Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA

Martha V. O'Bryan¹, Kenneth A. LaBel², Dakai Chen², Michael J. Campola², Megan C. Casey², Jean-Marie Lauenstein², Jonathan A. Pellish², Raymond L. Ladbury², Melanie D. Berg¹

1. AS&D, Inc.; 2. NASA GSFC

Martha O'Bryan

Abstract: We present the results of single event effects (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results.

Introduction

NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing adiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is challenging. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical [1]

Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET)

For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "Compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA" by M. Campola, et al. [2].

Test Techniques and Setup

A. Test Facilities

All tests were performed between February 2014 and February 2015. Heavy ion experiments were conducted at the Lawrence Berkeley National Laboratory (LBNL) [3], and at the Texas A&M University Cyclotron (TAMU) [4]. Both of these facilities provide a variety of ions over a changing the angle of incidence of the ion beam with respect to the DUT, thus changing the path length of the ion through the DUT and the "effective LET" of the ion [5]. Energies and LETs available varied slightly from one test date to another.

Laser SEE tests were performed at the pulsed laser facility at the Naval Research Laboratory (NRL) [6], [7]. Single photon absorption method was used with the laser light having a wavelength of 590 nm resulting in a skin depth (depth at which the light intensity decreased to 1/e - or about 37% - of its intensity at the surface) of 2 µm. A nominal pulse rate of 1 kHz was utilized. Pulse width was 1 ps, beam spot size ~1.2 μm.

Table I: LBNL Test Heavy Ions

Surface

Ion	Energy (MeV)	LET in Si (MeV•cm²/mg)	Range in Si (µm)		
	,	(Normal Incidence)	,		
¹⁸ O	183	2.2	226		
²² Ne	216	3.5	175		
⁴⁰ Ar	400	9.7	130		
²³ V	508	14.6	113		
⁶⁵ Cu 660		21.2	108		
⁸⁴ Kr	906	30.2	113		
¹⁰⁷ Ag	1039	48.2	90		
¹²⁴ Xe 1233		58.8	90		
LBNL 10 MeV per amu tune					

Table I: TAMU Test Heavy Ions

Ion Energy (MeV)		Surface LET in Si (MeV•cm²/mg) (Normal Incidence)	Range in Si (µm)		
¹⁴ N 210		1.3	428		
²⁰ Ne	300	2.5	316 229		
⁴⁰ Ar	599	7.7			
⁶³ Cu 944		17.8	172		
⁸⁴ Kr	1259	25.4	170 156 156		
¹⁰⁹ Ag	1634	38.5			
¹²⁹ Xe	1934	47.3			
¹⁹⁷ Au 2954		80.2	155		
TAMU 15 MeV per amu tune					
⁸⁴ Kr	2081	19.8	332		
¹³⁹ Xe	3197	38.9	286		

TAMU 25 MeV per amu tune amu = atomic mass unit

B. Test Method

SEL testing, whereas high temperature and worst-case minimum accordance with JESD57 test procedures where applicable [8].

Dynamic - the DUT was continually exercised while being exposed to the beam. The events and/or bit errors were counted. generally by comparing the DUT output to an unirradiated reference device or with an expected output (Golden chip or virtual Golden chip methods) [9]. In some cases, the effects of clock speed or device operating modes were investigated. Results of such tests should be applied with caution due to their application-specific nature.

Static - the DUT was configured prior to irradiation; data were retrieved and errors were counted after irradiation.

Biased – the DUT was biased and clocked while power consumption was monitored for SEL or other destructive effects. In most SEL tests, functionality was also monitored.

DUTs were monitored for soft errors, such as SEUs and for hard failures, such as SEGR. Detailed descriptions of the types of errors observed are noted in the individual test reports [10],

SET testing was performed using high-speed oscilloscopes controlled via LabVIEW®. Individual criteria for SETs are specific to the device and application being tested. Please see the individual test reports for details [10], [11].

Heavy ion SEE sensitivity experiments include measurement of the linear energy transfer threshold (LET_{th}) and cross section at the maximum measured LET. The LET_{th} is defined as the maximum LET value at which no effect was observed at an effective fluence of 1×10⁷ particles/cm². In the case where events are observed at the smallest LET tested, LET_{th} will either be reported as less than the lowest measured LET or determined approximately as the LET_{th} parameter from a Weibull fit. In the case of SEGR experiments, measurements are made of the SEGR threshold V_{ds} (drain-to-source voltage) as a function of LET and ion energy at a fixed V_{qs} (gate-to-source voltage).

