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Rho-Isp Revisited and Basic Stage Mass Estimating for 

Launch Vehicle Conceptual Sizing Studies 

Timothy P. Kibbey1 

Jacobs, ESSSA Group, Huntsville, AL, 35806 

The ideal rocket equation is manipulated to demonstrate the essential link between 

propellant density and specific impulse as the two primary stage performance drivers for a 

launch vehicle. This is illustrated by examining volume-limited stages such as first stages and 

boosters. This proves to be a good approximation for first-order or Phase A vehicle design 

studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-

fueled stages. A next-order mass model is developed that is able to model the mass 

differences between hydrogen-fueled and other stages. Propellants considered range in 

density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are 

shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-

deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a 

multi-stage design space exploration and optimization algorithm, as well as for single-

parameter comparisons such as those shown herein. 

Nomenclature 

Symbols:  Abbreviations: 

fi Inert Fraction 90%H2O2 Hydrogen Peroxide, 90% concentration 

fp Performance Factor CBC Common Booster Core (Delta IV) 

fv Tank mass per unit Volume contained IRFNA Inhibited Red Fuming Nitric Acid 

FWEng Engine Thrust-to-Weight ratio LCH4 Liquid Methane 

g Gravitational acceleration constant LH2 Liquid Hydrogen 

Isp Specific Impulse LOX Liquid Oxygen 

L Loads LWT Space Shuttle Lightweight Tank 

m Mass Pro100K Liquid Propane, temperature of 100 K 

mf Final vehicle mass after stage burn RP, RP1 Kerosene, Rocket Grade 

mi Initial vehicle mass at stage burn SLWT Space Shuttle Super Lightweight Tank 

n Exponent on density SSTO Single Stage to Orbit 

O/F Oxidizer-to-Fuel mass ratio  

R Ratio of initial mass to final mass Subscripts: 

Rmp Ratio of propellant to initial mass 0 Reference  

rF Engine weight multiplication factor fu Fuel 

r Ratio of propellant density to reference Ox Oxidizer 

Ve Exit velocity p Propellant  

  tank Pertaining to both tanks 

  ft Pertaining to the fuel tank 

Greek:  ot Pertaining to the oxidizer tank 

V Change in velocity E&S Pertaining to the engine and structures 

 Propellant mass fraction   

 Density Superscripts: 

 Overall Thrust-to-Weight ratio ʹ Referenced to individual oxidizer or fuel 

mass, rather than total propellant mass 
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I. Introduction 

single metric for judging between two candidate propellant combinations for a given rocket propulsion 

application is sought. By using the ideal rocket equation (Eq. 1), the essential link between propellant density 

and specific impulse as the two primary performance drivers can be demonstrated. This will be illustrated for the 

case of a volume-limited first stage, and for a mass-limited upper stage. 

 Δ𝑉 = 𝑉𝑒 ∗ ln⁡(
𝑚𝑖

𝑚𝑓
) (1) 

Here V is the change in velocity required of the stage, and Ve is the propellant exhaust exit velocity, equal to the 

product of the gravitational constant and the Specific Impulse, Isp. The initial mass, mi, and final mass, mf, are not 

always the most useful values, so the equation can be rewritten a number of ways, as shown in Equation (2). A 

relationship is sought that allows identifying a reference stage and answering the question, “what different stage can 

deliver the same V?” 

 Δ𝑉 = 𝑉𝑒 ln (
𝑚𝑖

𝑚𝑖−𝑚𝑝
) = −𝑉𝑒 ln (1 −

𝑚𝑝

𝑚𝑖
) = 𝑉𝑒 ln (

𝑚𝑓+𝑚𝑝

𝑚𝑓
) = 𝑉𝑒 ln (1 +

𝑚𝑝

𝑚𝑓
) (2) 

The latter formulation, containing the propellant mass, mp, and retaining mf, is most useful or first stages and 

boosters. A more specific question to pose might be, “for the new candidate propellant, can a stage be built in the 

same volume as the baseline stage?” If the answer is “no,” then that would tend to question any implication of a 

propellant being a “drop-in replacement.” 

