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Best Alternatives Assessment Report 
 

EXECUTIVE SUMMARY 

NASA’s NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to 

improve safety, capacity and efficiency of the National Air Space (NAS).  In order to achieve those 

objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic 

flow management, dynamic airspace configuration, separation assurance, super density operations, airport 

surface operations and similar forward-looking air-traffic modernization (ATM) concepts.  Data exchanges 

over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project 

sought to identify technology candidates that can satisfy air-to-air and air/ground communications needs of 

the NAS in the year 2060 timeframe.  Honeywell, under a two-year contract with NASA, is working on this 

communications technology research initiative.  This report summarizes Honeywell’s research conducted 

during the second year of the study task. 

 

In the first year of the performance period, Honeywell conducted a systematic survey of the public domain 

literature to identify current, emerging and embryonic communication technologies, which included a wide 

range, starting with the existing, narrow bandwidth, low data rate, ACARS to the very futuristic optical and 

X-ray communications. Characterization of those technologies was done in an Excel-based workbook using 

a common set of key attributes and characteristics, which were derived from performance requirements 

defined in aviation standards.  Subsequently, a Quality Function Deployment (QFD) analysis tool was used 

to map critical needs of key ATM applications to the capabilities of the candidate technologies to prioritize 

the technology candidates that can meet air-to-air and air/ground ATM application needs.  A common 

architectural framework was established to define the data exchange environment and the context of the 

air-to-air and air/ground networks in that environment.  Three architectures were analyzed using future 

cellular, next generation Ku/Ka band SATCOM and Self-Organizing Orthogonal Frequency Division 

Multiple Access (SO-OFDMA) technologies.  Architecture options included cellular base stations located 

on High Altitude Platforms (HAP) and Free Space Optical (FSO) communications for cross-connects.  

Finally, overall system expenditure against benefits were compared for the proposed architectures to choose 

the right architecture for NAS environment with minimum cost outflows.  The first year of study concluded 

that a hybrid communications architecture consisting of cellular technology for terrestrial, satellite for 

Oceanic, polar and remote regions and SO-OFDMA for air-to-air networking will be best suited to meet 

the future communication needs of the NAS. 

 

The second year of study started from the architecture recommendations of the first year deliverables.  The 

research involved two focus areas:  operational and security analyses of the terrestrial and HAP-based 

cellular, satellite and air-to-air architectures.  The operational analysis consisted of two steps: a operational 

view analysis and simulation modeling of the communication technologies. 

 

The operational view analysis started with the ATM operational concepts and their communication services 

enablers.  The required information flows for those services were estimated by aircraft type, airspace 

domain and the phase of flight.  The information flows were based on the Version 2 of Communications 

Operating Concept and Requirements for the Future Radio System (COCR) jointly developed by FAA and 

EUROCONTROL.  The data traffic estimated in the COCR was escalated by 2.5% per year to derive the 

data communication demand for most of the services and aircraft classes.    The 2.5% per year escalation 

factor was recommended in the COCR.  Aircraft distribution and movement over National Air Space (NAS) 

was based on actual aircraft flight data reported by FAA for January 23, 2014.  The aircraft data was 

escalated by a factor of 0.5% per year, which was used by FAA in a recent report to estimate air traffic in 

the year 2033.  To estimate UAS distribution over NAS, it was assumed that UAS operation will be 

concentrated around major urban areas.  Top two hundred and fifty urban areas in the NAS were selected 
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based on their population density and the UAS platforms were distributed to those areas based on their 

population ranking.  Aircraft movement was simulated at five minute interval over a 24-hour period using 

a visual tool that permitted computation and display of aircraft concentration at national and regional levels. 

 

For the simulation, a set of priority-based queuing models were developed to estimate the throughput, 

latency, and dropped packets by information service flows for the communication technologies identified 

in the first year of this study. The queuing models were combined with the visual simulation tool to evaluate 

the performance of the three network architectures: cellular, satellite and SO-OFDMA air-to-air. 

 

The operational analysis concluded that the cellular architectures could support up to 400 aircraft in a cell 

without any significant degradation of the desired services. On the other hand, satellite architecture 

experienced significant loss of passenger data traffic even with five aircraft per spot beam and had loss of 

SWIM services when the number of aircraft exceeded fifty per spot beam.  In addition, satellite networks 

had much higher latency compared to cellular networks due to higher propagation delays.  The SO-OFDMA 

air-to-air network using VHF media could support basic surveillance, air traffic and airline operational 

services but did not have adequate capacity to support SWIM or passenger data. 

 

For the security analysis, a security perimeter was defined between the regulated aeronautical network and 

the unregulated public network.  All classes of devices on the perimeter that would be exposed to the public 

domain were identified at the first step of the analysis. Subsequently, high-level threat vectors for these 

classes of devices were identified.  The safety objectives and the hazard severity categories for datalink 

services from the COCR were analyzed in the second step and mapped against the threat vectors to develop 

a hazard score for each of the threats identified in the first step.  In the third step of the security analysis, 

vulnerability of the three recommended architectures were assessed against the probability of attaining 

certain hazard score for a given datalink service.  If the assessed safety hazard probability of a threat was 

below the required safety objective for the datalink service, then that particular threat was classified to have 

no impact on the communication architecture to offer the datalink service.  Conversely, if the hazard 

probability of a threat was higher than the safety objective, that threat was deemed have security impact on 

the recommended architecture.  At the final step of the security analysis, some high level mitigation 

strategies were recommended for the threats having security impact on the proposed architectures.  In 

summary, RF jamming and man-in-the-middle attacks are major concerns for cellular architectures whereas 

jamming of the feeder links from a UAS would have serious impact on satellite communications.  Lack of 

link and media access control security in the SO-OFDMA air-to-air network makes it very vulnerable to 

many security threats.  The dynamic nature of the broadcast mode SO-ODFMA makes it difficult to 

implement cost-effective security measures for this architecture.  

 

This study concludes that all three technology elements, cellular, satellite and SO-OFDMA air-to-air would 

have a role in the future communications supporting air traffic management beyond NextGen.  To mitigate 

some of the security risks associated with a technology architecture and to provide added capacity, 

flexibility, reliability and quality of service for future ATM, a hybrid communication architecture utilizing 

cellular, satellite and air-to-air networking is recommended.  In addition, technology elements to seamlessly 

and simultaneously utilize all available air/ground connectivity options should be employed. 

 

History of technology evolution over the last fifty years is indicative of the challenges to predict the 

communication technologies and ATM environment fifty years in the future.  This Honeywell study 

captures a high-level view of the future based on current knowledge.  It is possible that some game changing 

technology such as the personal computers, the Internet and the cell phones will materialize within the near 

future.  Therefore, it is strongly recommended that this study be updated at a periodic interval to include 

future research and developments.   
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Free Space Optics (FSO), one of the technologies identified in this study, has the potential to become a 

game changer for future ATM communications.  One of the key challenges for applying FSO to 

aeronautical communications is the acquisition and tracking of aircraft moving at very high relative 

speeds.  Although this study included a preliminary assessment of the FSO technology, it is recommended 

that a future study should develop technical approach and system design for aircraft acquisition and 

tracking to support FSO communications.  

Similar to FSO, operation of UAS in the NAS is in the infancy today.  However, UASs may have 

a far-reaching impact on future ATM.  Therefore, it is recommended that a detailed study be 

initiated as soon as possible to assess the impact of low-altitude UAS on future NAS 

communications.  That study should also address harmonization strategies for UAS command and 

control links with traditional ATC communications as well as general integration of UAS 

information for situational awareness of the pilots and controllers. 

In addition to the studies recommended above, Honeywell suggests the following items for future 

work: 

 Develop high fidelity simulation models of the proposed architectures to perform tradeoff 

analyses and operational scenario-based simulations.  By integrating these simulation 

models with other pre-existing NASA models, higher fidelity system models can be 

developed to aid future system design. 

 Security analysis presented in this paper provides a high level assessment of the security 

threats, risks and their potential mitigation approaches.  A future study should specifically 

expand this analysis to fully address the security vulnerabilities of the proposed 

architectures and develop mitigation approaches. 

 RF spectrum is a very limited resource and its demand is increasing exponentially with 

time. Therefore, a future study should analyze the availability of effective spectrum for 

aeronautical communications and develop a technical approach for reuse and dynamic, on 

demand, allocation of spectrum. 

 The aviation network of the future needs to be very dynamic with multiple air/ground 

connectivity options supporting simultaneous traffic flows with varied quality of service 

requirements and ad-hoc, self-configuring air-to-air networks.  To maintain robust data 

flows and to assure low latency and jitter, future aeronautical networks must support 

sophisticated routing algorithms that can converge very quickly and impose very little 

system overhead.  It is essential to research and design this routing algorithm soon such 

that it would be ready for standardization within the next ten years.  This research should 

include management of multiple links for seamless inter-technology handovers and 

leverage currently evolving IP mobility standards. 

 Similar to the routing challenges, aircraft architecture may also need to be investigated to 

facilitate such a dynamic network operation while ensuring security of the flight critical 

services and safety of flight.  
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Best Alternatives Assessment Report 
 

1. INTRODUCTION  

1.1. PURPOSE 

The purpose of this document is to provide the results of the Best Alternatives Assessment in Task 

6 (Best Alternatives Assessment and Recommendation) of the Next Generation (NextGen) 

Concepts and Technology Development Project (CTD1), Sub-topic 3, under NASA contract 

NNA12AB80C.  This document is Deliverable 9, to report the details of the Best Alternatives 

Assessment.  Task 6 is part of Phase 2 of the CTD1 project to conduct further analyses and 

simulation modeling on the best technology alternatives and recommend the best technology for 

air-to-air and air/ground data communications over the National Air Space (NAS) through the year 

2060.   

 

1.2. SCOPE 

The scope of this document is to report on the results of the Best Alternatives Assessment of Task 

6.  The Best Alternatives Assessment further assesses the best communication technology 

alternatives in operational and security assessments.  The operational assessment includes an 

operational view analysis and simulation modeling analysis.  In the simulation modeling analysis, 

data traffic corresponding to the predicted air traffic environment is simulated and assessed against 

the best technology alternatives and architecture options using these technology alternatives.  

 

The best communication technology alternatives assessed in Task 6 of Phase 2 and as documented 

in this report include Cellular, Ku/Ka band SATCOM and Self-Organized Orthogonal Frequency 

Division Multiple Access (SO-OFDMA) communication technologies.  In addition, Free Space 

Optical (FSO) was found to be a good supplemental technology for the alternatives in an 

aeronautical telecommunications network.  Previous Task 2 in Phase 1 of the NASA CTD1 project 

identified, characterized and assessed an initial set of candidate communication technologies.  The 

Task 2 assessment resulted in a down-selected list of leading candidates.  Task 3 in Phase 1 

conducted an architectural analysis of the leading technologies.  The task developed 

communication architectures based on the selected technologies and using platforms such as 

ground towers, High Altitude Platforms (HAP), and Low Earth Orbit (LEO) and Geosynchronous 

Earth Orbit (GEO) satellites to achieve an aeronautical network for the future NAS environment.  

Task 4 of Phase 1 conducted a cost analysis of the leading technologies and architectures to identify 

the combination of the network architectures to achieve safety critical communication in a cost 

effective manner without compromising Required Communication Performances (RCPs).  The 

results of the Phase 1 tasks are the three best technology alternatives and architectures, including 

FSO as a supplemental technology, which are further analyzed and assessed in Task 6 of Phase 2. 

 
 

1.3. DOCUMENT OVERVIEW 

1.3.1. Organization 

This document is organized into the following sections: 
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 Section 1 – Introduction 

Identifies the purpose and scope of the document, summarizes document 

organization and document conventions, defines terminology and acronyms used 

throughout the document, and provides references to applicable documents. 

 

 Section 2 – Background 

This section summarizes the activities done in previous tasks of the project.  It 

briefly explains the results of the tasks leading up to the subject of this report, task 

6 best alternatives assessment.  It also provides summaries of the best technology 

alternatives and architectures.     

 

 Section 3 – Approach for Best Alternatives Assessment 

This section describes the approach followed for the best technology alternatives 

assessment. It explains the approach of the operational assessment and security 

assessment.  It identifies the constraints and assumptions of the assessments. 

 

 Section 4 – Operational Assessment 

This section explains the Operational Assessment consisting of Operational View 

Analysis and a Simulation Modeling Analysis. It evaluates the best alternative 

technologies based on the operational assessment. 
 