2) SEE Testing - Pulsed Laser Facility Testing

The DUT was mounted on an X-Y-Z stage in front of a 100x lens that produces a spot diameter of approximately 1 µm at fullwidth half-maximum (FWHM). The X-Y-Z stage can be moved in steps of 0.1 µm for accurate determination of SEU sensitive regions in front of the focused beam. An illuminator, together with a charge coupled device (CCD) camera and monitor were used to image the area of interest, thereby facilitating accurate positioning of the device in the beam. The pulse energy was varied in a continuous manner using a polarizer/half-waveplate combination and the energy was monitored by splitting off a portion of the beam and directing it at a calibrated energy meter.

Test Results Overview

Principal investigators are listed in Table III. Abbreviations and conventions are listed in Table IV. SEE results are summarized in Table V. Unless otherwise noted, all LETs are in MeV•cm²/mg and all cross sections are in cm²/device. All SEL tests are performed to a fluence of 1×10⁷ particles/cm² unless otherwise

Table III: List of Principal Investigators

Principal Investigator (PI)	Abbreviation
Melanie D. Berg	MB
Megan C. Casey	MCC
Michael J. Campola	MiC
Dakai Chen	DC
Raymond L. Ladbury	RL
Jean-Marie Lauenstein	JML
Jonathan A. Pellish	JP

ble IV: Abbreviations and Convention
LET = linear energy transfer (MeV•cm²/mg) LET _{th} = linear energy transfer threshold (the maximum LET value at which no effect was observed at an effective fluence of 1x10 ⁷ particles/cm² – in MeV•cm²/mg)
< = SEE observed at lowest tested LET > = no SEE observed at highest tested LET
σ = cross section (cm²/device, unless specified as cm²/bit) σ_{maxm} = cross section at maximum measured LET (cm²/device, unless specified as cm²/bit)
ADC = analog to digital converter BiCMOS = bipolar complementary metal oxide semiconductor
CMOS = complementary metal oxide semiconductor DUT = device under test
ECC = error correcting code eng samples = engineering samples GPIB = general purpose interface bus
H = heavy ion test ID# = identification number
I _{dss} = drain-source leakage current I _{out} = output current
L = laser test LBNL = Lawrence Berkeley National Laboratory LDC = lot date code
min = minimum MLC = multiple-level cell
MOSFET = metal-oxide-semiconductor field-effect transistor
NAND = Negated AND or NOT AND NRL = Naval Research Laboratory
PCB = printed circuit board PECL = positive emitter coupled logic PI = principal investigator
PIGS = post-irradiation gate stress PNP = positive-negative-positive
REAG = radiation effects and analysis group SBU = single-bit upset
SEB = single event burnout SEE = single event effect SEFI = single-event functional interrupt
SEGR = single event gate rupture SEL = single event latchup
SET = single event transient SEU = single event upset
SiC = silicon carbide SiGe = silicon germanium
SMART = self-monitoring, analysis and reporting technology SSD = solid state drive
SSR = solid state relay TAMU = Texas A&M University Cyclotron Facility
VCC = power supply voltage VDMOS = vertical double diffused MOSFET
VDS = drain-to-source voltage VGS = gate-to-source voltage VNAND = vertical-NAND
VNAND = Vertical-NAND Xe = Xenon