II. Volume-Limited Treatment and n·Isp 

The assumption of volume-limited is not solely for scenarios in which there is a physical limit to the stage size 

that can be realized, but could also take into account the desire to maintain the same volume as the reference stage 

for cost reasons. Perhaps a larger stage could be built, but is likely more costly, and thus less desirable. The 

reference stage could be either a real existing stage looking to be upgraded, or a baseline design for a paper study. 

This evaluation assumes that mf is constant, by assuming that two stages of the same volume have the same dry 

mass, thus leaving the same amount of mass available for the payload atop the stage. Clearly this assumption is not 

valid across propulsion types, from solids to liquids. Below it is evaluated in more depth and shown adequate within 

all liquid combinations evaluated except LOX/Hydrogen. That this treatment is for a first stage is important, because 

for upper stages, if the total stage weight changes, a different V will be required. That result will be looked at later 

in light of constant initial mass stages. 

A. Derivation 

Defining  

 𝑅 =
𝑚𝑓+𝑚𝑝

𝑚𝑓
     𝑟𝜌 =

𝜌

𝜌0
 (3) 

where  is propellant density, case 0 is the reference and the candidate replacement is unsubscripted,  

 
Δ𝑉

Δ𝑉0
=

𝑉𝑒

𝑉𝑒0

ln(𝑅)

ln(𝑅0)
⁡. (4) 

R0, set by the reference vehicle, along with the V requirement represents the mission, and R can be derived 

from the known densities. 

 𝑚𝑝 = 𝑚𝑝0𝑟𝜌       𝑅 = 1 + (𝑅0 − 1)𝑟𝜌 (5) 

 
Δ𝑉

Δ𝑉0
=

𝑉𝑒

𝑉𝑒0

ln(1+(𝑅0−1)𝑟𝜌)

ln(𝑅0)
 (6) 

A 
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Equation (6) was found by Mellish and Gibb1, and can be used directly by setting the V ratio equal to 1 and 

solving for minimum required r given a change in Isp or vice versa.  

Gordon2 identified the usefulness of the following expressions, such that a single performance factor fp is 

computed by density, an exponent and Isp, where the maximum fp identifies the highest performing propellant for 

the mission. Herein, it is represented relative to the reference vehicle, as in Equation (7). 

 𝑓𝑝 =
𝜌𝑛𝐼𝑠𝑝

𝜌0
𝑛𝐼𝑠𝑝0

 (7) 

From the above analysis, n is computed by partial differentiation of the Equation (6), and ends up itself being a 

function of both the mission and the density ratio being evaluated (Eq. 8). It can be approximated based on solely 

the mission parameter R0 for small density ratios, at r = 1, as shown in Equation (9). This was the only solution 

examined by Gordon2. 

 𝑛 = −

𝑑Δ𝑉

𝑑(𝑙𝑛𝜌)
]
𝐼𝑠𝑝

𝑑Δ𝑉

𝑑(𝑙𝑛𝐼𝑠𝑝)
]
𝜌

= −
𝑙𝑛[

ln⁡(𝑅0)

ln⁡(𝑟𝜌(𝑅0−1)+1)
]

ln⁡(𝑟𝜌)
 (8) 

 𝑛 =
(𝑅0−1)

R0·ln⁡(𝑅0)
 (9) 

Now the behavior of the exponent n can be examined as a function of the relevant mission and propellant 

parameters: first, for density ratios like those experienced within varying solid propellant composition with typically 

used ingredients. The resulting n is plotted against two parameters in Figure 1, R and Rmp = 1-1/R, which is the ratio 

of stage propellant mass to total vehicle mass. 

Note that the primary driver is the mission: that is, how much of the reference vehicle  is stage 1 propellant. Of 

secondary importance is the difference in the densities of the two propellants. Note that the smaller the stage relative 

to the vehicle, the more important density is, approaching the same importance as Isp on a percentage basis. On the 

plot are shown three example solid motor systems for reference3,4,5,6: the Standard Missile-3 (SM-3) boost stage, the 

Space Launch System (SLS) boosters, and the Vega launch vehicle first stage. 