 Section 5 – Security Assessment 

This section describes the security assessment of the best technology alternatives 

and architectures.  It describes the security assessment consisting of threat analysis 

and risk assessment.  It provides the results of the assessment and recommends 

technical mitigations of the risks.  It evaluates the best alternative technologies 

based on the security assessment. 

 

 Section 6 – Conclusions 

This section provides the summary of the operational and security assessments 

conducted in Task 6.  It summarizes the assessment of the best alternative 

technologies based on the operational and security assessments.  It makes 

recommendations for future work.  
 

1.3.2. Conventions 

The following conventions are used throughout this document: 

 Use of the notation [REF-XXX] refers to an applicable reference document, where 

XXX is the shorthand notation. 
 

1.3.3. Document Relationships 

This document reports on the assessment of the best technology alternatives down-selected in 

previous tasks in Phase 1 of the project.  The initial Task 2 in the project identified, characterized 

and assessed candidate communication technologies.  The task generated an initial list of the top 

technologies from the candidates.  Task 3 analyzed architectures using the leading candidate 

technologies and down-selected the candidates to the best technology alternatives based on 
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architectural analysis.  Task 4 analyzed the cost effectiveness of the technologies and architectures 

from Task 3.   

 

In the Task 2 analysis, candidate communications technologies were identified, characterized and 

assessed for meeting the communications requirements of Air Traffic Management (ATM) 

applications in the year 2060 timeframe.  A comparative analysis of the candidate technologies 

was conducted and summarized, and an initial list of down-selected technologies was generated.   

The Task 2 document is the Report on Task 2 of the National Air Space (NAS) Data Exchange 

Environment Through 2060 project - Identification, Characterization and Mapping of Candidate 

Technologies [TASK2RPT].   

 

In Task 3, the architectures were developed using the top candidate communication technologies 

selected in Task 2 and as reported in the Task 2 report document. The best technologies were 

down-selected from the list of candidate technologies based on the architectural analysis.  The 

architectures were assessed for air-to-air communication and air/ground communications and the 

results were summarized in the Report on Task 3 of the National Air Space (NAS) Data Exchange 

Environment Through 2060 project – Architecture Analysis [TASK3RPT]  

 

In Task 4, the architectures analyzed in Task 3 were assessed for cost effectiveness to support air-

to-air and air/ground communications.  The results were summarized in the Report on Task 4 of 

the National Air Space (NAS) Data Exchange Environment Through 2060 project – Cost Analysis 

[TASK4RPT] 

 

These documents and other reference documents providing input to the Task 6 analysis are listed 

in section 1.5. 
 

1.3.4. Word Processing Algorithm 

This document was prepared using Microsoft® Office Word 2007. 
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1.4. TERMINOLOGY 

1.4.1. Acronyms 
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Acronym Definition 

ASDI Aircraft Situation Display to Industry 

AAC Airline Administrative Communications  

ATS Air Traffic Services  

AOC Aeronautical Operational Control 

APC Airline Passenger Communication 

ATR Avions de Transport Regional (larger commercial air transport aircraft) 

AC Aircraft 

AC ↔ BS link Aircraft-to-ground base station link 

AC ↔ HAP link Aircraft-to-HAP base station link 

AC ↔ SAT link Aircraft-to-satellite link 

APT Airport  

ANSPs Air Navigation Service Providers  

ATC Air Traffic Control  

AOA Autonomous Operations Areas 

Arv arrival 

ATM Air Traffic Management 

ATSP Air Traffic Service Providers 

Auth. authentication 

AVS Advisory Services  

BGA Business and General Aviation  

BS Base station  

CTD Concepts and Technology Development  

CSV  comma separated values 

CIS Clearance/ Instruction Services  

Dep departure 

DSS Delegated Separation Services 

DL downlink  

DCM Data Communications Management  

DAG-TM Distributed Air/Ground Traffic Management  

EIS Emergency Information Services  

ENR En-route  

FSO Free Space Optical  

FPS Flight Position/ Intent / Preferences Services  

FMS Flight Management System  

FD flight deck  

FAA Federal Aviation Administration  

FSS Flight Support Services 

FIFO First In, First Out 

FSO Free Space Optical 

GDC Global Data Center  

GEO Geostationary Earth Orbit 

GES Gateway Earth Station  

Gbps Giga-bits per second 
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. 

Acronym Definition 

GUI Graphical User Interface  

GW Gateway 

HAP High Altitude Platforms  

ICAO International Civil Aviation Organization 

km kilometer 

LEO  Low Earth Orbit 

MAC Media Access Control 

MMS Multimedia Messaging Service  

ms millisecond 

MSP Mobile Service Provider 

NETCONN Network Connection  

NETKEEP Network Keep-alive  

NAS National Air Space  

NMS Network Management System 

nm Nautical mile 

NW network 

OEM Original Equipment Manufacturer 

ORP Oceanic/Remote/Polar  

QOS Quality of Service 

RCP Required Communication Performance  

SATCOM Satellite Communication 

SAT ↔ GW link Satellite-to-ground gateway link 

SO-OFDMA Self-Organized Orthogonal Frequency Division Multiple Access  

SMS Short Message Service  

SAT Satellite 

SWIM System Wide Information Management 

TMA Terminal Maneuvering Area 

TBO Trajectory-Based Operations  

TS Time Sample 

TU Transmission Unit 

UTC Universal Time Coordinated  

UAV  Unmanned Aerial Vehicle 

UAS Unmanned Aircraft Systems  

UL uplink  

UACS Unmanned Aircraft Control Station  

VPN Virtual Private Network 
 

1.5. APPLICABLE REFERENCE DOCUMENTS 

The following documents, of the exact issue shown with the latest amendments and notes, form a 

part of this document to the extent specified herein. 
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1.5.1. Government/Regulatory 

Shorthand Document Number Document Description 

COCR COCR Version 2.0 
Communications Operating Concept and Requirements for the 

Future Radio System,  2006, version 2.0, EUROCONTROL/FAA 

FAA2033  http://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=14

374 

 

1.5.2. Industry 

Shorthand Document Number Document Description / Link 

ITUR Report ITU-R M.2171 
Characteristics of unmanned aircraft systems and spectrum 

requirements to support their safe operation in non-segregated 

airspace, ITU, December 2009 

QUEUES  http://iew3.technion.ac.il/serveng2012S/Recitations/R

ec13.pdf 

 

1.5.3. Honeywell 

Shorthand Document 

Number 

Document Description / Link 

TASK2RPT NNA12AB80C-D03-

01-01 

Report on Task 2 of the National Air Space (NAS) Data Exchange 

Environment Through 2060 project - Identification, 

Characterization and Mapping of Candidate Technologies, 1 May 

2013, revision 01, Honeywell. 

TASK3RPT NNA12AB80C-D04-

01-01 

Report on Task 3 of the National Air Space (NAS) Data Exchange 

Environment Through 2060 project – Architecture Analysis, 1 

August 2013, revision 01, Honeywell. 

TASK4RPT NNA12AB80C-D05-

01-01 

Report on Task 4 of the National Air Space (NAS) Data Exchange 

Environment Through 2060 project – Cost Analysis, 1 September 

2013, revision 01, Honeywell. 
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2. BACKGROUND 

This section provides background on the previous Phase 1 tasks and a summary of architectures 

using the best technology alternatives.  The best technology alternatives will be further analyzed 

and assessed in context of the architectures. 

 

2.1. SUMMARY OF PREVIOUS TASK ANALYSES AND ASSESSMENTS 

The primary objective of NASA’s Concept and Technology Development (CTD) project is to 

identify and assess the data exchange environment using air-to-air and air/ground communications 

to support Air Traffic Management (ATM) applications over National Air Space (NAS) through 

the year 2060.   

 

In Task 2 of the project, high potential communication technologies to support NextGen air-to-air 

and air/ground datalinks were identified, characterized and evaluated. Top candidate were down-

selected from the original list of 15 technologies from current, emerging and embryonic categories, 

in a comparative assessment against the requirements of critical ATM applications.  See Task 2 

report [TASK2RPT]. 

 

In Task 3, communication system architectures were developed using the top three candidate 

technologies, namely Cellular, Ku/Ka band SATCOM and SO-OFDMA, and platforms including 

HAP, Satellite and terrestrial platforms to achieve the data exchange environment for NAS.  An 

architectural analysis was performed to identify the technical pros and cons of the three 

architecture options using the technologies.  A hybrid architecture consisting of all three 

architectures was analyzed and shown to be an effective way to meet the communication 

requirements in the future NAS. FSO was identified as a supplemental technology in the 

architectures as a high throughput pipe for certain links in the architectures. The results were 

summarized in Task 3 report [TASK3RPT]. 

 

In Task 4, a cost analysis was performed on the architectures of the top three candidate 

technologies analyzed in Task 3 to identify the most cost effective solution to facilitate the future 

NAS requirements. The results of the cost analysis found all three technologies to be cost effective 

for meeting requirements specific to air-to-air and air/ground configurations for future ATM 

communications.   

 

The three technologies are recommended as the best technology alternatives for further 

assessment.  In Task 6, the best technology alternatives and architectures are assessed in 

operational and security assessments, which is the subject of this report. 

 

2.2. SUMMARY OF ARCHITECTURE OPTIONS USING THE TECHNOLOGIES 

The three architectures and the hybrid architecture that were analyzed in Tasks 3 and 4 are 

considered for the best alternatives assessment.   

 

Architecture Option 1 is based on the future cellular technology (5G+ cellular) combined with 

the HAP platform. In this architecture, the terrestrial segment is supported by cellular network, 

while the airborne segment is supported by a HAP network. The HAP segment includes oceanic 
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regions and terrain-challenged terrestrial regions where it is difficult or expensive to install and 

maintain towers. The combination of both the terrestrial cellular network and the HAP based 

network will be able to support services in all airspaces. FSO link supplements this architecture 

for backend HAP-to-HAP or HAP-to-Ground communications. 

 

Architecture Option 2 is based on the Ku/Ka band SATCOM technology for providing access to 

aircraft in both terrestrial and oceanic regions for their communication with ground network. 

Aircraft makes use of satellite network installed in space for both the air/ground and air-to-air 

services. The satellite terrestrial network that provides connectivity to the ground network 

comprises of Gateway Earth Station (GES) and Network Management System (NMS).  FSO link 

is considered as a possible secondary link for inter-satellite and satellite-ground to address some 

of the challenges and issues inherent in satellite communications.   

 

Architecture Option 3 is based on broadband SO-OFDMA technology that uses VHF spectrum 

allocated for aeronautical purposes. SO-OFDMA is expected to provide air-to-air communication 

without any service cost for aircraft in all airspaces. Air-to-ground communication over terrestrial 

regions can be accomplished by having at least one SO-OFDMA node per cell installed on the 

ground. In oceanic regions, where it is not possible to have ground infrastructure, the packets are 

routed to the nearest ground SO-OFDMA node through a network of aircraft flying in the region. 

Hence the combination of both airborne and ground segment will be able to provide air/ground 

communication needed for an aircraft.  FSO is a possible supplemental technology as a secondary 

air/ground link.  In addition, FSO may be combined with SO-OFDMA as a point-to-point system 

for air-to-air relaying of data traffic in support high air traffic corridors.  FSO provides a possible 

high throughput pipe between aircraft for message relaying. 

 
Hybrid Architecture is a hybrid of all three architectures including HAPs, satellite and terrestrial 

networks.  SO-OFDMA is the most suitable architecture for air-to-air service, while the 

combination of satellites and HAPs provide a solution for air/ground communications.  Cellular 

network covers the terrestrial regions similar to the HAP-Cellular architecture. Most of the oceanic 

regions are covered by GEO systems and the high traffic oceanic and terrain challenged terrestrial 

regions are covered by HAPs.  FSO may serve as a supplementary link or may be aimed as a 

primary technology for air/ground traffic. In terrestrial regions for altitudes below 10,000 ft, where 

FSO availability may become an issue, cellular technology may be used to provide a 

supplementary link.  FSO may also provide a high throughput pipe between aircraft. 
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3. APPROACH FOR BEST ALTERNATIVES ASSESSMENT 

Figure 3-1 illustrates the approach for the best alternatives assessment activities of Task 6.  The 

high-level activities are highlighted in the figure and include operational assessment, security 

assessment, comparative analysis and report on the assessments and comparative analysis as 

reported in this Deliverable 9 document.  

