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Classic RF Gridded Ion Thruster Diagram:

Ion Thruster Basics

Ionization of noble gas 
yields electrons and 
positive ions.

Positive ions accelerate 
through grid assembly.

Electrons ejected from 
neutralizer cathode into 
positive ion beam.

Stage 1: Stage 2: Stage 3:

MSFC



• Lifetime Limiting Components:
– Acceleration Grids.

– Neutralizer Cathode.

• Constraints:
– High purity source (often xenon) 

required for cathode operation.

Drawbacks of Ion Thrusters MSFC



Electronegative Ion Thruster Diagram:

Electronegative Ion Thruster

Ionization of an 
electronegative propellant.

Ion-ion plasma formation.
Positive and negative ion 
acceleration.

Stage 1: Stage 2: Stage 3:

REF. [2-5]
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• Benefits:

– Elimination of neutralizer cathode.

– Faster recombination in plume.

– Thrust generation by both charge species.

Project Motivation

Marshall’s Ion-ioN Thruster

1st domestic investment in electronegative thruster concept.

MSFC



• Determine feasibility of electronegative ion thrusters 

through direct thrust measurement enables:

– Assessment of key design drivers impacting thruster operations.

– System level analysis and comparison to classic gridded ion thrusters 

and Hall thrusters.

– Elevation of Technology Readiness Level from TRL2 to TRL3.

Project Goals

Advised by:

NASA George C. Marshall 
Space Flight Center
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• Electronegative ion thruster concept patent by École

Polytechnique accepted in 2007. [Ref. 4]

• PEGASES: Plasma Propulsion with Electronegative GASES.

• Previous focus on diagnostics required to characterize 

quasineutral plume.

Advancements to Date

[Ref. 5] [Ref. 8]
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Marshall’s Ion-ioN Thruster (MINT)

Thruster Design

Ionization of propellant 
using double-helix, half-
turn Nagoya antenna.

Electron filtering using 250 
Gauss magnetic filter with 
Neodymium magnets.

Positive and negative ion 
acceleration through 
alternating bias grids.

Stage 1: Stage 2: Stage 3:

1 2 3
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Calculated Performance

MINT Performance Estimates:

MSFC

Property Value Units Description

𝜸 0.958 - Thrust Correction Factor1

𝑽𝒔 350 V Screen Grid Bias

𝑽𝒂 0 V Acceleration Grid Bias

𝑽𝒃 315 V Beam Voltage

𝑷𝒊𝒏 700 W Total Input Power

𝑻𝒐𝒑𝒕 0.65 - Physical Grid Transparency

𝑱𝒊𝒐𝒏𝒔 ~1.5 mA/cm2 Ion Current Density

𝑻𝑴𝑨𝑿 ~1.2 mN Maximum Possible Thrust

• Assumptions:

– Child-Langmuir Law for round apertures.

– Nitrogen:argon volumetric propellant mixture 5:1.

– Classical grid design techniques as described in [Ref. 1].

Acceleration Grid Assembly.



Thruster Configurations:

• Configuration C1: Complete thruster including all 3 electronegative ion thruster 

stages.

Thruster Operating Conditions MSFC



Thruster Configurations:

• Configuration C2: Magnetic filter removed enabling thruster to operate as a 

cathode-less, traditional gridded ion engine.

Thruster Operating Conditions MSFC



Operating Conditions:

• Volumetric Flow Rates: 5:1 Nitrogen to Argon ratio at 6, 12, and 24 sccm.

• 150 and 350 Watts forward RF power.

• 13.56 MHz RF with a Standing Wave Ratio (SWR) < 1.05.

Thruster Operating Conditions MSFC



Acceleration Grid Biasing Schemes:

• An Agilent 33220A 20MHz Function/Arbitrary Waveform Generator sends a 

sinusoidal or square waveform at a frequency of 4, 10, 25, 125, or 225 kHz.

• A Trek Model PZD350A M/S bi-polar power amplifier with a current limit of 

400 mA that biases the upstream screen grid (±350 V) relative to the 

downstream acceleration grid.

Thruster Operating Conditions MSFC

Grid Biasing Schemes Waveform Frequency (kHz)

1 Sinusoidal 25

2 Sinusoidal 125

3 Sinusoidal 225

4 Square 4

5 Square 10

6 Square 25

7 Square 125

8 Square 225



Vacuum Test Facility-1:

• Effective pumping speed of 125,000 

L/s on argon.

• Base Pressure: [2.4 x 10-5] torr.