B. Example: Solid Propellant Densification 

To illustrate the effect of solid propellant chemistry changes, consider the substitution of bismuth oxide as a 

portion of the oxidizer in the SLS booster system. The addition of bismuth oxide increases the density while 

decreasing the specific impulse. Thermochemical calculations provided the relative Isps of a range of bismuth oxide 

loadings. Then Equation (6) was used to estimate the performance impact for the range of loadings, over several 

different mission values, shown in Figure 2 as the different propellant-to-vehicle mass ratios, Rmp. From the baseline 

SLS vehicle, the ratio of booster propellant mass to total initial mass is 0.463. Even though the boosters burn in 

parallel with the core, this value for Rmp was used for initial estimation. Overlaid on the plot are the ratios of payload 

   
Figure 1. Density Exponent n as the Effect of Density Relative to Isp for Different Solid Motor Cases 
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Figure 2. Modeled and Analyzed Performance Impact of Density Increase with Isp Decrease 
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delivered by sets of boosters at different bismuth oxide loadings, in the “SLS Booster Designs Analyzed” series. 

These were analyzed by modifying the reference motor thrust curve and performing a trajectory analysis. The shape 

of the curve best matches the modeled performance trend with Rmp of 0.42, rather than the calculated 0.462. This is 

rather a small difference for this fidelity of analysis, especially since any impacts of the thrust curve shape and the 

parallel core burning are not included in Equations (6) through (9). 

Next, a larger booster was analyzed in the same way. The “Larger Designs” had a reference Rmp of 0.48, with the 

actual performance needing 0.5 to at least 0.6 to explain. In the case of this study, even the gains made were judged 

too small to justify the complexity of the added propellant ingredients and process change. So the density-Isp 

modeling proved a useful tool, leading to the same conclusion as the eventual design and analysis process. 

C. Liquid Bipropellants Constant-Volume Results 

For liquid bipropellants, due to the broader density range, the exact equation is more important for capturing the 

performance. Figure 3 shows the calculated n over several propellant combinations for the whole mission range. 

 
Figure 3. Effect of Density Relative to Isp by Solving n for Liquid Stages Relative to LOX/RP1 ( – ) or 

Relative to LOX/LH2 ( - - )  
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Note that here the relevant Rmp zones are much higher, exemplified by the Delta IV-H and Atlas V lines7. A 

convenient way to judge the interchangeability of stages is to plot Isp versus density relative to the reference for 

each propellant combination, as in Figure 4. A higher performing propellant combination is one that is to the upper-

right of the lines of constant performance. So, with LOX/RP1 as the baseline, it is seen that switching to methane 

fuel, LCH4, costs performance due to its lower density, in spite of its higher Isp. Conversely, the peroxide and 

IRFNA oxidizers with RP1 also cost performance slightly, but mostly make up for their lower Isp in density for 

these cases. The liquid hydrogen fuel result was not included on this plot, for reasons discussed below. The “LCH4, 

same tanks” point explores a “drop-in replacement engine,” where the LOX and fuel tanks are kept the same size. 

Methane’s lower density drives up the O/F to 5.1, leading to lower Isp with higher density.  

In Figure 5, the performance measure is plotted directly, where “Exact” uses Equation (6), and “Simplified” uses 

 
Figure 4. Interchangeability of Constant-Volume Stages Compared to Generic LOX/RP1 Reference Stage 
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Figure 5. Performance of Constant-Volume Stages Compared to Generic LOX/RP1 Reference Stage 
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Equations (7) and (9). The difference between the two methods is most pronounced for LOX/LH2. 

The preceeding analysis can also lead to the propellant mass fraction. The above assumed the reference and 

candidate stages had the same inert mass if they had the same volume. So the propellant mass fraction of the 

candidate stage can be computed from the reference stage and density ratio, where  is the propellant mass fraction 

of the stage, as in Equation (10). 

 
1

𝜆
= 1 +

1

𝑟𝜌
(
1

𝜆0
− 1) (10) 

D. Departure From “Same Final Mass” Assumption 

Now the assumption that constant volume leads to constant final mass warrants revisiting. A good test of the 

assumption is to predict the Delta IV Common Booster Core (CBC) based on the Atlas V core stage. Because these 

stages have similar application, thrust-to-weight, and development era, one would expect the equation above to 

predict accurately, if indeed the “same volume means same final mass” assumption is valid across that propellant 

range. Even though they are not the same volume, they are large enough for scale to not matter, therefore the non-

dimensional propellant mass fraction should still work. However, starting with Atlas V’s 0.93, the equation predicts 

a Delta IV CBC propellant mass fraction of 0.82, while its published mass fraction is actually 0.887. 