 

 

3.1. OPERATIONAL ASSESSMENT 

The operational assessment consists of an operational view analysis and simulation modeling 

analysis.  The operational view analysis begins with a high level concept of operations of ATM 

operational services and the communication services that enable the operational services in the 

2060 timeframe.  It identifies the information flows of the communication services in the air-to-

air and air/ground networks and analyzes the volume of data traffic in the information flows based 

on aircraft type, airspace domain and phase of flight.  The data traffic results are input to the 

simulation modeling analysis.   

 

The simulation modeling analysis begins by modeling the data flows in the architectures that 

utilize the best alternative technologies.  The models evaluate the performance of the technologies 

in meeting latency and data throughput requirements of the communication service types.  The 

requirements for data throughput were established by the data traffic results from the operation 

view analysis.  The architecture models then provide the basic modeling concepts and parameters 

for an aircraft and data traffic simulation and visualization covering the NAS in the 2060 

timeframe. The simulation generates latency and data throughput performance results, which are 

compared to the results of the architecture and data flow models to help validate the models.  

Performance is measured in terms of latency, data packet loss, achievable throughput and 
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Note: The figure highlights the activities conducted as reported in this document, Deliverable 9. 

Figure 3-1  Approach for Best Alternatives Assessment 



 

scalability.  The simulation is configurable to change parameters and conduct sensitivity analyses. 

The best alternative technologies are evaluated based on the results of the operational assessment. 

 

3.2. SECURITY ASSESSMENT 

The security perimeter boundary is first established and described to set the context of the security 

assessment.  The contexts of the assessment are the access network architectures that utilize the 

best communication technology alternatives. The security assessment then conducts a threat 

analysis and risk assessment within the security perimeters.  Security assessment outside of the 

perimeters is outside the scope of the assessment.  The threat analysis identifies and defines threat 

agents and the threat vectors used by the agents to attack the access networks.  It determines the 

impact and likelihood of each threat.  The vulnerability assessment considers and evaluates the 

weaknesses and exploitability of the access networks to threats.  The risk assessment determines 

the risk of each threat based on the impact and likelihood of the threat and the vulnerability of the 

access network to the threat.  The acceptability of each risk is evaluated to determine the need for 

mitigations of the risks.  The security assessment determines technical mitigations of the 

unacceptable risks.  Only technical mitigations are considered as security policy and operational 

mitigations are outside the scope of the assessment.  The best alternative technologies are evaluated 

based on the results of the security assessment. 
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4. OPERATIONAL ASSESSMENT  

The three technology candidates chosen as best technology alternatives are analyzed and assessed 

in an operational assessment.  The operational assessment is conducted as an operational view 

analysis and simulation modeling analysis.   

4.1. OPERATIONAL VIEW ANALYSIS 

The operational view analysis provides a high-level concept of ATM operations in the 2060 

timeframe to understand the required information flows of the communication services that enable 

the ATM operations.   The operational view analysis identifies and characterizes the information 

flows based on type of aircraft traffic that utilize the communication services, airspace domain and 

phase of flight.  It provides estimates of data traffic loads in the flows, which are then used in the 

simulation modeling.     

4.1.1. Overview of the ATM Concept of Operations in 2060  

The Next Generation Air Transportation System (NextGen) aims to make air travel more 

convenient while ensuring flight operations to be safe, secure and efficient. Advancements in the 

technologies enable more efficient operations and thus aid in transformation to NextGen. The role 

of future ATM environment is envisaged as a paradigm shift from controlling aircraft movement 

to managing air-space. The paradigm shift is seen to be manifested in the following aspects:   

 Use of less voice to use of mostly data communications 

 Shift to trajectory-based management 

 More cooperative management between aircraft and between aircraft and air traffic 

controllers 

 Sharing of more information across NAS information sources. 

Communication services to enable the operational services are envisaged as undergoing a 

paradigm shift as well, to sharing of common broadband IP-based aeronautical communications 

networks by different types of communications traffic.  The traffic congestion problems will be 

solved by advancements in the technology, new applications, accuracy, and automation of systems.  

The ATM paradigm shifts from less voice to more data communications. Data link is expected to 

play an important role for transmission of routine exchanges. The data link will change the 

workload distribution of air traffic controller and aircrew. However, it is expected that data 

communications will not normally be used for transmission of urgent, safety critical messages in 

tactical traffic situations. Real time voice channels will remain primary mean of communications 

for certain communications (non-routine, failure recovery and emergency). 

 

The ATM Concept of Operations for 2060 will have a paradigm shift from a tactical control by air 

traffic controllers to strategic management by controllers and more autonomous operations 

handled by aircrew and automation. In en-route airspace, trajectory-based operations (TBO) will 

be used.  Strategic and trajectory-based management enabled by data links will be the standard 

mode of operation in the future system. The data link exchange of trajectories between the flight 

deck and the ground-side automation might involve down linking the active aircraft trajectory from 

the Flight Management System (FMS) to the ground automation or uplinking a trajectory clearance 
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from the controller workstation to the flight deck. The concept of dynamic management of airspace 

will permit suitably equipped aircraft to select the most advantageous route to its destination. A 

structured routing system will continue to exist in managed airspace, in particular around major 

traffic centers with Air Traffic Control (ATC) in charge of managing the routes taken by aircraft. 

At the same time, total flexibility will exist in areas with autonomous aircraft operations in so 

called Autonomous Operations Areas (AOA) segregated from the managed airspace.  

 

Higher level of cooperation between the flight crew and ATC for air traffic management is 

envisaged to achieve capacity and efficiency benefits. Cooperative air traffic management shall 

provide airspace users with increased flexibility in managing their operations through improved 

information exchange between the aircraft and ATC. Airborne devices will provide aircrew with 

enhanced situational awareness and allow a more co-operative ATM between controllers and 

aircrew. Flight crews of properly equipped aircraft can share flight path changes automatically as 

4D trajectories for traffic flow constraints with the area controller or operate at higher levels of 

autonomy. Routine tasks like handoffs and transfer of communication can be conducted by the 

automation. Tasks like aircraft-to-aircraft spacing may be delegated to the flight crews by the 

controller. ATM operations are envisioned to rely on end-to-end strategic traffic flow 

management, data link communication and information sharing to facilitate fuel efficient flight 

profiles coordinated between ground automation and airborne flight management systems while 

minimizing adverse weather effects. Distribution of Air/Ground traffic management between flight 

crew, air traffic service providers (ATSP) and aeronautical operational control (AOC) personnel 

shall increase system capacity, while meeting air traffic management (ATM) requirements. The 

distributed air traffic management may solve a series of key ATM problems (or inefficiencies) in 

the gate-to-gate operations of the current NAS by utilizing distributed decision-making between 

the user (flight crew and/or AOC) and the ATSP. 

 

The System Wide Information Management (SWIM) framework shall provide efficient air-ground 

mechanism for the data management, exchange, and sharing of information available from the 

various NAS information systems among flight crews, air traffic controllers, airline dispatchers, 

the military, government agencies, and other users of the NAS. The aircraft data that may be 

provided by SWIM includes, but is not limited to, video surveillance, aircraft sensor information, 

and Pilot Reports. SWIM based services will help create a shared common situational awareness 

among the flight crew, AOC personnel, air traffic controllers, and worldwide Air Navigation 

Service Providers (ANSPs) throughout the entire flight. 

 

The future network in the 2060 timeframe is envisaged to be a collection of interconnected IP-

based networks. Multiple access networks will use different wireless link technologies with 

significantly different characteristics (ground based, satellite-based, aircraft-to-aircraft).  ATM 

traffic will share common IP-based access networks with other types of data traffic and compete 

for resources such as data bandwidth.  Usage by end users will be seamless across the different 

access networks during flight phases. 

 

A brief summary of operational concepts envisaged in the 2060 timeframe accommodating 

significantly increased traffic levels with broader aircraft performance envelopes and with more 

operators in the same airspace is provided in Table 4-1. 
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Operation Description 

Collaborative Traffic Management 

Co-operation between controllers and flight crews in decision 

making using the availability of advanced technologies, tools and 

procedures to improve aircraft movements, reduce spacing and 

separation requirements, while improving arrival and departure 

sequencing. 

Net-Centric Operations 

Network enabled secured information access in real time to improve 

operational decision making. Timely access to information increases 

situational awareness while providing consistency of information 

among decision makers. 

Weather Operations 

Weather data incorporated in Decision Support Systems (DSS), 

bypassing the need for manual interpretation, to improve forecast 

accuracy and minimize the effects of weather on operations. 

Standardized set of weather sensors/algorithms on board to provide 

wind, temperature, water vapor, turbulence, and icing data to other 

users via network 

Layered security 

A multi-layered security system to mitigate threats. A security 

system consisting of layers of defense (including techniques, tools, 

sensors, processes) to help reduce the overall risk of a threat. 

Trajectory-Based Operations 

Exchange of 4D trajectories between controllers and aircraft to 

dynamically adjust a flight path in space (longitude, latitude, 

altitude) more accurately allowing the decrease in separation and 

increase in airspace capacity 

 

 

4.1.2. System Context for the Operational View Analysis 

The operational view analysis considers communication services as enablers for ATM.  

Communication services are provided via air/ground communications between aircraft and ground 

systems, air-to-air communications between two aircraft and ground/ground communications.  

Ground/ground communications for example include communications between two ATC centers.  

Both data and voice links will be used for air/ground and air-to-air communications. Data link will 

be the primary means of communications for most services except some real-time scenarios. Voice 

links will be used as primary means for non-routine, failure recovery and emergency 

communications.  

This analysis considers data link communication services in air-to-air and air/ground scenarios, as 

highlighted in the notional communication systems architecture shown in Figure 4-1.  Ground-

ground network and onboard aircraft networks are not included in the analysis.  The analysis 

considers communicators services used by different aircraft types across the various airspace 

domains during the phases of flight of an aircraft.   

Table 4-1 ATM Operational Concepts Envisaged in the Year 2060 
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4.1.2.1. TYPES OF COMMUNICATION SERVICES 

The different types of communication services that will be supported by the 2060 network include 

Air Traffic Services (ATS) communications, AOC communications, Airline Administrative 

Communications (AAC), Aeronautical Passenger Communications (APC) and SWIM 

communications. Only data links shall exist for SWIM information exchange whereas both data 

and voice links will be available for other services (ATS, AOC, AAC, and APC). ATS 

communication services will always have priority over all other services, and AOC communication 

services will always have priority over AAC and APC services. Communication management shall 

have mechanisms to prioritize the different service types and also shall be able to prioritize 

different message types within each service type. For a given service (ATS, AOC, AAC or APC), 

the system shall provide higher priority for voice services over data services. Also communication 

management shall prioritize the different services depending on the phase of the flight (e.g. 

temporary shutdown of APC in TMA/Airport if bandwidth unavailable).  

ATS communications are communications related to air traffic services including air traffic 

control, aeronautical and meteorological information, position reporting and services related to 

safety and regularity of flight. These communications involve one or more air traffic service 
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Figure 4-1 System Context for Operational Scenarios 



administrations. AOC communications are communications required for the exercise of authority 

over the initiation, continuation, diversion and termination of flight for safety, regularity and 

efficiency reasons. AAC is communications are used by airlines related to the business aspects of 

operating their flights and transport services. These communications are used for a variety of 

purposes, such as flight and ground transportation, bookings, deployment of crew and aircraft or 

any other logistical purposes that maintain or enhance the efficiency of operation over-all flight. 

APC communications are related to the non-safety voice and data services to passengers and crew 

members for personal communications. SWIM   communications are related to the simultaneous 

sharing of information available from various NAS information systems among flight crews, air 

traffic controllers, airline dispatchers, military, government agencies, and other users of the NAS.  

4.1.2.1.1. Safety Related Services (ATS and AOC) 

Air Traffic Services include ATS Voice Services and ATS Data Services. The major ATS Data 

Services are Data Communications Management Services (DCM), Clearance/ Instruction Services 

(CIS), Flight Information Services (FIS), Advisory Services (AVS), Emergency Information 

Services (EIS), Delegated Separation Services (DSS), Common Trajectory Coordination Services, 

Flight Position/ Intent / Preferences Services (FPS). Aeronautical Operational Control (AOC) 

services include AOC Voice Services and AOC Data Services. 