Table V. Summary of SFF Test Results

International Rectifier 14-009; 1340 Solid State Relay

Part Number	Manufacturer	LDC, Wafer # or pkg markings	Device Function	Technology	Particle: (Facility/Year/Month) P.I.	Test Results: LET in MeV•cm²/mg, σ in cm²/device, unless otherwise specified	Supply Voltage	Sample Size (Number Tested)
Memory Devices:						H: SEL LET _{th} >83; 10 < SEU LET _{th} < 20;		<u> </u>
RM24	Adesto	No LDC	CBRAM	NonVolatile Memory	H: (LBNL14May; LBNL14Sep) DC L: (NRL14Jun) DC	SEFI LET _{th} > 83, 10 < SEO LET _{th} < 20, SEFI LET _{th} < 7.3; SEFI σ=5.9x10 ⁻⁷ cm ² at LET 83; SEFIs can be recovered via power cycle in most cases, rewrite was required in some cases. Bit upsets were only observed in write/read mode. L: Laser test identified areas on the die that are sensitive to SEFI: bandgap reference, voltage regulator, SRAM, and logic circuits.	2.7 to 3.6 V	4
850 PRO series MZ7KE256HMHA	Samsung	No LDC	SSD	VNAND Flash Memory	H: (TAMU14Oct) DC	SEL LET _{th} >40; SEU LET _{th} < 1.8 SEFI LET _{th} < 1.8 SEFIs occurred during static and dynamic cycling test modes. Most SEFIs recoverable with power cycle. Some SEFIs caused data corruption, and required rewrite. Heavy ion-induced cell upsets were evident from reallocated sectors via ECC.	5 V	4
MN101L AM13L-STK2 Linear/Mixed Signal Dev		No LDC	Microcontroller with Embedded Resistive Memory	ReRAM, 180 nm CMOS	H: (LBNL14May) DC; L: (NRL14Mar) DC	H: SEL LET _{th} > 70; 3.1 < SEFI LET _{th} < 4.4, σ = 4 × 10 ⁻⁵ cm ² /device at LET of 70. L: Pulsed-laser testing confirmed the SEU tolerance of the resistive memory array, and identified the sense amplifier as a sensitive component for SEFIs.	3.3V	3 at LBN 1 at NRI
LM6172	Texas Instruments	1208A	Operational Amplifier	Bipolar	H: (TAMU13Dec; TAMU14Apr)	SET 0.14< LET _{th} <0.87; σ_{maxm} =1×10 ⁻³ cm ² .	±5 V	2 (2013) 3 (2014)
AD7984	Analog Devices	C60	ADC	Bipolar	H: (TAMU14Oct) MiC	SEL LETth > 75.1; SET of 60 µs at LET >28.8 for given application.	2.5 V	4
MAX4595DVBR	Texas Instruments	pkg info SOT-23 6SB	Analog Switch	CMOS	H: (TAMU14Oct) MiC	SEL LET _{th} > 85; negative transients were observed ~2.5 μs long and -750 mV in amplitude; worst transient observed was 10 μs long and had negative going amplitudes	3.3V, 5V, 6V	3
MAX308ESE	Maxim	1108	Analog Multiplexer	CMOS	H: (TAMU14Oct) MiC	of less than 1.5 V at LET 27.8 SEL LET _{th} > 89 [20]]	+/-15V	1
					, ,	$8.1 < SEL LET_{th} < 11.4 \sigma_{maxm} \sim 6 \times 10^{-5} cm^2;$		·
TLV5618	Texas Instruments	0801A	ADC	CMOS	H: (TAMU14Oct) RL	SET LET _{th} <1.8, $\sigma_{\text{maxm}} \sim 2 \times 10^{-4} \text{ cm}^2$; 3.6< SEU LET _{th} <5.5, $\sigma_{\text{maxm}} \sim 1.5 \times 10^{-5} \text{ cm}^2$.	5 V; 6 V	2
ADP3330	Analog Devices	1238	Voltage Regulator	BiCMOS	H: (TAMU14Oct) RL	SEL LET _{th} >53.1; 28.8< SET LET _{th} <53.1, σ _{maxm} ~1.5×10 ⁻⁵ cm ² ; packaging precluded testing at angle.	3.3 V	2
LMV7219	Texas Instruments	1249	Comparator	BiCMOS	H: (TAMU14Oct) RL	SEL LET _{th} >53.1; SET LET _{th} < 2.8, σ not saturated at LET=53.1; LET and cross section depend on input voltage ΔV_{in} ; transients can last up to several microseconds.	5 V	3
AZ88923	Arizona Microtek	0146	Integrated Circuit	SiGe PECL	H: (TAMU15Oct) RL	SETs with durations up to 10 microseconds were observed at LET ~17. SET LET _{th} <1.8; SET σ_{maxm} 1.1x10 ⁻⁴ cm ² .	3.3 V	3
Power Device: SMHF2812	Crane Interpoint	1021, 1214	DC-DC Converter	Hybrid	H: (TAMU14Jul) MCC	No destructive SEEs observed at 44 MeV-cm²/mg in either LDC. [25]	28 V, 35 V	6
CMF10120D	CREE	W52812	MOSFET	SiC VDMOS	H: (LBNL14Sept) JML; MCC	966-MeV Xe (LET=65 in SiC): min evaluated Vds=182 V: Failed Idss and PIGS tests; at higher V _{DS} , primary failure mode SEB.	0 V _{GS}	11
SCT30N120	STMicroelectronics	No LDC (eng samples)	SiC MOSFETs	SiC VDMOS	H: (LBNL14June) JML	Contact PI for test results.	0 V _{GS}	24
Diodes – Pass at 100% FYPF2010DN	of Reverse Voltage: Fairchild Semiconductor	14-032; E13AA wafer	Diode	Si	H: (LBNL14June) MCC	No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe	100 V	3
MBR4045WT	ON Semiconductor	14-040; NFB19G wafer	Diode	Si	H: (LBNL14June) MCC	(LET = 58.8). No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe	45 V	3
		14-040, NFB19G water			,	(LET = 58.8). No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe		
RB205T-60	Rohm Semiconductor	No LDC	Diode	Si	H: (LBNL14June) MCC	(LET = 58.8). No failures observed at 100% of reverse voltage when irradiated with 1233 MeV Xe	60 V	3
MBR4045CT Diodes – Degradation ar	Vishay nd Pass at 100% of Reverse	14-025; P350X wafer Voltage:	Diode	Si	H: (LBNL14June) MCC	(LET = 58.8).	45 V	3
MBR2080CT	ON Semiconductor	14-043; NF914 wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 100% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET =	80 V	3
Diodes - Degradation ar	nd Failure at 100% of Revers	e Voltage:				Dogradation observed during beam run while biased at 75% of reverse veltage, but all		