III. Next-Order Mass Model 

This suggests that a stage inert mass model is needed that depends on more of the relevant parameters. A more 

complete mass model should account for the individual densities and O/F of the propellants, as well as thrust-

dependent aspects of the stage mass. The thrust-dependent structure includes the engines and non-wetted structure, 

and also the fuel tank, because its walls bear the loads necessary to accelerate the heavy oxidizer above. Table 1 

summarizes the breakdown of mass effects. 

The strategy here is to identify constants that describe the Atlas V core and then use scaling equations to predict 

other stages based on propellant density ratios, changes in engine thrust-to-weight and vehicle lift-off thrust-to-

weight, and R. Candidate models were evaluated until the Delta IV CBC was predicted with the most parsimonious 

model, containing two free factors. The controlling constants could alternatively be varied to investigate more or 

less mass-efficient reference stages. For example, reducing the tank reference inert fraction is akin to paying for 

better technology that results in lighter-weight tanks. The parameters are kept non-dimensional so that the analysis 

can be applied as broadly as possible. 

The controlling constants are defined as follows, with the values calibrated to Atlas V: 

1. fi,tank,0, the inert fraction of both tank masses: 0.02 

2. rF, the multiplier on engine mass that determines engine-and-structure mass: 2.735 

The 3 dependent mass variables are: 

1. fi,ft , the fuel tank inert mass per total propellant mass 

2. fi,ot, the oxidizer tank inert mass per total propellant mass 

3. fi,E&S, the engine-and-structure inert mass per total propellant mass 

The independent variables, with the values for Atlas V, are: 

1. Mission-based independent variables: 

a. R, the initial to final mass ratio: 6.62 

b. , the initial vehicle vacuum thrust-to-weight: 1.28 

2. Propellant-based independent variables: 

a. O/F, the oxidizer to fuel mass ratio: 2.7 

b. 𝑟𝜌𝑓𝑢, the candidate to reference fuel density ratio 

c. 𝑟𝜌𝑜𝑥 , the candidate to reference oxidizer density ratio 

d. FWEng, the engine thrust to weight ratio: 78 

Table 1. Mass Model Dependencies 

 

Dependent Mass: 
Propellant 

Mass 
Thrust 

Oxidizer 

Density 

Fuel 

Density 

Bulk 

Density 

Oxidizer to 

Fuel Ratio 

Engine & Structure  X     

Oxidizer Tank X  X   X 

Fuel Tank X X  X X X 
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The results are three inert fractions, fi, that when summed can be converted into the stage propellant mass 

fraction. Each of these fi are defined as the inert mass of the component divided by the total propellant mass. 

 𝑓𝑖,𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑖,𝑓𝑡 + 𝑓𝑖,𝑜𝑡 + 𝑓𝑖,𝐸&𝑆 = 𝑓𝑖,𝑡𝑎𝑛𝑘 + 𝑓𝑖,𝐸&𝑆 (11) 

 𝜆 =
1

1+𝑓𝑖,𝑡𝑜𝑡𝑎𝑙
 (12) 

These three will be derived in turn. 

A. Inert Fraction Due To Engine And Structure 

This method assumes the engine and structure weight, because it is thrust-dependent weight, is a constant 

multiple, rF, of the engine weight, and proportional to the launch loads, represented by vehicle thrust-to-weight at 

launch, . This could be artificially skewed by using engine thrust-to-weights much different from historical 

nominal values, but having the dependence on engine weight represents real effects of mass or volume flow rate on 

main propulsion system components’ masses. The engine thrust-to-weight used here should be representative of the 

propellant class. For now, thrust-to-weight values for representative LOX/LH2 and LOX/RP1 engines, 51 and 78, 

respectively, have been simply correlated with Equation (13) to provide a value for any propellant combination 

based on bulk propellant density. 