A class of network management services identified to support operational ATS and AOC services 

are Network Connection (NETCONN) and Network Keep-alive (NETKEEP). 

4.1.2.1.2. Non- safety Related Services (AAC and APC) 

The potential AAC services include Passenger Manifest, Aircraft Catering, Baggage Handling, 

and In-flight Assistance. The APC services identified are Web browsing, E-mail services, Short 

Message Service (SMS) and Multimedia Messaging Service (MMS), Virtual Private Networks 

(VPNs), Internet access, video conference services, voice services (telephony), fax services, audio 

and video streaming, live radio and live television. 

4.1.2.1.3. SWIM Enabled Services 

Services under the SWIM framework, as illustrated in  

 
 

Figure 4-2, include Trajectory Information Exchange, Weather Information, Automated Flight 

Conditions Reports, Airport Diversion Planning, Surface Management with Trajectory Based 

Operations, and En-route Strategic Planning. 
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4.1.2.2. AIRSPACE DOMAINS AND FLIGHT PHASES 

The operational scenarios for aeronautical communications are defined in relation to aircraft 

position in airspace domains and aircraft phase of flight.  The airspace domains are Airport (APT), 

Terminal Maneuvering Area (TMA), En-route (ENR), Oceanic/Remote/Polar (ORP), and a new 

domain known as an Autonomous Operations Area (AOA) where the aircraft would be delegated 

self separation. The different phases of flight are identified below along with the domains in which 

the phases occur: 

 Pre-Departure Phase in the APT Domain 

 Departure Taxi in the APT Domain 

 Departure in the TMA Domain 

 Operations in the ENR, ORP and AOA Domains 

 Arrival in the TMA Domain 

 Arrival in the APT Domain 

 Arrival Taxi in the APT Domain 

For the various operational scenarios and different flight phases under each airspace domain, a 

wide range communication services are required and are discussed in the following sections.  

 

4.1.2.3. SERVICES IN AIRSPACE DOMAINS  

Figure 4-3 shows the various types of services that are available in different airspace domains.  

ATS, AOC and AAC services shall be available in all domains. APC services shall be available 

for passenger communications in ENR, ORP and AOA regions. However APC services may be 

available in APT and TMA based on remaining bandwidth availability after considering ATS, 

AOC and AAC usage. SWIM data exchange is expected in APT, TMA, ENR and ORP airspaces. 
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    Figure 4-2 SWIM Operations 



 

It is assumed that in AOA regions where AC operation is autonomous, there may be no SWIM 

data exchange.  

 

 

Figure 4-3 Services per Airspace Domain 

 

4.1.2.4. INTEGRATION OF SERVICES AND TECHNOLOGIES  

The future system shall be capable of allocating any available link that is suitable to a required 

service by taking into account the regulatory constraints, data bandwidth availability, etc., for the 

mapping of services onto the different links. Assuming relaxation in Civil Aviation Authority 

(CAA) rules, links deployed for APC communications could be certified for use as backup for 

ATS and AOC communications. ATS message sizes and volume are relatively small compared to 

typical APC data traffic.  AOC and AAC volume may be similar and may be larger than ATS 

messages, but it is anticipated that APC traffic data will have much higher volume.  SWIM traffic 

data can also have higher volume compared to ATS, AOC and AAC but maybe less than APC.  

The point is that APC could use the capacity that is not used for other communications, provided 

that this does not jeopardize safety related issues. Hence the same link can be used for different 

purposes, depending on the policy, priorities, airspace domain and the flight phase.  

Moreover the system shall enable an aircraft to be simultaneously connected to and seamlessly 

roam between multiple independent access networks. This allows for make-before-break handover 

strategies ensuring the continuity and availability requirements of ATM applications. 

 

4.1.2.5. AICRAFT TYPES 

The future system shall support mixed aircraft population with varying capabilities and operating 

envelopes. Through 2060 there will be integration of new airspace users into the system. Microjets 

(typically 6 to 12 passengers), GA aircraft, military aircrafts (flying under civil rules) and 

Unmanned Aircraft Systems (UAS) may share the same airspace along with the commercial air 

lines, resulting in substantial increase of air traffic. The effect of new airspace users on NAS 

capacity depends on several factors including aircraft use in the airspace, the trip length and 

altitude, the implementation of new air traffic control technologies and equipment, and the 

performance capabilities and the rate of integration of the equipment.  

Flight Phase

Service

APT TMA ENR ORP AOA

ATS
    

AOC
    

AAC
    

APC
? ?   

SWIM
    NA


Available

?
Available based on 

link availability, in low 
density regions

NA Not available
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4.1.3. Data Traffic Estimates  

The following subsections provide the data traffic estimates based on the information flows 

identified and described above in section 4.1.2.   

 

4.1.3.1. COMMERCIAL LARGE AIRCRAFT 

Table 4-2 provides data from the Communications Operating Concept and Requirements for the 

Future Radio System (COCR) document [REF- COCR] on the estimated Phase 2 traffic for a single 

aircraft.  Traffic estimates are provided for uplink (UL) and downlink (DL) traffic in each service 

volume (SV) – APT (departures and arrivals), TMA (departures and arrivals), ENR, ORP and 

AOA. To arrive at ATC and AOC traffic for a single aircraft  during 2060 timeframe, the Phase 2 

COCR traffic is extrapolated at an annual growth rate of 2.5% over 30 years and is provided in 

Table 4-3. The estimated data traffic requirement for the AAC service is expected to be similar to 

that of AOC. The estimated data traffic requirement for APC service per passenger is 2 Mbps DL 

and 1Mbps UL, based on consideration of applications like fax, voice, internet, video, etc., today. 

With an assumption of up to 150 passengers per large aircraft and with 20% of the passengers 

simultaneously using communication service, the total APC data requirement is 60 Mbps DL and 

30 Mbps UL. The SWIM data requirements are expected to be around 1 Mbps each for DL and 

UL, for exchange of aircraft sensors data, graphical weather information, etc. 

 

 

Table 4-2 Phase 2 Traffic Estimates (kbps) – Single Aircraft, 2030 Timeframe 

PHASE 2 – 2030 

Data Traffic in kbps 

APT SV TMA SV ENR SV ORP 

SV 

AOA 

Dep Arv Dep Arv 

Separate 

ATS  

UL  20 3 20 20 20 15 20 

DL  30 10 30 30 30 20 30 

UL&DL  30 10 30 30 30 20 30 

Separate 

AOC  

UL  40 0.3 0.3 2 40 20 20 

DL  1 1 1 1 1 0.4 0.4 

UL&DL  40 1 1 2 40 20 20 

Combined 

ATS&AOC  

UL  40 3 20 20 40 20 30 

DL  30 10 30 30 30 20 30 

UL&DL  40 10 30 30 40 20 40 
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Table 4-3 Traffic Estimates (kbps) – Single Commercial Large Aircraft, 2060 Timeframe 

Estimated traffic - 2060 

(Data Traffic in kbps) 

APT SV TMA SV ENR 

SV 

ORP 

SV 

AOA 

Dep Arv Dep Arv 

ATS  

UL  45 10 45 45 45 35 45 

DL  65 25 65 65 65 45 65 

UL&DL  65 25 65 65 65 45 65 

AOC  

UL  85 5 5 5 85 45 45 

DL  5 5 5 5 5 5 5 

UL&DL  85 5 5 5 85 45 45 

AAC  

UL  85 5 5 5 85 45 45 

DL  5 5 5 5 5 5 5 

UL&DL  85 5 5 5 85 45 45 

APC  

UL  1,000 1,000 1,000 1,000 1,000 1,000 1,000 

DL  5,000 5,000 5,000 5,000 5,000 5,000 5,000 

UL&DL  5,000 5,000 5,000 5,000 5,000 5,000 5,000 

SWIM  

UL  1,000 1,000 1,000 1,000 1,000 1,000 0 

DL  1,000 1,000 1,000 1,000 1,000 1,000 0 

UL&DL  2,000 2,000 2,000 2,000 2,000 2,000 0 

 

 

4.1.3.2. MICROJETS 

Microjets are an emerging population of commercial aircraft for small distances, flying with 

reduced flight plan. They are expected to represent up to 40% of daily traffic (REF-COCR) and 

will impact the aeronautical landscape. They have the same needs (for ATS/AOC/AAC/SWIM 

communications) as large commercial aircraft with less demanding in terms of APC 

communications. The estimated data traffic requirement for APC service per passenger is 2 Mbps 

DL and 1Mbps UL, based on the applications like fax, voice, internet, video. With an assumption 

of 12 passengers per microjet worst case and with 50% of the passengers simultaneously using 

communications, the total APC data requirement is 12 Mbps DL and 6 Mbps UL. Table 4-4, which 

is derived from Table 4-3, provides the estimated 2060 traffic for a single microjet. 
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Estimated traffic - 2060 

(Data Traffic in kbps) 

APT SV TMA SV ENR 

SV 

ORP 

SV 
AOA 

Dep Arv Dep Arv 

ATS 

UL  45 10 45 45 45 35 45 

DL  65 25 65 65 65 45 65 

UL&DL  65 25 65 65 65 45 65 

AOC 

UL  85 5 5 5 85 45 45 

DL  5 5 5 5 5 5 5 

UL&DL  85 5 5 5 85 45 45 

AAC 

UL  85 5 5 5 85 45 45 

DL  5 5 5 5 5 5 5 

UL&DL  85 5 5 5 85 45 45 

APC 
UL  6,000 6,000 6,000 6,000 6,000 6,000 6,000 

DL  12,000 12,000 12,000 12,000 12,000 12,000 12,000 

 

SWIM 

UL  1,000 1,000 1,000 1,000 1,000 1,000 0 

DL  1,000 1,000 1,000 1,000 1,000 1,000 0 

Total 

UL  7,500 7,500 7,500 7,500 7,500 7,500 6,500 

DL  13,500 13,500 13,500 13,500 13,500 13,500 12,500 

 

4.1.3.3. BUSINESS AND GENERAL AVIATION AIRCRAFT 

Business and General Aviation (BGA) aircraft are considered as non-commercial aircraft and 

include training flights, business jets, rescue flights and government-operated aircraft. BGA 

presents a higher increase in aircraft traffic than the rest of the aircraft types and is expected to 

grow about 0.5% per year in number from 220,670 aircraft in 2012 to 280,359 aircraft in 2060 

[REF- FAA2033]. ATS communications for BGA are supposed to be the same as for any other 

aircraft. There will be less need for AOC as these are not commercial airlines with needs to 

optimize the fleet and flight schedules. Therefore, 50% of AOC traffic of large aircraft is assumed 

for BGA.  On the other hand, there is a high demand for APC services. The estimated APC traffic 

requirement per passenger is 5 Mbps DL and 2 Mbps UL considering applications like telephony, 

VPN, video conferencing, etc., with high capacity needs during the entire flight.  With an 

assumption of up to 10 passengers per BGA flight on average and with 90% of the passengers 

simultaneously using communications, the estimated data traffic requirement for APC service is 

45 Mbps DL and 18 Mbps UL. Table 4-5 provides the estimated 2060 traffic for a single BGA 

aircraft derived using the data traffic requirements for large aircraft (see Table 4-3) to arrive at the 

traffic requirement for ATS, AOC, AAC, APC and SWIM, services. 

Table 4-4 Traffic Estimates (kbps) – Single Microjet, 2060 Timeframe 
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Table 4-5 Traffic Estimates (kbps) – Single BGA Aircraft, 2060 Timeframe 

Estimated traffic - 2060 

(Data Traffic in kbps) 

APT SV TMA SV ENR 

SV 

ORP 

SV 
AOA 

Dep Arv Dep Arv 

ATS 

UL  45 10 45 45 45 35 45 

DL  65 25 65 65 65 45 65 

UL&DL  65 25 65 65 65 45 65 

AOC 

UL  45 5 5 5 45 25 25 

DL  5 5 5 5 5 5 5 

UL&DL  45 5 5 5 45 25 25 

AAC 

UL  45 5 5 5 45 25 25 

DL  5 5 5 5 5 5 5 

UL&DL  45 5 5 5 45 25 25 

APC 
UL  18,000 18,000 18,000 18,000 18,000 18,000 18,000 

DL  45,000 45,000 45,000 45,000 45,000 45,000 45,000 

SWIM 
UL  1,000 1,000 1,000 1,000 1,000 1,000 0 

DL  1,000 1,000 1,000 1,000 1,000 1,000 0 

Total 
UL  20,000 20,000 20,000 20,000 20,000 20,000 19,000 

DL  46,500 46,500 46,500 46,500 46,500 46,500 4,5500 

 

 

4.1.3.4. UNMANNED AIRCRAFT SYSTEMS 

The Unmanned Aircraft System (UAS) are emerging as a new aircraft type, with a UAS flights 

expected to outnumber passenger flights in the year 2060 timeframe. Currently most UAS 

operations around the world are for military purposes. It is anticipated that new standards, 

regulations and procedures will be formulated to govern the safe integration of civil-use UAS into 

civilian air space for civil applications ranging from surveillance, scientific data gathering or 

delivery of services (crop dusting, parcel delivery, etc).  