• Operating Pressure: [4.8 to 5.7 x 10-5] 

torr over full range of flow rates.

Thrust Stand:

• Null-type, inverted pendulum.

• LVDT measures position, (2) E.M. 

actuators control assembly motion.

• Recorded null coil current 

corresponds to thrust generation.

Facility & Diagnostics MSFC



Results: Configuration C1 MSFC

Grid Bias Scheme 2:

• Sinusoidal waveform at 125 
kHz.

• Only successful sinusoidal grid 
bias scheme required 24 sccm.

• Initial thrust spike of 3.75 mN
that immediately falls below 
thrust stand noise floor.

Grid Bias 
Scheme

Total Vol. 
Flow Rate

Ar:N
Ratio

RF 
Pwr

Potential 
Thrust 

Thrust 
Error

Description of Thrust 
Behavior

2 24 sccm 5:1 350 W ~3.75 mN +3mN Single spike
5 6 sccm 5:1 150 W ~4.5 mN +3 mN Single spike at grid start

up
5 10 sccm 5:0 350 W ~3 mN +1.75 mN Single spike at grid start

up
5 12 sccm 5:1 350 W ~4.25 mN +3.75 mN Single spike at grid start

up
5 24 sccm 5:1 150 W ~3 mN +2.5 mN Repeated spikes



Results: Configuration C1 MSFC

Grid Bias Scheme 5:

• Square waveform at 10 kHz.

• All cases exhibit single thrust 
spike at start of thruster 
operation with the exception of 
the 24 sccm case.

• 24 sccm case exhibits repeated 
spikes of thrust.

Grid Bias 
Scheme

Total Vol. 
Flow Rate

Ar:N
Ratio

RF 
Pwr

Potential 
Thrust 

Thrust 
Error

Description of Thrust 
Behavior

2 24 sccm 5:1 350 W ~3.75 mN +3mN Single spike
5 6 sccm 5:1 150 W ~4.5 mN +3 mN Single spike at grid start

up
5 10 sccm 5:0 350 W ~3 mN +1.75 mN Single spike at grid start

up
5 12 sccm 5:1 350 W ~4.25 mN +3.75 mN Single spike at grid start

up
5 24 sccm 5:1 150 W ~3 mN +2.5 mN Repeated spikes



Analysis: Configuration C1 MSFC

assembly confirms thermal and electrical loading did not contribute to thrust.

• RF ignition occurs before activation of grids and initial thrust spike.

General Plasma Behavior: Extinction

• Thruster self extinguished at 6 sccm, 150 Watt RF power operating condition –
original design operating condition.

• Additional volumetric flow rate required for steady operation will decrease 
specific impulse and propellant utilization.

Grid Biasing:

• Success of square waveform 

grid biasing consistent with 

results of simulations from 

Reference 2.

Confirmation:

• Thrust data recorded during 

stand alone operation of grid



Analysis: Configuration C1 MSFC

Final Observations on C1

• Continuous thrust no observed in any grid biasing scheme tested

• Scheme 5 (square wave, 10 kHz) was ‘best’, yielding thrust ‘spikes’ at various 
operating parameters

• Perhaps owing to N2 not being electronegative-enough to form sufficient nubers
of negative ions

• A better electronegative gas (SF6 or I2) may produce better results

High Vac Plasma Behavior: 

• 30 sccm minimum flow and 

300W RF required at high vac

• Sinusoidal and square 

waveforms degrade to 

triangular waveforms



Results: Configuration C2 MSFC

Operation as a traditional ion 

thruster (no electron filter)

• No ignition at high vacuum

• Ignition at 1.3x10-4 torr, 40 sccm, 

and 1 kW RF power

• After ignition, testing performed 

at 4.8-5.7x10-5 torr

Observations on C2
• No combination of operating conditions tested yielded discernable, sustained thrust

• Brief thrust spikes in the 

• Scheme 5 (square wave, 10 kHz) was ‘best’, yielding thrust ‘spikes’ at various 
operating parameters

• Perhaps owing to N2 not being electronegative-enough to form sufficient nubers of 
negative ions

• A better electronegative gas (SF6 or I2) may produce better results

• At 125 and 225 kHz, 6 sccm, visible depletion of the plasma upstream of the grids



Upcoming: Direct Thrust Measurements conducted at Marshall 

Space Flight Center with a propellant mixture of argon and sulfur 

hexafluoride focusing on Grid Bias Schemes 2 and 5.

Future Direction MSFC
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