 𝐹𝑊𝐸𝑛𝑔 = 39.83
𝜌

𝜌𝐿𝑂𝑋/𝑅𝑃1
+ 38.17 (13) 

The calculation of engine and structure inert fraction is: 

 𝑓𝑖,𝐸&𝑆 =
𝑚𝐸&𝑆

𝑚𝑝
=

𝑟𝐹𝑊𝐸𝑛𝑔

𝑚𝑝𝑔
= 𝑟𝐹

Ψ

𝐹𝑊𝐸𝑛𝑔
(

1

𝑅𝑚𝑝
) (14) 

B. Inert Fraction Due To Tanks 

The reference tank inert fraction now must be decomposed into useful fuel and oxidizer values. These are 

slightly different than the fi above, because they are the ratio of oxidizer or fuel tank mass to oxidizer or fuel mass, 

respectively, rather than to total propellant mass. Assuming the reference vehicle tanks have the same wall thickness 

and material, the tanks share a single reference mass per unit volume, fv,tank. Then the following equations can be 

solved together for the reference stage oxidizer and fuel tank specific inert fractions f’i,ot,0 and f’i,ft,0: 

 𝑓𝑣,𝑡𝑎𝑛𝑘,0 = 𝑓𝑣,𝑜𝑡,0 = 𝑓𝑣,𝑓𝑡,0 (15a) 

 𝑓′𝑖,𝑜𝑡,0 =
𝑓𝑣,𝑜𝑡,0

𝜌𝑜𝑥
             𝑓′𝑖,𝑓𝑡,0 =

𝑓𝑣,𝑓𝑡,0

𝜌𝑓𝑢
 (15b, c) 

 𝑓′𝑖,𝑡𝑎𝑛𝑘,0 = 𝑓′𝑖,𝑜𝑡,0

𝑂

𝐹
|
0

𝑂

𝐹
|
0
+1
− 𝑓′𝑖,𝑓𝑡,0

1
𝑂

𝐹
|
0
+1

 (16) 

This results in f’i,ot,0 = 0.0180 and f’i,ft,0 = 0.0255. These non-dimensional parameters are preferred in the 

following equations instead of fv,tank which has density units. 

It is also convenient to define density ratios in terms of individual propellant densities, rather than just bulk 

propellant combination densities, for comparing to reference propellants, with Equations (17) and (18). 

𝑟𝜌𝑓𝑢 =
𝜌𝑓𝑢

𝜌𝑓𝑢,0
                       𝑟𝜌𝑜𝑥 =

𝜌𝑜𝑥

𝜌𝑜𝑥,0
                 𝜌 =

𝑂

𝐹
+1

𝑂
𝐹

𝜌𝑜𝑥
+

1

𝜌𝑓𝑢

 (17a, b, c) 
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     𝑟𝜌 =
𝜌

𝜌0
= (

𝑂

𝐹
+1

𝑂

𝐹
|
0
+1
)(

𝑂
𝐹|0
𝜌𝑜𝑥,0

+
1

𝜌𝑓𝑢,0
𝑂
𝐹

𝜌𝑜𝑥
+

1

𝜌𝑓𝑢

) (18) 

 

C. Inert Fraction Due To Oxidizer Tank 

It is assumed the oxidizer tank mass depends solely on its volume. Thus Equations (19) and (20): 

 𝑓𝑖,𝑜𝑡𝑚𝑝 = 𝑚𝑖𝑛𝑒𝑟𝑡,𝑜𝑡 = 𝑓𝑣,𝑜𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑜𝑡 = 𝑓′
𝑖,𝑜𝑡,0

𝜌𝑜𝑥,0
𝑚𝑜𝑥

𝜌𝑜𝑥
= 𝑓′

𝑖,𝑜𝑡,0
⁡

1

𝑟𝜌𝑜𝑥
(

𝑂

𝐹
𝑂

𝐹
+1
)𝑚𝑝 (19) 

 𝑓𝑖,𝑜𝑡 = 𝑓′𝑖,𝑜𝑡,0 ⁡
1

𝑟𝜌𝑜𝑥
(

𝑂

𝐹
𝑂

𝐹
+1
) (20) 

D. Inert Fraction Due To Fuel Tank 

The fuel tank inert fraction depends not only volume but also on loads, as the fuel tank supports the mass of the 

oxidizer and stage payload through the launch acceleration. This is modeled simply as the product of volume-

dependent mass and the ratio of loads to reference loads: 