The safe operation of UAS relies on different communications, which represents a critical step in 

enabling UAS operations in non-segregated airspaces. The required radio communications for safe 

operation of UAS as illustrated in Figure 4-4 are: 

 Radio communications for UAS command and control between the Unmanned Aircraft 

Control Station (UACS) and the UAS (tele-commands from UACS to the UAS, and 

telemetry, such as flight status, from the UAS to the UACS). 

 Radio communications for air traffic services (voice and data) relay between ATC and the 

UACS via the UAS. 
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 Radio communications in support of “sense and avoid”, between the UACS and the UAS 

for ensuring separation from nearby aircraft, terrain and obstacles (e.g. weather data video 

streams from UAS to UACS). 

 Radio communications in support for navigation aids (ADS-B, etc). 

 

 

Figure 4-4 UAS Services 

The main challenge is integration of Control and Non-Payload Communication (CNPC) and ATS 

communications to ensure safe and efficient operation of UAS in the civilian air space with no 

impact on ATS communication, system delays, capacity, safety, and security of passenger-carrying 

aircraft.  For UAS systems, the estimated non-payload CNPC communications throughput for 

2030 timeframe is provided in the task-2 report [REF-TASK2RPT], and is provided in Table 4-6. 

To determine the traffic requirements for the 2060 timeframe, the ATC, Sense and Avoid, 

Command/control traffic requirements are derived using Table 4-6 considering 2.5% growth every 

year. The AAC and SWIM traffic requirements for UAS are considered to be similar to that of the 

commercial aircraft. However the AAC and SWIM communications are expected to be exchanged 

through a ground link between UAS control station and ATC controller. Hence, over-the-air traffic 

is zero for these services. The use of UAS in commercial applications is expected to expand in a 

number of areas. Some of the expected civil and commercial applications of UAS include aerial 

video surveillance, commercial photography, news/sporting event coverage, infrastructure 

monitoring, including power facilities, shipping ports, pipelines, etc. The estimated APC traffic 

requirement for these services is up to 5 Mbps DL. The various data traffic estimates for the 2060 

timeframe are provided in Table 4-7. 
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Table 4-6 Worst Case Non-payload Comm. Throughput for UAS, 2030 Timeframe 

Worst Case Non-payload Communications Throughput (bits/sec) for the Year 2030 

Command and Control ATS Relay Send and Avoid 

Control NavAids 

ATS 

Voice 

Relay 

ATS 

Data 

Relay 

Target 

Tracks 

Airborne 

Weather 

Radar 

Video 

UL DL UL DL  UL DL DL 

4,606 7,615 669 1,140 4,800 113 173 9,170 27, 771 270,000 

 

 

Table 4-7 Traffic Estimates (kbps) – Single UAS, 2060 timeframe 

Worst Case Non-payload Communications Throughput (kbps) for the Year 2060 

(extrapolated  2.5% growth Year-over-Year, YOY) 

Command and 

Control 
ATS Relay AAC APC 

SWI

M 
Sense and Avoid 

Control NavAids 

ATS 

Voice 

Relay 

ATS Data 

Relay 
   

Target 

Tracks 

Airborne 

Weather 

Radar 

Video 

UL DL UL DL  UL DL 
U

L 

D

L 

U

L 

D 

L 

U

L 

D

L 
DL 

10 15 5 5 10 5 5 0 0 0 5,000 0 0 20 60 570 

 

4.1.3.5. MILITARY AIRCRAFT 

Military aircraft (when flying under civil rules) shall be considered as any other BGA aircraft to 

exchange data such as radar pictures, flight plan and direct voice communications. However the 

traffic requirement for military aircraft is not considered in this study because sufficient 

information is not available at this point of time about military aircraft traffic and their data 

requirement. 

 

4.1.3.6. DATA FLOW SUMMARY 

This section is a summary of the data traffic estimates.  The data traffic requirements for safety 

critical traffic (ATS and AOC services) is approximately 300Kbps and contributes only up to 1% 

of the overall traffic requirement. High traffic requirement is expected in APC services to cater for 

various passenger needs. The various traffic requirements for different kinds of aircraft are 

summarized in the Table 4-8. Per aircraft throughput requirement is up to 100Mbps for large 

aircraft, 20Mbps for microjets, 70Mbps for BGA and 6Mbps for UAS (irrespective of flight phase 

and airspace domain). 

 

 

 

 

 

 

 

 

NASA/CR—2015-218842 24



 

Table 4-8 Data Traffic Estimates (kbps) – Summary, 2060 timeframe 

Estimated Traffic 

2060 in kbps 
ATS AOC AAC SWIM APC Total 

Commercial 

AC (large) 

UL 45 85 85 1,000 30,000 31,500 

DL 65 5 5 1,000 60,000 61,500 

UL&DL 100 100 100 2,000 90,000 100,000 

Microjet 

UL 45 85 85 1,000 6,000 75,00 

DL 65 5 5 1,000 12,000 13,500 

UL&DL 100 100 100 2,000 18,000 20,000 

BGA 

UL 45 45 45 1,000 20,000 21,500 

DL 65 5 5 1,000 45,000 46,500 

UL&DL 100 100 100 2,000 65,000 70,000 

UAS 

UL 10 10 0 0 0 100 

DL 10 700 0 0 5,000 6,000 

UL&DL 20 700 0 0 5,000 6,000 

 

 

 

 

4.2. SIMULATION MODELING ANALYSIS 

A simulation tool is developed to assess the operational performance of the aeronautical network 

for the future NAS environment through the year 2060. The three network architecture options 

identified in the Architecture Analysis report [REF-TASK3RPT] are considered for simulation 

modeling. For each network topology considered, an appropriate model is created, by carrying out 

network planning based on the estimated air traffic and data traffic requirements.  The simulation 

model reflects the aeronautical environment as realistically as possible. This includes realistic 

flight patterns for the air traffic, a realistic model of the data traffic that is transmitted over the 

network, and a realistic representation of the ground network, including base stations for the 

air/ground links. Since the scenario considered is targeting the 2060 timeframe, a number of 

assumptions have to be made regarding, for example, the increase in air traffic during the 

upcoming years, the deployment of future wireless access technologies, the possibility of different 

kinds of aircraft flying in the same airspace with different flight phases and the amount of data 

traffic that will be generated in the network.  

Security functionalities are not included in the definition of simulation scenarios, since the ability 

to cope with security threats and attacks cannot be verified by means of simulations. However, the 

security assessment for different architecture options identified in Architecture Analysis report 

[REF-TASK3RPT] is conducted under a separate subtask as reported in section 5.  
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4.2.1. Simulation Concept and Objectives 

The overall concept of the simulation model is shown in Figure 4-5. The tool provides the 

operational performance reports for the identified three network architectures, with data traffic 

estimates and air traffic estimates input to the model. The operational scenarios provide a basis for 

estimating the data traffic needed for a single aircraft. These scenarios include all operations 

related to different kinds of services and for different kinds of aircraft envisaged through 2060. 

Another input for the tool, the air traffic model, is provided in section 4.2.3. 

 

 

Figure 4-5 Simulation Model 

 

4.2.2. Scope of Simulation  

The scope of the simulation work is limited to the following: 

 Air traffic across the Continental United States (CONUS) will be simulated.  

 The best alternative technologies and architectures that were selected in the Architecture 

Analysis report [REF-TASK3RPT] are modeled for analysis.  

 The simulation is limited to the macro level traffic generation based on the rates as 

estimated in section 4.1 on operational scenarios. The simulation is not intended to create 

actual message transfers across the layers of protocols and end applications.  

 The ground network and ground systems are considered as a single cloud entity that sinks 

the downlink data traffic. Constant delays are accounted in the delay model for these 

entities. Internal network elements are not simulated. 
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4.2.3. Air Traffic Model 

Figure 4-6 shows the steps in calculating aircraft traffic.  The air traffic forecasting model requires 

information about current air traffic across the CONUS.  Honeywell Global Data Center (GDC) 

has the capability to monitor air traffic across the globe in real time.  The current air traffic 

information called Aircraft Situation Display to Industry (ASDI) is provided by the Federal 

Aviation Administration (FAA) to industry.  The data obtained from the GDC database includes 

the location, altitude, airspeed, destination, estimated time-of-arrival and designated identifier of 

air carrier. The air traffic considered in the simulation model is based on the air traffic records on 

23rd January 2014. Figure 4-7 (a) shows the sample air traffic ASDI table. 

 

 

Figure 4-6 Aircraft Traffic Calculation 

 

4.2.3.1. EXTRAPOLATION OF AIR TRAFFIC 

The COCR document [REF-COCR] predicts a growth of 2.5% increase in the Peak Instantaneous 

Aircraft Count for every year. However a more recent report from the FAA [REF-FAA2033] 

predicts the U.S. mainline air carrier passenger jet fleet will increase at 0.5% for every year over 

the period 2013-2033. An average growth of 0.5% YOY is applied over the captured air traffic 

information to arrive at the air traffic estimates in 2060. New rows are added in the current ASDI 

table assigning arbitrary call signs to the newly added aircraft, as shown in the Figure 4-7 (b). The 

number of newly added rows is based on the air traffic growth considered and is configurable by 

the simulation user from the Graphical User Interface (GUI) front end. 
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   (a)                                   (b) 

Figure 4-7 Current Schedule Vs Extrapolated Schedule with Growth  

 

4.2.3.2. UAS TRAFFIC ADDITION IN SIMULATION MODEL 

The future use of UAS is expected to become more prominent in all the three major market 

segments: military, civilian and commercial. However, the current ASDI data does not have UAS 

traffic information. Hence, UAS traffic is added to the simulation model over the entire CONUS 

region, based on the human population. The urban areas and major cities in the CONUS (up to 

250) are ranked according to population.  The most populous city is assigned with a configurable 

UAS aircraft and the UAS in the remaining cities are derived based on the UAS in the most 

populous city, as shown in Figure 4-8. 
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Figure 4-8 UAS Traffic Estimate 

 

4.2.4. Data Traffic Model 

The data traffic estimates are provided in section 4.1 for the different categories of services that 

will be supported by the network: ATS, AOC, AAC, APC and SWIM. For ATS and AOC services, 
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the estimate is based on those services that are defined in the COCR. The AAC services estimate 

is assumed to be equal to that of the AOC estimate. For APC services, the traffic that is generated 

by a single passenger is characterized statistically. This traffic per passenger is then scaled 

according to the number of passengers in different kinds of aircraft in order to estimate the total 

amount of APC traffic that is generated on board an aircraft. Table 4-9 is based on the data traffic 

estimates arrived in the section 4.1.3.6  and is used to generate the data traffic in the network 

simulation.   

Table 4-9 Data Traffic Estimates (kbps) – 2060 Timeframe 

Estimated 

Traffic 2060 

in kbps 

ATC AOC AAC SWIM APC 

ATR  100 100 100 2,000 90,000 

Microjet 100 100 100 2,000 18,000 

BGA 100 100 100 2,000 65,000 

UAV  100 700 0 0 5,000 

 

 

4.2.5. Queuing Model 

The data traffic packets from each of the aircraft within the service volume of the access network 

tower are divided into 5 priority classes as ATC, AOC, AAC, SWIM, and APC.   ATC is Class 1 

highest priority, AOC is class 2 second highest priority, up to APC as class 5, which is the lowest 

priority class. Different classes of traffic have different Quality of Service (QOS) requirements. 

Hence the aircraft network is considered as an M/M/1 system with separate queues for packets 

with different priority classes, as shown in Figure 4-9. 
 