MBRF2045CT	ON Semiconductor	14-039; SPB17 wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Degradation was also observed during beam run when biased at 100% of reverse voltage, but parameters exceeded specification. Degradation observed during beam run while biased at 75% of reverse voltage, but all	45 V	4
MBR6045WT	ON Semiconductor	14-041; NFE04G wafer	Diode	Si	H: (LBNL14June) MCC	parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Degradation was also observed during beam run when biased at 100% of reverse voltage, but parameters exceeded specification.	45 V	4
MBRF20100CT	ON Semiconductor	14-044; SPB16 wafer	Diode	Si	H: (LBNL14June) MCC	No failures observed at 75% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failure was observed at 100% of reverse voltage.	100 V	3
STPS20200C	STMicroelectronics	14-037; 640DN wafer	Diode	Si	H: (LBNL14June) MCC	No failures observed at 75% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failure was observed at 100% of reverse voltage.	200 V	4
MBR20100CT	Fairchild Semiconductor	14-031; A1250 wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failures observed when biased at 100% of reverse voltage	100 V	3
MBR20200CT	Fairchild Semiconductor	14-033; A1034 wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failures observed when biased at 100% of reverse voltage.	200 V	3
NXPS20H100CX	NXP Semiconductor	14-022; 1310	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failures observed when biased at 100% of reverse voltage.	100 V	3
MBR2060CT	ON Semiconductor	14-042; NF031 wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET =	60 V	3
STPS30H100C	STMicroelectronics	14-036; 7SAGG wafer	Diode	Si	H: (LBNL14June) MCC	58.8). Catastrophic failures observed when biased at 100% of reverse voltage. Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failures observed when biased at 100% of reverse voltage.	100 V	3
STPS60SM200C	STMicroelectronics	14-038; G406X wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET =	200 V	3
MBR20100CT	Vishay	14-026; 1411G wafer	Diode	Si	H: (LBNL14June) MCC	58.8). Catastrophic failures observed when biased at 100% of reverse voltage. Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET = 58.8). Catastrophic failures observed when biased at 100% of reverse voltage.	100 V	3
MBR60100	Vishay	14-027; 1335S wafer	Diode	Si	H: (LBNL14June) MCC	Degradation observed during beam run while biased at 75% of reverse voltage, but all parameters remained within specification when irradiated with 1233 MeV Xe (LET =	100 V	3
STPS40M60C	STMicroelectronics	14-035; 64OBY wafer	Diode	Si	H: (LBNL14June) MCC	58.8). Catastrophic failures observed when biased at 100% of reverse voltage. No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8). Degradation observed during beam run while biased at 75% of reverse voltage. Post-rad electrical parameter measurements were out of specification. Catastrophic	60 V	4
MBR20H200CT	Vishay	14-028; 1330S wafer	Diode	Si	H: (LBNL14June) MCC	failure was observed at 100% of reverse voltage. No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8). Degradation observed during beam run while biased at 75% of reverse voltage. Post-rad electrical parameter measurements were out of specification. Catastrophic	200 V	3
MDDCccccc	ON Carrier 1	12-034; CH803691S1	Dist.	0'	Li- (I DNII 44 Line - O - O - O - O - O - O - O - O - O -	failure was observed at 100% of reverse voltage. Catastrophic failure was observed at 100% of reverse voltage when irradiated with 1233	000.14	
MBRC20200CT	ON Semiconductor	WFR#3	Diode	Si	H: (LBNL14June; Sept) MCC	MeV Xe (LET = 58.8). Elevated temperature does not appear to change part susceptibility. No failures observed at 50% of reverse voltage when irradiated with 1233 MeV Xe (LET	200 V	3
STPS4045C	STMicroelectronics	14-034; 6K1F1 wafer	Diode	Si	H: (LBNL14June) MCC	= 58.8). Catastrophic failure was observed at 75% and 100% of reverse voltage.	45 V	4
MBR3045PT FPGAs:	Fairchild Semiconductor	14-029; AC33 wafer	Diode	Si	H: (LBNL14June) MCC	Catastrophic failure was observed at 100% of reverse voltage when irradiated with 1233 MeV Xe (LET = 58.8). Additional testing is required.	45 V	4
A3PE3000L-PQ208 ProASIC	Microsemi	12-052; 1108	ProASIC FPGA	CMOS	H and P: (LBNL14May) MB	Ongoing research investigating different mitigation strategies.	1.5; 2.5; and 3.3 V	2
XC7K325T Kintex7	Xilinx	14-001; 1349	FPGA	CMOS	H: (TAMU14Apr/Oct/Dec) MB	SEU LET _{th} < 0.07 (configurable memory)	Varies w/data sheet	5
XQV5FX70T	Xilinx	14-015; 1774118	Virtex 5 FPGA	CMOS	H: (TAMU14Apr/Oct) MB	Contact PI for test results.	4.5 V	2
Test Chips: 32 nm SOI (Deneb) Miscellaneous Devices:	IBM	13-067; 14-013	SET Pulse Width Measurement	32 nm SOI CMOS	H: (LBNL14May) JP w/Rodbell	Contact Kenneth P. Rodbell	0.9, nominal	1
RDHA710	International Rectifier	14-008; 1340	Solid State Relay	Hybrid	H: (TAMU14Apr) MCC	SET LET _{th} < 87.1 MeV-cm ² /mg. No SEEs observed.	28 V, 35 V	2