 𝑚𝑖𝑛𝑒𝑟𝑡,𝑓𝑡 = 𝑓𝑖,𝑓𝑡𝑚𝑝 = 𝑓𝑣,𝑓𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑓𝑡
𝐿

𝐿0
 (21) 

 𝑓𝑖,𝑓𝑡 = 𝑓′𝑖,𝑓𝑡,0 ⁡
1

𝑟𝜌𝑓𝑢
(

1
𝑂

𝐹
+1
)

𝐿

𝐿0
 (22) 

The loads-dependent mass of the fuel tank is primarily related to the wall thickness transmitting thrust load to the 

upper (as a rule) oxidizer tank and payload. To approximately capture the drivers, the force required to accelerate 

the fuel itself is subtracted off from the total thrust: 

Load = thrust – (mass fuel)*(acceleration) 

 𝐿 = 𝐹 − 𝑚𝑓𝑢g⁡Ψ = 𝐹 (1 − 𝑅𝑚𝑝
1

𝑂

𝐹
+1
) (23) 

 
𝐿

𝐿0
=

𝐹⁡𝑅𝑚𝑝(
1

𝑅𝑚𝑝
−

1
𝑂
𝐹
+1
)

𝐹0⁡𝑅𝑚𝑝,0(
1

𝑅𝑚𝑝,0
−

1
𝑂
𝐹
|
0
+1
)

=

Ψ⁡mig⁡𝑅𝑚𝑝(
1

𝑅𝑚𝑝
−

1
𝑂
𝐹
+1
)

Ψ0⁡mi,0g⁡𝑅𝑚𝑝,0(
1

𝑅𝑚𝑝,0
−

1
𝑂
𝐹
|
0
+1
)

 (24) 

With miRmp = mp and mp/mp0 = r , 

 𝑓𝑖,𝑓𝑡 = 𝑓′𝑖,𝑓𝑡,0
𝑟𝜌

𝑟𝜌𝑓𝑢

1
𝑂

𝐹
+1

Ψ

Ψ0

(
1

𝑅𝑚𝑝
−

1
𝑂
𝐹
+1
)

(
1

𝑅𝑚𝑝,0
−

1
𝑂
𝐹
|
0
+1
)

 . (25) 

The result is that for any set of stage construction assumptions, i.e., a real or imagined reference stage, the fi,0 can 

be estimated according to the level of information available. Then comparable other stages’ mass fractions can be 

estimated. For instance, one could set the constants according to the existing LOX/LH2 Centaur, and estimate a 

LOX/LCH4, 1.4  “Centaur.” 
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IV. Next-Order Mass Model Results 

A. Comparison Between Models and Data 

The mass model was used to predict the Delta IV CBC propellant mass fraction, and extended to several other 

propellant combinations. The mass model results are shown in Figure 6 along with the Equation (10) results 

dependent only on the density and Isp derivation. For the Delta IV, the mass model computes a 0.884 mass fraction, 

compared to an actual value of 0.882, representing a huge improvement over the Equation (10) model. For further 

validation, the Space Shuttle External Tank was predicted simply by setting 𝑓𝑖,𝐸&𝑆 to 0. This computation is shown 

compared to the mass fraction values of the Lightweight Tank (LWT)8 and Super-Lightweight Tank (SLWT)7 

variants. So, the mass model satisfied its goal of predicting LOX/LH2 performance far better than the constant final 

mass assumptions. For the other propellant combinations, the two models are much closer together. In the absence 

of additional data, one can merely say that the trend makes sense. Compared to LOX/RP1, lower density propellant 

combinations would be disadvantaged by the density-Isp-only model, and higher density propellant combinations 

would be improperly advantaged, as the plot shows. However, the difference may not be significant for comparing 

stage performance, and the mass model for the high density propellant combinations is less robust, as it required 

extrapolation with the engine thrust-to-weight correlation. 

B. Example: Stage Candidates Compared to Atlas V or Delta IV 

To compare the performance of these stages, Equation (4) still provides the performance factor, but the R 

calculation requires the following derivation. It is based on the stage’s payload being the same as that of the 

reference stage. 

 𝑅 =
𝑚𝑖

𝑚𝑓
·
𝑚𝑝0

𝑚𝑝0
=

𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑚𝑝0
+
𝑟𝜌

𝜆

𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑚𝑝0
+𝑟𝜌(

1

𝜆
−1)

 (26) 

The payload mass ratio is defined from the reference vehicle. Then the R can be calculated from known parameters. 