In this Priority Queue model, the packets of lower priority start transmission only if no higher 

priority packet is waiting.  The service rate of the channel ‘µ’ is assumed to be the same for 

different classes. With the arrival rates of different classes given as λ1, . . . λk, the mean results for 

latency in the queue , system latency and loss probability are derived. 
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Figure 4-9 Priority Queuing 



 

The average queuing delay of the kth class is given by Equation 4-1 [REF- QUEUES]. 

 

Wk
q = ∑k

j=1(ρj/ µj) / ( (1- ρ1 – ρ2 – ρ3 – …– ρk)* (1- ρ1 – ρ2 – ρ3 – …– ρk-1) ) 

Equation 4-1 

where ρk  = λk / µk ; is the fraction of time allocated by server to class k. 

 

The system latency for a given packet is defined as the total time period a tagged packet spends 

in the system, i.e., the number of time slots between the end of the packet’s arrival slot and the 

end of its departure slot. The average system latency of the kth class is given by Equation 4-2. 

 

Sk = Wk
q + 1/ µk         Equation 4-2 

 

 

 

Table 4-10 gives the theoretical latency calculations for different traffic classes over a single cell 

channel.  
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Table 4-10 Priority Queue Latency Example 

 

Incoming rate ATC AOC AAC SWIM APC Total 

λ per ATR AC (Kbps) 100 100 100 2,000 90,000  

λ per BGA AC (Kbps) 100 100 100 2,000 65,000  

λ per MJET AC (Kbps) 100 200 200 2,000 1,8000  

λ per UAV AC (Kbps) 100 700 0 0 5,000  

λ per CARGO AC (Kbps) 100 100 100 2,000 0  

Total  λ actual (Kbps) 1,000 1,000 1,000 20,000 900,000 923,000 

Available Ch Capacity 

(Kbps) 
1,000,000 999,000 99,8000 997,000 977,000  

Max. Ch Capacity K 

(packets/sec) 
1,250,000 1,248,750 1,247,500 1,246,250 1,221,250  

λ packet/sec 1,250 1,250 1,250 25,000 1,125,000 1,153,750 

µpacket/sec 1,262,626.26 1,262,626.26 1,262,626.26 1,262,626.263 1,262,626.263 1,262,626 

ρ 0.00099 0.00099 0.00099 0.0198 0.891 0.91377 

wQ (micro sec) 0.000785 0.001573 0.002364 0.018509 8.588294  

ws(micro sec) 0.792785 0.793573 0.794364 0.810509 9.380294  

ws (micro sec)  
percentile 

90 1.826 1.828 1.829 1.867 21.603  

95 2.375 2.378 2.380 2.428 28.103  
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4.2.5.1. PREEMPTION SCENARIO 

Figure 4-10 shows how the different classes of packets are prioritized and sent over the channel.  

The highest priority packets (darker shade, red in color, no diagonal lines, as shown in Figure 

4-10) preempt the lower priority packets ( lighter shade, gold, no diagonal lines, and darker 

shade, green in color, with diagonal lines as shown in the figure) and are transmitted prior to the 

lower priority packets. 

 

 

Figure 4-10 Packet Preemption 

 

4.2.6. Network Models 

The network modeling and simulation is carried out for the networks and combination of networks 

that were identified in the NASA CDTI Project Phase 1 reports. Air/-Ground Network models are 

developed based on the selected technologies and platforms such as Cellular ground towers, HAP 

and GEO satellites for the operational assessment of future NAS environment.  Air-to-Air Network 

model is developed and load analysis is carried out for the NAS environment considering VHF, 

FSO and L-band for the air-to-air communication link. 

 

4.2.6.1. GROUND-BASED CELLULAR NETWORK MODEL AND SIMULATION 

In the cellular network architecture it is assumed that the ground base stations distributed across 

the entire CONUS region provide connectivity to the ground network for all the aircraft flying 

over the CONUS region.  The coverage of the CONUS region by cellular towers, each tower 

represented as covering one hexagonal grid area is shown in the Figure 4-11. 

 

C
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ltime

t0 t1         t2          t3      t4       t5

NPDU :  Network level Protocol Data 

Unit (PDU) comprises multiple TU

TU : Transmission Unit at the PHY 

level. Smallest data unit  sent without            

Preemption.

NPDUs preempted at TU level

TU not preempted during 

transmission 
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Figure 4-11 Hexagonal Grid Cellular Coverage 

 
 

4.2.6.1.1. Single Cell Service Volume 

Figure 4-12 shows the service volume for a single cell tower with hexagonal grid coverage. The 

aircraft flying over a particular hexagonal grid is assumed to be serviced by the tower in that grid. 

 

Figure 4-12 Single Cell Service Volume 

 

4.2.6.1.2. Cellular Tower Simulation Model 

 shows the network model considered for communication 

performance analysis using air/round cellular data links. It is broadly divided into three networks 

viz. airborne network (NW), commercial (communication service provider) network and 

aeronautical ground network. The airborne network comprises of the aircraft that are 

communicating with their respective cellular base station towers for both the cabin and cockpit 

services through the same data link. For a single cellular ground tower, the airborne network 

service coverage range is assumed to be approximately 100 Nm. All the aircraft within the service 

coverage of the tower communicate directly with the tower, which offers a total bandwidth up to 

1Gbps.   

link 

link 
link 
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Figure 4-13 Cellular Network Model 

 

The commercial network comprises of different network elements like base station controller, 

cellular gateways, routers and other network elements, etc., that provide communication between 

aircraft and the core aeronautical ground network. The commercial network could be a shared 

network, the infrastructure and the spectrum of which could be shared to offer the different services 

(aeronautical specific and other mobile communications services).  However, the cellular network 

service provider may lease dedicated spectrum carriers for aeronautical specific services, to satisfy 

the specifications of Required Communications Performance needed for NextGen ATM 

applications. The mobility framework within the commercial cellular network is expected to 

seamlessly support both vertical and horizontal mobility so that end-to-end communications are 

not interrupted by the network transitions. 

 

The aeronautical ground network in the model represents the interconnection of various service 

providers such as Flight Support Service (FSS) centers, Original Equipment Manufacturer (OEM) 

support centers, weather information centers, ATC centers, airline operations centers, etc. ANSP 

gateways are interconnected in order to share information across ANSP networks. The aeronautical 

ground network is a common requirement for all of the technology candidates that were considered 

in the operation view analysis.  Hence the entire ground network is treated as a single cloud for 

the purpose of this analysis and the details are not covered in this report.  

 

 

4.2.6.1.3. Simulation Assumptions  

The following are the assumptions made with respect to the cellular network model simulation. 

 Pre-provisioned connections are assumed between the aircraft and the cellular tower.  

Access NW (Cellular) 

BSC

Aeronautical 
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 Media Access Control (MAC) Layer processing latency at aircraft and service tower is 

assumed to be 1 ms. 

 The signal propagation latency between the aircraft and the tower is up to 0.6 ms, 

considering the aircraft flying at a maximum distance of 200Km from the service tower. 

 The commercial network beyond the base station may introduce latency up to 5 ms in 

case of fixed leased bandwidth allocation and latency up to 20 ms in case of dynamic 

bandwidth for the aircraft services. High priority traffic (ATC, AOC, AAC, and SWIM) 

is assumed to have fixed bandwidth allocation with 5 ms latency and lower priority 

APC traffic type to have dynamic bandwidth allocations with up to 20 ms latency. 

 Cellular link channel throughput assumed is 1 Gbps  

 

4.2.6.1.4. Simulation Model 

The simulation model as shown in the Figure 4-14 consists of the following modules 

 Aircraft Data Traffic Generator 

 Data Traffic Scheduler  

 Performance Report Generator 

 

 

 

4.2.6.1.4.1. Aircraft Data Traffic Generator 

This module generates all types of traffic namely, ATC, AOC, AAC SWIM and APC. Per-aircraft 

traffic considered in the simulation is:  

 ATC - 100 Kbps, with packet size of 100 bytes 
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Figure 4-14 Cellular Single Tower Simulation Model 



 

 AOC- 100 Kbps, with packet size of 500 bytes 

 AAC- 100 Kbps, with packet size of 500 bytes 

 SWIM- 2 Mbps, with packet size of 2000 bytes 

 APC- 90 Mbps, with packet size of 2000 bytes 

 

The packets are generated for different classes of traffic based on the estimated rates and sizes. 

These packets from all the aircraft are time stamped and channelized into five First In, First Out 

(FIFO) buffers with ATC traffic FIFO having highest schedule priority and APC traffic FIFO 

having lowest schedule priority. Packets are dropped if the respective FIFO is full. 

 

This module also maintains the various statistics viz. number of packets generated, number of 

packets dropped and the number of packets which are scheduled for transmission.  

 

4.2.6.1.4.2. Data Traffic Scheduler  

The data traffic scheduler module simulates the packet transmissions between the aircraft and the 

tower based on priority queuing scheme. As shown in the Figure 4-15, at a given scheduler time 

instant, the highest priority packets are transmitted first and lower priority packets are scheduled 

only when there are no higher priority packets to be transmitted.  One Transmission Unit (TU) is 

the smallest data unit at physical layer level that is sent without preemption and scheduler Time 

Sample (TS) is the time taken to transmit one TU.  

 

 

Figure 4-15 Packet Scheduling Scheme 

 

 

 

 

 

 

An example calculation is provided below. 

Example: 

Output Channel Throughput  = 1Gbps 

TU size   = 100 bytes 

TS = (100 x 8)/ 1e9 sec  = 0.8 µsec 

 

Scheduler  Time Sample (TS)  

NPDU 
Transmission 
Unit 
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AOC data rate   = 100 kbps per aircraft 

AOC packet Size   = 500 bytes. 

AOC arrival interval   = (8 x 500)/(100 x 1e3) 

= 40 ms 

= 50,000 TS per aircraft 

 

Hence on an average, for every 50,000 TS one AOC packet will be sent and one 

AOC NPDU contains 5 TUs. 

 

Figure 4-16 gives the flowchart of the Data Traffic Scheduler module showing logic and 

processing for ATC, AOC and AAC traffic. Processing for SWIM and APC traffic (not shown) 

are similar, in priority order.  The module checks the availability of packets in different FIFOs 

based on the FIFO priority and schedules a packet transmission. The packet is time stamped again 

at the time of transmission to calculate the queue latency for the packet. 

 

 

4.2.6.1.5. Performance Report Generator 

This module generates reports of various network performance parameters viz. number of packets 

transmitted, queue latency for each packet, mean latency, network utilization for all classes of 

traffic simulated in the network model. The following subsections provide the network 

performance statistics for a single cell domain. 

 

4.2.6.1.5.1. Latency 

The overall latency of the cellular network is the summation of various delay components like 

MAC Layer Delay (at aircraft), propagation delay between the aircraft and the cellular tower, 
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   Figure 4-16 Flowchart of Data Traffic Scheduler Module 



 

queue delay and the delay inherent in the network beyond the base station (BS) delay (access 

network).The queue delays involved in the transmission of packets with different traffic classes on 

the link between the aircraft in the cell and the cellular base station are simulated. The trend in the 

queue latency experienced by various traffic classes as the aircraft count increases in the single 

cell domain is shown the Figure 4-17. 

 

  
  

  
 

 

Figure 4-17 Queue Latency for Cellular Link 

The overall latency of the cellular network with increasing number of aircraft in a given base 

station coverage for various traffic types is shown in Figure 4-18. There is no significant 

degradation observed in latency for supporting aircraft traffic up to 400 aircraft per cell (AC/cell).  

Beyond 400 AC/cell, there is no bandwidth available to transmit APC traffic. Hence beyond 400 

AC/cell, the latency of APC traffic becomes noticeably greater but the latencies of higher priority 

traffic classes do not increase significantly. 
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Figure 4-18 Mean Latency in Cellular Network 

 

The measure of the various delay components in the overall latency for transmission of packets in 

the cellular network in the scenario of 200 AC/cell is shown in Figure 4-19. 
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Figure 4-19 Latency Components in Cellular Network, 200 AC/Cell 

 

4.2.6.1.5.2. Channel Bandwidth Utilization  

Figure 4-20 gives the channel bandwidth utilization for different traffic classes on the link between 

the aircraft in the cell and the cellular base station for different aircraft density levels in the cell. 

As depicted in the Figure 4-20, in low dense aircraft conditions, non-safety traffic classes (AAC 

and APC) and SWIM will get channel share along with the safety critical traffic (ATC and AOC). 