SET LET_{th} < 87.1 MeV-cm²/mg. No SEEs observed.

28 V, 35 V

Test Results and Discussion

Fig. 2. Shows a photograph of the test setup.

SSD not responsive

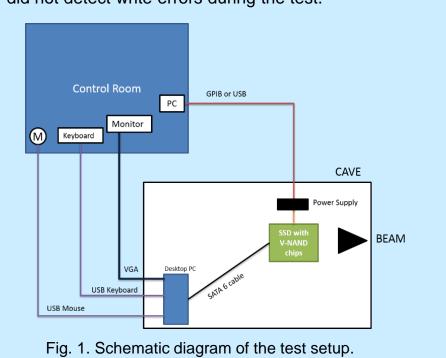
Read access errors

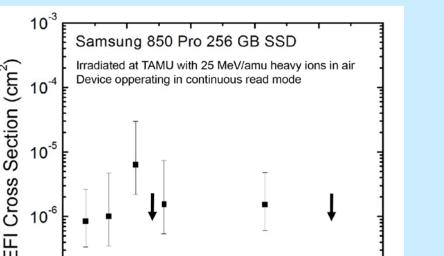
SEFIs categorized according to the test mode, event

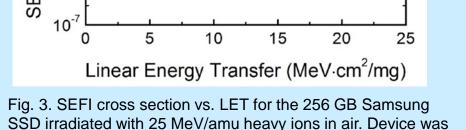
characteristics, and recovery method.