 
Figure 6. Mass Model Showing Good Mass Fraction Prediction for LOX/LH2 
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𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑚𝑝0
=

𝑚𝑖,0

𝑚𝑝0
−

1

𝜆0
=

1

𝑅𝑚𝑝
−

1

𝜆0
 (27) 

 1 − 𝑅𝑚𝑝 =
1

𝑅
= 1 −

𝑟𝜌
1

𝑅𝑚𝑝
−

1

𝜆0
+
𝑟𝜌

𝜆

 (28) 

Thus, when computing the performance factor to compare to the density-Isp-only model, the mass model 

becomes iterative, with Rmp and  dependent upon each other. 

Figure 7 shows how the various propellant combinations would perform in the same volume as the Atlas V core 

at the same mission R value of 6.62. Not surprisingly, the hydrogen stage falls well short; that is why the Delta IV 

CBC is significantly larger for a similar performance. For the other propellants, the conclusions do not really change 

from those of Figures 4 and 5 with the density-Isp-only model. The primary observations are IRFNA/RP1 not being 

quite as close to parity with LOX/RP1, and methane and standard propane being about even. However, densified 

propane, cooled by the LOX to a temperature of 100 K, maintains the volume-constrained performance of 

 
Figure 7. Performance Comparison of Stages with Same Volume as Atlas V Core for Same Mission 

 
Figure 8. Performance Comparison of Stages with Same Volume as Delta IV CBC for Same Mission 
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LOX/RP1. Chilled methane was not considered, because its density at 100 K is not much higher than the analyzed 

density based on normal boiling point, so there is not a significant densification benefit9. In fact, if properties for 

methane at closer to standard temperature were used, its performance would be even worse than that shown. 

Figure 8 shows how the various propellant combinations would perform in the same volume as the Atlas V core 

at the same mission R value of 5.78. The accuracy gain from the mass model is huge across the board here. So, when 

starting from hydrogen, the switch to methane fuel looks like a 25% or so upgrade: more than a drop-in replacement, 

but a genuine upgrade. Interestingly, 100 K propane comes out on top, with LOX/RP1 similar, but now the dense 

oxidizer combinations have fallen behind the light hydrocarbon combinations. 

C. The Effect of Mission Value R 

To illustrate how important the mission R is in trading performance for a constant-volume first stage design 

space, different reference stage R’s are shown in Figure 9. In a), stepping up from the single core Delta IV mission 

to the three-core mission significantly reduces the benefit of the denser propellants. Plot b) demonstrates a 

reasonable upper limit for Rmp,0, when using LOX/RP1 as the reference stage. Plots c) and d) show how the R can be 

reduced until the denser oxidizer combinations begin to exceed the reference performance. IRFNA and RP1 can 

outperform a LOX/RP1 stage with a propellant mass as much as 75% of the initial mass. 90% hydrogen peroxide 

and RP1 can outperform a LOX/RP1 stage with a propellant mass as much as 65% of the initial mass. 

 
a) Rmp,0 of 0.827, like Delta IV Heavy     b)  Rmp,0 of 0.904, a Reasonable Upper Limit 

 

 
c)  Rmp,0 of 0.75, IRFNA/RP1 Parity    d)  Rmp,0 of 0.65, 90%H2O2/RP1 Parity 

 

Figure 9. Effect of Mission Value R on the Propellant Interplay 
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D. Example: Upper Stage 

Now, consider an upper stage. These tools could be used with a multi-stage optimization just as well. However, 

when comparing directly to an existing stage in the absence of such an optimization, it is convenient to treat it as a 

constant initial mass case, so that the V imparted by the previous stages is unchanged. The performance factor gets 

modified again by the calculation of R, this time computing the V based on constant initial mass and constant 

payload. Therefore, the total stage mass is constant, so that Equation (29) can substitute to generate Equation (30). 