However in high dense aircraft conditions, major portion of the link is used for the safety critical 

traffic and the non-safety traffic class may experience higher packet loss and latency. 
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Figure 4-20 Channel Bandwidth Utilization of Cellular Link 

 

4.2.6.1.5.3. Packet Loss (Theoretical analysis) 

Figure 4-21 gives the packet loss percentage for different traffic classes on the aircraft-to-ground 

base station (AC ↔ BS) link for different aircraft density levels in the tower coverage area. In the 

simulation implementation, the packet loss was arrived considering limited buffer size in the 

system. The packet loss shall differ from one system to other system based on the FIFO size 

considered for each traffic type. Hence in theoretical analysis, no limitation in queue size is 

considered and, packet loss estimates loss due to channel unavailability is provided as shown in 

Figure 4-21.  The packet loss is given by Equation 4-3.  

 

Packet Loss % = (Arrival rate – available Channel Capacity)*100/ Arrival rate     Equation 4-3 
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Figure 4-21 Packet Loss on Cellular Link 

 

4.2.6.1.6. Observations and Conclusions 

The following are observations and conclusions based on cellular network analysis and 

simulation, assuming cellular tower channel link capacity up to 1 Gbps and the tower coverage 

range up to 200Km. 

 No significant degradation observed in latency for supporting aircraft traffic up to 400 

AC/Cell. The 95th percentile latency with up to 400 AC/Cell is ATC: 22.96 ms;  AOC: 

22.98 ms;  AAC: 22.981ms;  SWIM: 23.3 ms; APC: 97.8 ms 

 For 300 to 400 AC/Cell, the network should be able to support the offered load up to 

SWIM Services. Beyond 400 aircraft, no bandwidth will be available for low priority 

APC traffic.  

 No Loss of safety critical traffic in the network with up to 400 AC/Cell.   

 However, significant APC traffic loss will be experienced beyond 50 AC/Cell. 

 

With adequate placement of cellular towers across the whole COUNUS region, it may be 

possible for aircraft to manage the entire safety critical air/ground communication. 

 

4.2.6.2. HAP-BASED CELLULAR NETWORK MODEL AND SIMULATION 

In the HAP network architecture it is assumed that multiple airborne HAP platforms optimally 

placed over the CONUS region together provide coverage for the aircraft flying over the whole 

CONUS. Each HAP platform relays traffic from the aircraft flying in its coverage region to the 

ground gateway station, which in turn carries the traffic to the backend aeronautical network, as 
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shown in Figure 4-22. The HAP platforms may also be interconnected by FSO links to offer 

uninterrupted communication to aircraft. In the simulation it is assumed that the each HAP 

platform can communicate directly to one of the ground gateway station. 

  

Figure 4-22 Integrated terrestrial-HAP Network 

 

4.2.6.2.1. Single HAP Platform service volume 

The coverage of an airborne HAP platform is represented as covering one hexagonal grid area as 

shown in Figure 4-23. 
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Figure 4-23 HAP Cell Service Volume 



 

 

The maximum range for a HAP node can be calculated using Equation 4-4. 

 

𝐷 = √(𝑅 + 𝐻)2 − 𝑅2)                                       Equation 4-4 

Where  

  D is the maximum range of a HAP node 

  R is the radius of the earth and 

  H is the altitude of the HAP  

 

Considering a HAP altitude between 17 and 22 km, the maximum range of the HAP will be roughly 

between 465 and 530 km. With the assumption that a single HAP providing service up to 30,000 

square miles, around 125 HAP platforms will provide coverage across the entire CONUS region.  

 

4.2.6.2.2. HAP Platform Simulation Model 

Figure 4-24 shows the network model considered for communication performance analysis using 

a HAP platform.  For a single HAP, the airborne network service coverage range is assumed to be 

470Km approximately. All the aircraft falling in the service coverage of the HAP communicate 

directly with the HAP which offers a total bandwidth up to 1Gbps, similar to Cellular link 

bandwidth.  The data link for the communication between the HAP and ground gateway (GW) 

could be either a cellular link with up to 1Gbps bandwidth or could be a FSO link with up to 

10Gbps bandwidth. The rest of the ground network beyond gateway i.e. the access network and 

the aeronautical ground network is considered to be same as that in the Cellular network simulation 

model. 

   
 

Figure 4-24 HAP Network Model 

 

Access NW 
Aeronautical 

Ground 

Network 

(Core NW)

 

 

 

ATC

Airline

OEM

FSS

Commercial NetworkAirborne network

Range  ~470 Km

Aero specific

Traffic pattern

MS

Delay

HAP proc 

Delay

Aeronautical 

Ground Network

RCP Scope

Prop, 

Delay

Beyond 

HAP GW

Delay

5 ms (f ixed BW) 

20 ms (dynamic BW)
1.6 ms

Core network  

Delay

1 ms
1 ms

Q

HAP to 

GW

Prop, 

Delay

0.06 ms

Q

Analysis scope

W1

Gateway

W2

NASA/CR—2015-218842 45



 

4.2.6.2.3. Simulation Assumptions  

The following are the assumptions made with respect to HAP network model simulation. 

 Pre-provisioned connections are assumed between the aircraft and the HAP.  

 MAC Layer processing latency at aircraft and the HAP is assumed to be 1 ms 

 The signal propagation latency between the aircraft and the HAP is up to 1.6 ms, 

considering the aircraft flying at a maximum distance of 470Km from the HAP. 

 The commercial network beyond the base station may introduce latency up to 5 ms in 

case of fixed leased bandwidth allocation and latency up to 20 ms in case of dynamic 

bandwidth for the aircraft services. High priority traffic (ATC, AOC, AAC, and SWIM) 

is assumed to have fixed bandwidth allocation with 5 ms latency and lower priority 

APC traffic type to have dynamic bandwidth allocations with up to 20 ms latency. 

 Aircraft-to-HAP (Aircraft ↔ HAP) link channel throughput assumed is 1 Gbps  

 The feeder link between the HAP and ground gateway could be a cellular data link with 

1Gbps channel throughput or it could be an FSO link with up to 10 Gbps channel 

throughput. Simulations are carried out for both scenarios. 

 

4.2.6.2.4. Simulation Model 

The simulation model as shown in the Figure 4-25 consists of the following modules 

 Aircraft Data Traffic Generator 

 Aircraft Data Traffic Scheduler  

 HAP Data Traffic Scheduler  

 Performance Report Generator 
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Figure 4-25 Single HAP Simulation Model 

 

4.2.6.2.4.1. Aircraft Data Traffic Generator 

The Aircraft Data Generator is the same as the one used for ground-based cellular network.  

Refer to section 4.2.6.1.4.1 

 

4.2.6.2.4.2. Aircraft Data Traffic Scheduler  

The Aircraft Data Traffic Scheduler is the same as the one used for ground-based cellular 

network.  Refer to section 4.2.6.1.4.2 

 

4.2.6.2.4.3. HAP Data Traffic Scheduler  

The HAP Data Traffic Scheduler module simulates the relay of the aircraft data traffic to the 

ground gateway. The HAP data traffic scheduler priority scheme between HAP platform and the 

ground gateway is similar to that in the aircraft traffic scheduler module. The relay link between 

the HAP platform and the ground gateway could be a cellular data link of 1 Gbps bandwidth or it 

could be a FSO data link of 10 Gbps. Hence the performance analysis is carried out for these two 

feeder link cases. 
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4.2.6.2.5. Performance Report Generator 

The performance report generator provides the link statistics for both links (Aircraft ↔ HAP link 

and HAP-to-Ground Gateway, HAP ↔ Ground Gateway, link) involved in the transmission of a 

packet from an aircraft to the ground gateway via the HAP platform. 

 

4.2.6.2.5.1. Latency 

The overall latency of the HAP network is the summation of various delay components like MAC 

layer delay (at aircraft), Aircraft Data Traffic Scheduler delay , propagation delay between the 

aircraft and the HAP, MAC layer delay (at HAP),  propagation delay between the HAP and the 

ground gateway and the delay inherent in the network beyond the gateway (Access NW). The 

queue delay involved in transmission of packets on Aircraft ↔ HAP link and HAP ↔ Ground 

Gateway link is simulated. The trend in the queue latency experienced by various traffic classes as 

the aircraft count increases in the HAP coverage domain on the two links (Aircraft ↔ HAP link, 

HAP ↔ Ground Gateway link) is shown in the Figure 4-26 and Figure 4-27. 

 

Figure 4-26 Queue Latency, Feeder Cellular Link 
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Figure 4-27 Queue Latency, Feeder FSO Link 

 

The overall latency with increasing number of aircraft in a given HAP coverage for various 

traffic types is shown in Figure 4-28 and Figure 4-29. 
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Figure 4-28 Mean Latency, Feeder Cellular Link 

 

 

Figure 4-29 Mean Latency, Feeder FSO Link 

 

The measure of the various delay components in transmission of packets on the Aircraft ↔ HAP 

link and on the HAP ↔ Ground Gateway link for the scenario of 400 AC/ HAP cell is shown in 

the Figure 4-30. There is no significant degradation observed in latency for supporting aircraft 

traffic up to 400 AC per HAP Cell. Beyond 400 AC/cell, there is no bandwidth available to 

transmit APC traffic. Hence, beyond 400 AC/cell, the latency of APC traffic becomes noticeably 

greater but the latencies of higher priority traffic classes do not increase significantly. 
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(a) With HAP ↔ Ground Gateway Cellular Link   (b) With HAP ↔ Ground Gateway Feeder FSO Link 

Figure 4-30 Latency Components, 400AC/HAP-Cell 

 

 

4.2.6.2.5.2. Channel Bandwidth Utilization  

Figure 4-31  (a), (b), (c) gives the Channel Bandwidth utilization for different traffic classes on the 

links involved in the transmission of a packet from aircraft to the ground gateway via the HAP, for 

different aircraft density levels in the HAP coverage area. As depicted in the Figure 4-31 (c), the 

feeder link channel utilization is limited by the traffic on the other link (Aircraft ↔ HAP link). 

The Aircraft ↔ HAP link being the bottle-neck, the HAP ↔ GW link is not utilized fully in case 

of FSO feeder link. 
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(a)                                                                      (b) 

 
(c) 

Figure 4-31  Channel Bandwidth Utilization of HAP Links 
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4.2.6.2.5.3. Packet Loss (Theoretical analysis) 

Figure 4-32 gives the packet loss percentage for different traffic classes on the links (AC ↔ HAP 

link and HAP ↔ GW link) involved in the transmission of a packet from aircraft to the ground 

gateway via the HAP, for different aircraft density levels in the HAP coverage area. Majority of 

the packet loss can be observed on AC ↔ HAP bottleneck link. There is no loss on FSO feeder 

link as incoming traffic rate on the link is less than the FSO link capacity. 

 

 

 

Figure 4-32  Packet Loss on HAP Links 
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4.2.6.2.6. Observations and Conclusions 

The following are observations and conclusions based on HAP network analysis and simulation, 

assuming HAP tower channel link capacity up to 1 Gbps and the HAP coverage range up to 500 

Km 

 No significant degradation observed in latency for supporting aircraft traffic up to 400 

AC per HAP Cell. The 95th percentile latency for 400 AC/Cell is ATC: 8.635  ms;  

AOC: 8.656 ms;  AAC: 8.657 ms;  SWIM: 9.038 ms; APC: 54.31 ms  

 For 300 to 400 AC/Cell, the HAP network should be able to support the offered safety 

critical load. 

 The aircraft-to-HAP link is found to be the bottleneck, with a greater number of aircraft 

per HAP cell as compared to that of the ground-based cellular base station cell. Majority 

of the packet loss can be observed on AC-to-HAP bottleneck link. 

 

The HAP network is expected to provide performance similar to that of the ground-based cellular 

network, but with fewer HAP-based stations deployed across the whole CONUS region than the 

number of ground-based stations. However, as HAP-based coverage is higher than the coverage 

of a ground-based tower, higher link capacity is required between aircraft and HAP to support the 

larger aircraft count per HAP cell. 