Power cycle

Power cycle,


Self-cleared in


As in our past workshop compendia of NASA Goddard Space Flight Center (GSFC) test results, each DUT has a detailed test report available online at http://radhome.gsfc.nasa.gov [10] describing the test method, SEE conditions/parameters, test results, and graphs of data. This section contains summaries of testing performed on a selection of featured parts.


Samsung 256 GB 850 Pro Solid State Drive

We evaluated the heavy ion single-event effect (SEE) susceptibility of the Samsung 850 PRO solid state drive (SSD). Their datasheets can be found on Samsung's websites [13], [14]. The 850 PRO drives consist of

Fig. 1 shows a schematic of the test setup. The desktop PC for accessing the SSD is positioned in the

continuously read during irradiation. Arrows indicate maximum

fluence levels without any observed error.

Static on/off tests are representative of typical application conditions for storage flash devices. All of the SEEs that occurred during static mode testing caused the SSD to become nonresponsive. A power cycle was required to recover functionality following such an event. Critically, the SEFI occurred even when the SSD was unpowered during irradiation. The stored data were unaffected. We were able to successfully read the programmed data after a SEFI. The program categorized the errors as either access errors or data corruption errors. The access errors meant

that the SSD could not carry out the read successfully. The corrupt errors could represent radiation-induced corrupt cells. However, in some cases, the corrupt error could be cleared on a subsequent read. Thus they are likely caused by SEUs in the data buffers. However, cell corruption was evident in other cases. The SMART attribute, "reallocated sector count," indicated the number of sectors which were removed and replaced due to cell corruption. The error count increased due to SEE even though the errors were not visible during read, since ECC detected and corrected the errant data by replacing the bad sectors.

Both read access errors and data corruption errors affected 8 continuous sectors (4 KB) at a time. The errors repeated every 128 sectors in most cases. The trend may reflect the data organization of the SSD, which we are not yet familiar with at the time of this writing. The 256 GB SSD consists of two 8 die chips and two 4 die chips. We irradiated the 8 die chip during the test. Assuming that the controller reads 4 KB from one die at a time, once the SSD encounters a SEFI, it skips the other dies in that chip and attempts to read from the next chip. Therefore, the total number of sectors from the other unirradiated chips should be $8\times(4+4+8) = 128$ sectors. Consequently, we repeatedly observed the patterns of 8 continuous bad sectors followed by 128 error-free sectors. [15], [16]

Texas Instruments LM6172 Operational Amplifier

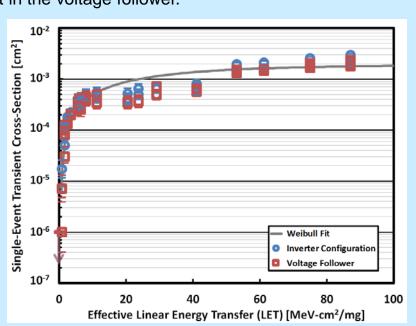


Fig. 4. Single-event transient cross-section as a function of effective LET for two LM6172 circuit configurations.

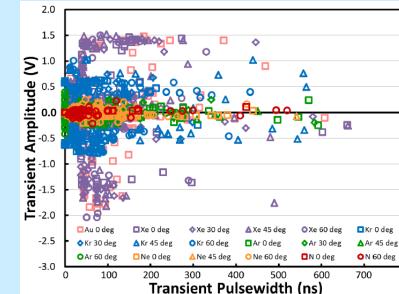


Fig. 5. Amplitude and pulsewidth scatterplot for transients

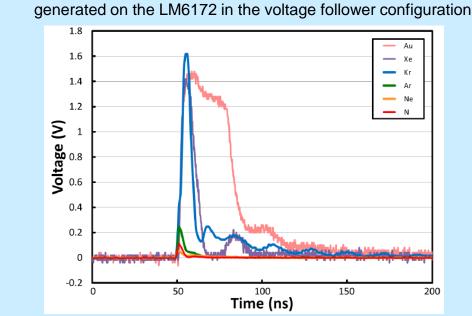


Fig.6. Worst case single-event transient observed with each ion when the LM6172 is irradiated in the voltage follower configuration and biased with 0 V on the input.