 
𝑚𝑝

𝜆
=

𝑚𝑝0

𝜆0
 (29) 

 𝑅 =
𝑚𝑖

𝑚𝑓
=

𝑚𝑖

𝑚𝑖−𝑚𝑝
=

𝑚𝑖

𝑚𝑖−𝑚𝑝0
𝜆

𝜆0

=
1

1−𝑅𝑚𝑝0
𝜆

𝜆0

 (30) 

This allows computation with either the mass model  or the density-Isp derived . For the reference stage, the 

dual-engine Centaur was chosen. The previous tank inert mass factors were modified to match Centaur’s mass 

fraction, while the rF was kept the same. Table 2 shows the comparison to the hydrocarbon cases. For a reference 

upper stage mission of 15,000 ft/s, the hydrocarbons only attain about 7/8 of the V, now with the methane slightly 

leading the way. For a high V of 28,000 ft/s, with a small payload, the gap to hydrogen performance is narrowed by 

half, now with chilled propane having a slight edge among the hydrocarbons. So this is the opposite behavior from 

the volume-constrained first stage, where an increase in V led to an increased hydrogen performance factor.  

Next, observe the sensitivity to the technology factor. If the Centaur tank inert mass factors are increased, as if a 

lower-budget replacement stage were designed, Table 3 shows the hydrocarbons become more competitive. This 

makes sense: if heavier tank walls are to be used, the penalty is less if the volume is decreased by using higher 

density propellants. 

E. Example: Single Stage to Orbit from Balloon 

The 28,000 ft/s V reported above would be enough to get from a 120,000 ft balloon to low earth orbit, with an 

initial thrust-to-weight of 1.43. For a LOX/LH2 stage like the Centaur with Isp of 451 sec, this lets Rmp = 0.855. 

However, the actual dual-engine Centaur at that Rmp only has a thrust-to-weight of 0.99, so this is akin to adding 

approximately another engine. The mass model predicts a mass fraction drop from 0.91 to 0.878. Because this is 

above the R for the mission, there is indeed room for positive payload. Non-dimensional payload results are 

summarized in Table 4. Dimensionally, for the LOX/LH2 based on Centaur, this provides a payload a bit above the 

Pegasus or Minotaur I capability. It is difficult to see a Centaur-style stage being built and fielded on a new, large 

enough balloon system for less cost than those systems, but perhaps a new, more affordable stage could be produced 

that would make the endeavor reasonable.  

Table 2. Mass Model Performance Factors for Centaur-Based Technology Levels 

 V0 = 15000 ft/s V0 = 28000 ft/s 

Centaur,  = 0.917 1 1 

LOX/Methane 0.871 0.930 

LOX/Pro100K 0.868 0.937 

LOX/RP1 0.858 0.929 

 

Table 3. Mass Model Performance Factors for Lower than Centaur-Based Technology Levels 

 V0 = 15000 ft/s V0 = 28000 ft/s 

LOX/LH2,  = 0.88 1 1 

LOX/Methane 0.900 0.997 

LOX/Pro100K 0.901 1.016 

LOX/RP1 0.891 1.010 
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V. Conclusions 

A simple stage comparison method based only on the density and Isp of propellants proved adequate for a range 

of concept studies 1. Across hydrocarbon fuels, 2. Between LOX and heavy oxidizers, and 3. Across solid propellant 

formulations. A mass model slightly more detailed, but still simple enough to be tractable for exploring large design 

spaces and quick trade studies, proved valid for including hydrogen in the comparisons. It also appears to improve 

all the other liquid propellant estimates, and provides a tool for predicting mass fraction as a function of thrust-to-

weight and oxidizer-to-fuel ratios.  

The calculations show, for example:  

1) Densifying solid propellant at the expense of specific impulse provides marginal performance gains for Space 

Launch System boosters, and thus is not likely to be worth the trouble of additional ingredients and process 

changes;  

2) Liquid methane fuel improves upon hydrogen performance for a volume-limited first stage, but fails to meet the 

performance of kerosene;  

3) Among liquid upper stages, hydrogen fuel will typically perform highest, but the gap is narrowed by higher V 

missions or heavier, lower cost tank materials and methods. It is possible in those cases that cost or convenience 

could trump performance in a full-up vehicle trade. 

 

Recommended next steps are: 

1) Set up a multistage design space computation and optimization utilizing the mass model;  

2) Include an appropriate model relating mass fraction to stage size for smaller stage sizes; 

3) Consider how the technology factors as well as size can be built into a cost model. 
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