

Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

Zach Greenwood, Morgan Abney, Jay Perry, Lee Miller, Roger Dahl, Neal Hadley, Spencer Wambolt, and Richard Wheeler

45rd International Conference on Environmental Systems Bellevue, Washington July 12-16, 2015

Overview

- Background
 - State-of-the-Art
 - Beyond State-of-the-Art
- PPA Technology Description
- Hydrogen purification
 - Metal Hydrides
- Objectives
- Method
- Results
- Conclusion
- Acknowledgements

State-of-the-Art

- Carbon Dioxide Reduction Assembly (CRA)= SOA ISS
 - $\text{CO}_2 + 4\text{H}_2 \rightarrow 2\text{H}_2\text{O} + \text{CH}_4$
 - Water product electrolyzed for oxygen
 - Methane product vented resulting in loss of hydrogen reactant
 - ~50% of O₂ recovered from metabolic CO₂

Beyond State-of-the-Art

PPA Technology Description

- Methane converted to hydrogen and acetylene by partial pyrolysis in microwave generated plasma
 - $2CH_4 \rightarrow 3H_2 + C_2H_2$

ASA

- First Generation UMPQUA Microwave Plasma Methane Pyrolysis Assembly (PPA) delivered in May 2009
- 3nd Gen. PPA, capable of 4CM flow rates, delivered October 2013

 H_2/CH_4 Plasma

^{3&}lt;sup>rd</sup> Gen PPA

PPA Technology Description

- 3rd Gen. PPA integrated with Sabatier Development Unit (SDU) in Exploration Test Chamber
- PPA gets CH₄ from Sabatier Development Unit (SDU) or bottles
 - H₂ and CO₂ from bottles

Hydrogen Purification

- Primary methods of interest
 - Sorbents
 - SBIR in work
 - Solid polymer electrolysis
 - SBIR in work
 - Metal hydrides
 - MSFC preliminary investigation
- For use with C₂H₂ must be below autoignition temp. (325°C) and exothermic decomposition pressure (200kPa)

Metal Hydrides

- Form when H₂ reacts with metal alloy to form chemical compound
 - − M + $\frac{1}{2}$ xH₂ ↔ MH_x + heat
- Reversible
 - La-Ni-Sn alloys present greatest cyclic durability and performance at PPA process conditions
- High volumetric packing density
 - Ex. LaNi₅H_{6.7} hydride has a volumetric density of 7.6 \times 10²² atoms H/ml which is nearly 81% greater than the liquid H₂ (4.2 \times 10²² atoms H/ml.)

Hydrogen Science & Technology Fact Sheet, Savannah River National Laboratory, 2009.

Objectives

- Evaluate performance of 3rd Gen. PPA
 - Stand-alone
 - Integrated with SDU
- Investigate metal hydride
 hydrogen purification

Method: PPA Stand-Alone

- Purpose: Verify performance consistent with UMPQUA's
- H₂ and CH₄ fed from ultra-high purity bottles

-4:1 ratio H₂:CH₄

1,2,3,4, and 5 crew member processing rates

Method: PPA Integrated

- Purpose: Evaluate PPA performance with Sabatier Development Unit (SDU) CH₄ feed stream
- SDU operated at H₂:CO₂ ratio of 4.5:1
 - Ensured all CO₂ was reacted
 - H₂ in SDU product
 - H₂O in SDU product
- H₂ balance from bottles adjusted to maintain 4:1 ratio of H₂:CH₄
- 2,3, and 4 crew member processing rates

Results: Stand-Alone

Results: Stand-Alone

Results: Stand Alone vs. Integrated

Results: Integrated with SDU

Results: Integrated with SDU

Results: Metal Hydrides

- LaNi_{4.8}Sn_{0.2} alloy
 - >1.2 weight percent reversible hydrogen capacity
 - High cyclic durability
 - Adsorption-desorption pressure and temperature compatible with PPA process conditions
- 2.6 kg needed for one hour operation
- Three bed system mass ~10kg w/ 20% structure
- Absorption at 10 °C desorption at 25 °C

Figure 2. Effect of Sn substitution on the reversible hydrogen-storage capacity of LaNi_{5-x}Sn_x hydrides after cycling between 295 K and 510 K.

Bowman & Fultz, *Metal Hydrides I*, MRS Bulletin, 2002.

Conclusion

- PPA met targeted 90% CH₄ conversion in standalone operation
- Integrated operation showed less than targeted CH_4 conversion and H_2 recovery
 - Significant CO production resulted in decreased performance
 - Investigating performance improvements through microwave power adjustment and tuning
- Metal hydride separation system very viable for PPA application

- Advanced Exploration Systems Advanced Resource Recovery and Environmental Monitoring
- Jacobs Engineering
 - Tom Williams
 - Kenny Bodkin
 - Heath Mullins

Questions?