37	36	39	40	41	42	43	34	35				10
	N	A1	180	49	50	51	48	47	46	45	44	53	52				10
	Y	A0	0	56, 57, 58								54					4
	Y	A2	0									55					1
	Y	A3	0	59	60	61	67	68	69	70	71	72	62				10
	Y	A4	0	63	64	65							66				4
	Y	A1	90	х	х	х	х	х	х	х	х	х	х				0
	Y	A1	180	х	х	х	х	х	х	х	х	х	х				0
	N	A0	0											83	81	79	3
	N	A3	0											84	82	80	3
	N	A1	90											х	х	х	0
	N	A1	180											х	х	х	0
	Y	A0	0											74	75	77	3
	Y	A3	0											73	76	78	3
	Y	A1	90											x	х	x	0
	Y	A1	180											х	х	х	0
																	. 83

Sector Schedule:

A0 ALPI= 0, 0, 0, 0, 0

- A1 ALPI= -2, -1, 0, +1, +2
- A2 ALPI= -4, 0, +4
- A3 ALPI= -4, -2, 0, +2, +4
- A3 ALI 1 = -4, -2, 0, -2,

A4 ALPI= -8, -4, 0, +4, +8

Х

1-9, 22 checkout

23 abort

Trip Information:

54-56 0.090 in. hightape layers placed midway between kulite holders 1/3 and 2/4

57 solder circle with tape layers placed just upstream of kulite holders 2/4

58-78 0.120 in. high aluminum ring placed just upstream of kulite holders 2/4

run designated in the original matrix, but later deleted as being not required based on test results

Tunnel Installation and Setup

Tunnel Installation and Setup

Tunnel Installation and Setup

- FFT data reduction using AI Signal Research Inc. PC Signal[©] signal analysis software
- Comparisons made in both power spectral density (PSD) and 1/3 octave fluctuating pressure level (FPL)
 - All data were examined in model scale
- Sample rate achieved: 196,608 sps
- Nyquist cutoff = 2
- High frequency data mapped to static tunnel data via run number and angle of attack data recorded by high frequency system

- Repeatability
 - Repeat runs at α,φ = 0° conducted throughout each day of testing for M = 0.8 1.30
 - Runs at $\varphi = 90^{\circ}$, 180° to rule out tunnel wall bias
- Transducer Health
 - Initial checkouts
 - Air-off runs each day of testing
- Time History Checks
 - Indicate correct order of magnitude
 - Show no signs of clipping or sensor over-ranging
 - Histograms show data to be Gaussian distributions with minimal skewness

• M = 0.80

M = 0.90

M = 0.95

Conclusions

- Test success criteria met
 - Useful data collected over a broad range of transonic Mach numbers
- Data show that the B-screen holder is effective at minimizing XMIN without reducing externally driven noise
- Sufficient evidence provided to motivate the use of the B-screen holder for large scale aeroacoustic wind tunnel testing with minimal risk to data collection
 - Utilized for SLS Ascent Aeroacoustic Test (~350 transducers) and resulting data showed minimal evidence of XMIN