Acknowledgment

members of the Radiation Effects and Analysis presented here: Alyson D. Topper, Hak Kim Anthony M. Phan, Donna J. Cochran, Donald K Hawkins, James D. Forney, Christina M Seidleck, Martin A. Carts, Edward P. Wilcox, and Stephen R. Cox. Special thanks go to Stephen P. Buchner and Dale McMorrow, Naval Research Laboratory for their excellent support of the lase testing, and thanks to Anthony B. Sanders for technical and editorial support.

This work was supported in part by the NASA Electronic Parts and Packaging Program (NEPP), NASA Flight Projects, and the Defense Threat Reduction Agency (DTRA).

Summary

devices. It is the authors' recommendation that recommend that lot testing be performed on any suspect or commercial device.

References

- [1] Kenneth A. LaBel, Lewis M. Cohn, and Ray Ladbury, "Are Current SEE Test Procedures Adequate for Modern Devices and Electronics Technologies?," http://radhome.gsfc.nasa.gov/ radhome/ papers/ HEART08 LaBel.pdf
- Alvin J. Boutte, Donna J. Cochran, Dakai Chen, Michael J. Campola, Jonathan A. Pellish, Raymond L. Ladbury, Edward P. Wilcox, Jean-Marie Lauenstein, Robert A. Gigliuto, Kenneth A. LaBel, and Martha V. O'Bryan, "Compendium of Recent Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA," submitted for publication in IEEE Radiation Effects Data
- Michael B. Johnson, Berkeley Lawrence Berkeley National Laboratory (BASE) Facility http://cyclotron.lbl.gov.
- Superconducting Cyclotron Facility," http://cyclotron.tamu.edu/ facilities.htm, Jul. 2003. [5] W.J. Stapor, "Single-Event Effects Qualification." IEEE NSREC95 Short
- Course, Sec. II, pp 1-68, Jul. 1995. [6] J. S. Melinger, S. Buchner, D. McMorrow, T. R. Weatherford, A. B. Campbell, and H. Eisen, "Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies," IEEE Trans.
- Nucl. Sci., vol 41, pp. 2574-2584, Dec. 1994. D. McMorrow, J. S. Melinger, and S. Buchner, "Application of a Pulsed Laser for Evaluation and Optimization of SEU-Hard Designs," IEEE Trans. Nucl. Sci., vol 47, no. 3, pp. 559-565, Jun. 2000.
- JEDEC Government Liaison Committee, Test Procedure for the Management of Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation," JESD57, http://www.jedec.org/standards [9] R. Koga and W. A. Kolasinski, "Heavy Ion-Induced Single Event
- Upsets of Microcircuits; A Summary of the Aerospace Corporation Test Data," IEEE Trans. Nucl. Sci., vol. 31, pp. 1190-1195, Dec. 1984.
- http://radhome.gsfc.nasa.gov [11] NASA Electronic Parts and Packaging (NEPP)
- [12] Kenneth P. Rodbell, Kevin G. Stawiasz, Michael S. Gordon, Phil Oldiges, Keunwoo Kim, Conal E. Murray, John G. Massey, Larry Wissel, Henry H. K. Tang, "Single Event Transients in 32 nm SOI Stacked Latches," E-5 talk presented at 2014 Nuclear and Space Radiation Effects Conference (NSREC), Paris, France, July 16, 2014. Samsung Corporation Samsung 850 Pro Series SSD datasheet,
- http://www.samsung.com/global/business/semiconductor/minisite/SSD/ downloads/document/Samsung_SSD_850_PRO_Data_Sheet_rev_1_0
- [14] Computer Aided INvestigative Environment (CAINE), http://www.caine-[15] Dakai Chen, Carl Szabo and Alyson Topper, "Heavy Ion Irradiation
- Test Report for the Samsung 850 PRO Series Solid State Drive," 14-055 T20141024 MZ7KE256HMHA, Oct. 2014. D. Chen, H. Kim, A. Phan, E. Wilcox, K. LaBel, and S. Buchner, A Khachatrian, and N. Roche, "Single-event effect performance of a

commercial embedded ReRAM," IEEE Trans. Nucl. Sci., vol. 61, no. 6,

pp. 3088-3094, Dec. 2014. Megan Casey, Edward Wilcox, and Michael Xapsos, "Single-Event Transient Testing of the Texas Instruments LM6172 Dual Voltage Feedback Amplifier," 13-076_T20131218_T20140406_ LM6172, Apr.