 

4.2.6.3. SATELLITE NETWORK MODEL AND SIMULATION 

In the satellite network architecture analysis, a GEO satellite system with spot beam coverage is 

considered. A single GEO satellite with the ability to generate 100 narrow spot beams may be 

sufficient to provide services for all the aircraft flying over the whole CONUS region. The single 

spot beam footprint would have an area of 38,000 square miles and the 100 spot beams together 

would cover the entire CONUS of 3.71 million square miles. Figure 4-33 shows the network model 

considered for communication performance analysis using a GEO satellite platform.   
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Figure 4-33  Satellite Network Model 

 

The satellite with multiple transponders performs like a system which forms multiple towers in the 

sky providing coverage for data communication between the aircraft and the core aeronautical 

ground network. For the network analysis, assuming the total user capacity offered by a single 

satellite with up to 100 spot beams is 40 Gbps, the per-spot beam link capacity would be 400 Mbps. 

The feeder link channel bandwidth between the satellite and the ground gateway is assumed to be 

10 Gbps. 

 

4.2.6.3.1. Performance Analysis 

For a satellite network with up to 100 spot beams per satellite, a theoretical approach and not 

simulation is conducted for analysis due to limitation in computer processing power to execute the 

simulation for such a large number of spot beams. The simulation runtime is very high to simulate 

the communications with the number of spot beams greater than 5.  

 

As shown in the Figure 4-34, the cascaded queue model analysis is carried out, as essentially the 

traffic from each queue per spot beam is multiplexed over the single queue between the satellite 

and the gateway. The channel capacity per spot beam considered is 400 Mbps to derive the network 

performance statistics for the messages between aircraft and satellite. The channel capacity 

between the satellite and the ground gateway considered is 10 Gbps to derive the network 

performance statistics for the messages between satellite and gateway.  
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Figure 4-34  Satellite Network Analysis Model 

 

4.2.6.3.1.1. Assumptions  

The following are the assumptions made with respect to satellite network model analysis. 

 Per Aircraft Traffic 

o ATC data rate:  100 kbps 

o AOC data rate:  100 kbps 

o AAC data rate:  100 kbps 

o SWIM data rate:   2 Mbps 

o APC data rate:  90 Mbps 

 Packet size is 100 bytes , for each traffic type  

 Per spot beam channel capacity: 400 Mbps 

 Satellite-to-access network channel capacity: 10 Gbps  

 Aircraft–to-satellite range:  36,000 Km 

 Pre-provisioned connections are assumed between the aircraft and the satellite.  

 MAC layer processing latency at aircraft and the satellite is assumed to be 1 ms 

 The signal propagation latency between the aircraft and the satellite and  between the 

satellite and the GW is up to 120 ms. 

 The commercial network beyond the base station may introduce latency up to 5 ms in case 

of fixed leased bandwidth allocation and latency up to 20 ms in case of dynamic bandwidth 

for the aircraft services. High priority traffic (ATC, AOC, AAC, and SWIM) is assumed 

to have fixed bandwidth allocation with 5 ms latency and lower priority APC traffic type 

to have dynamic bandwidth allocations with up to 20 ms latency. 

  

10 Gbps Link 
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4.2.6.3.1.2. Latency 

The overall latency of the satellite network is the summation of various delay components like 

MAC layer delay (at aircraft), queue delays in the aircraft-to-satellite link (Aircraft ↔ SAT link) 

and in the satellite-to-ground gateway link (SAT ↔ GW link), signal propagation delay between 

the aircraft and the satellite, MAC layer delay (at satellite), signal propagation delay between the 

satellite and the ground gateway and finally the delay inherent in the network beyond the gateway 

(Access NW). The queue delay involved in transmission of packets on Aircraft ↔ SAT link and 

SAT ↔ GW link is arrived using the Equation 4-5 [REF- QUEUES]. This equation is used for 

different classes of traffic with common packet size. The theoretical equation used for arriving at 

the latency for different traffic classes assume bit level preemption with common packet size for 

all the traffic classes. In actual simulation, preemption is considered at a basic TU level and 

different traffic classes have different packet sizes. Hence to arrive at the actual latency estimates 

with different packet sizes for different traffic classes, a correction factor, C, is applied as shown 

in Figure 4-35 for the theoretical traffic latency estimates. The Correction factor C is derived based 

on the latency result from cellular network’s simulation and theoretical analysis as given in 

Equation 4-6.  

 

 Equation 4-5 
Where  

K traffic classes are indexed by k = 1…K. 

Class k arrivals are Poisson distributed with arrival rate of λk. 

Class k service times is Sk  

µ is outgoing rate (Channel Capacity)  

ρ is system utilization such that ρ = λ/ µ  
 

Correction factor for latency = (Latency from Simulation)/ [(Latency from Theory)*(packet size)] 

Equation 4-6 
For ATC traffic packet size = 1 TU 

For AOC traffic, packet size = 5 TUs 

For AAC traffic, packet size = 5 TUs 

For SWIM traffic, packet size = 20 TUs 

For APC traffic, packet size = 20 TUs 

 

Figure 4-35  Cascaded Queue Model for Latency Estimation 
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The trend in the queue latency experienced by various traffic classes as the aircraft count increases 

in the satellite spot beam coverage domain on the two links (Aircraft ↔ SAT link, SAT ↔ GW 

link) is shown in the Figure 4-36. 

 

  

 

 

Figure 4-36 Queue Latency on Satellite Links 

 

 

The overall latency with increasing number of aircraft in a given satellite coverage for various 

traffic types is shown in Figure 4-37. Beyond 100 aircraft per spot beam the APC traffic 
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experiences 100% loss on the AC ↔ SAT link, hence no latency estimates for APC traffic on that 

link beyond 100 aircraft load per spot beam. 



 

 

 

 

Figure 4-37 Mean Latency with Satellite Network 

 

The measure of the various delay components for transmission of packets in a satellite network for 

the scenario of 100 aircraft per spot beam (AC/spot beam) is shown in Figure 4-38. The overall 

latency of the satellite network is: ATC - 247.0021 ms; AOC - 247.0022 ms; AAC - 247.0023 ms; 

SWIM - 247.0146 ms; APC - 262.237 ms, as shown in the Figure 4-38. The 95th percentile latency 

estimates are: ATC - 247.0064 ms; AOC - 247.0066 ms; AAC - 247.0069 ms; SWIM - 247.043 

ms; APC - 262.71 ms.   
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Figure 4-38 Latency Components in Satellite Network with 100 AC/Spot Beam 

 

4.2.6.3.1.3. Channel Bandwidth Utilization  

Figure 4-39 and Figure 4-40  give the channel bandwidth utilization for different traffic classes on 

the links (AC ↔ SAT link and SAT ↔ GW link, respectively) involved in the transmission of a 

packet from aircraft to the ground gateway via the satellite, for different aircraft density levels in 

the spot beam coverage area. With up to 100 AC in a spot beam, sufficient link data bandwidth is 

available for safety critical ATC and AOC, AAC, SWIM and up to 41% remaining for non-safety 

critical APC traffic. Under heavy traffic conditions (more than 100 AC in all the 100 spot beams) 

the SAT ↔ GW link becomes a bottleneck. The SAT ↔ GW link is the bottleneck as traffic from 

all the spot beams aggregate on this link. It is observed that no bandwidth is available for low 

priority APC traffic on SAT ↔ GW link beyond 10 aircraft per spot beam. 
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Figure 4-39 AC ↔ SAT link Channel Bandwidth Utilization 

 

Figure 4-40   SAT ↔ GW Link Channel Bandwidth Utilization 
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4.2.6.3.1.4. Packet Loss 

Figure 4-41 and Figure 4-42 give the packet loss percentage for different traffic classes on the two 

links (AC ↔ SAT link and SAT ↔ GW link) for varying number of aircrafts per spot beam. 

Beyond 100 AC per spot beam, SWIM and APC traffic loss occur on the AC ↔ SAT link. 

However besides APC traffic loss, SWIM traffic loss (16%) can be observed on the SAT ↔ GW 

link even with 50 AC/spot beam. 

 

 
 

Figure 4-41   Packet Loss over AC ↔ SAT Link 
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Figure 4-42   Packet Loss over SAT ↔ GW Link 

 

4.2.6.3.2. Observations and Conclusions 

The following are observations and conclusions based on satellite network analysis. 

 Latency is higher on a satellite link owing to the inherently higher propagation delay, and 

hence not suitable for latency critical real-time applications. The 95th percentile latency 

with up to100 AC  per spot beam is: ATC - 247.0064431 ms;  AOC - 247.0066738 ms;  

AAC - 47.0069925 ms;  SWIM - 247.0439507 ms; APC - 262.71018 ms 

 Optimum channel utilization can be observed on the satellite spot beam network, owing to 

higher satellite coverage and higher number of aircraft served by the satellite. 

 The network is able to support all of the safety critical traffic (ATS and AOC) and AAC 

with up to 300 aircraft per spot beam. However, SWIM and APC traffic Loss can be 

observed even with as low as 5 AC/spot beam.  

 With cellular and HAP networks, the majority of packet loss can be observed on uplink 

(AC ↔ BS and AC ↔ HAP, respectively), whereas SAT ↔ GW link is the bottleneck in 

the satellite network. Significant cabin and crew service degradation can be observed as 

the aircraft count per spot beam increases. An APC traffic loss of 77% occurs even with as 

low as 5 aircraft per spot beam. Hence, a high bandwidth FSO link may be good alternative 

link between satellite and GW. 

 

 

NASA/CR—2015-218842 63



 

4.2.6.4. AIRCRAFT-TO-AIRCRAFT NETWORK MODEL AND SIMULATION 

The aircraft-to-aircraft communication network has the potential to capture the benefits associated 

with short-range links while at the same time offering high-capacity and good scalability. 

Specifically, this communication system could be used to improve the efficiency of air traffic 

control. Air-to-air communications may an enabler for relaxation of spacing requirements and 

provision of more energy-efficient paths. 

 

4.2.6.4.1. Communication Model 

Figure 4-43 shows the network model considered for communication performance analysis for 

aircraft-to-aircraft communication. The major components of the aircraft-to-aircraft 

communication model comprises of air segment and ground segment. 

 

 

Figure 4-43  Aircraft-to-Aircraft Communication Network Model 

 

4.2.6.4.1.1. Air Segment 

The air segment essentially comprises of aircraft flying routes in accordance with the airline 

schedules. In the analysis, aircraft traffic in the air segment is characterized by the airline data 

obtained in the form of ADSI data from Honeywell GDC. The data includes flight number, the 

location and time of departure and arrival, latitude position, longitude position, etc. 

 
4.2.6.4.1.2. Ground Segment 

In addition to mobile aircraft nodes, the model includes a network of ground stations. These 

stations serve as the gateways between the airborne network and ground infrastructure such as the 

aeronautical ground network. The ground stations are considered to be placed at major centers 

across the CONUS such that at any given point of time all the aircraft can get connectivity to at 

T1 T2 T3 T4 

T5 T6 T7 T8 

T9 T10 T11 T12 
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least one ground station.  An area comprising a group of pseudo cells is assumed to be serviced by 

the nearest ground station.  The actual position of the ground stations considered in the analysis is 

provided in the Table 4-11. Any pseudo cell as depicted in Figure 4-43 is assumed to be serviced 

by the nearest tower based on distance proximity. 

 

Table 4-11 Ground Stations’ Positions 

airport_ident latitude longitude 

KMWH 47.20858 -119.319 

KHLN 46.60681 -111.983 

KGCC 44.34892 -105.539 

KMIC 45.06199 -93.3539 

KRNO 39.49911 -119.768 

KSLC 40.78839 -111.978 

KLNK 40.85089 -96.7591 

KCMI 40.03883 -88.2778 

KMHV 35.05864 -118.151 

KPHX 33.43428 -112.012 

KDEN 39.86167 -104.673 

KMEM 35.04242 -89.9767 

KBOW 27.94336 -81.7834 

KSJT 31.35776 -100.496 

KNEW 30.04242 -90.0283 

KPIT 40.49147 -80.2329 

KBTV 44.47186 -73.1533 

KATL 33.6367 -84.4279 

KGFK 47.94728 -97.1738 

KEWR 40.6925 -74.1687 

KSAW 46.35364 -87.3954 

 

 

4.2.6.4.2. Aircraft Connectivity Analysis 

Air-to-air network communication is essentially relay communication from aircraft to the base 

station.  

 

In the air-to-air connectivity analysis algorithm, each base station and aircraft is referred as a node. 

Each node maintains the list of adjacent nodes. It starts with the list of base stations available in 

the CONUS region. For this analysis, 21 base stations (see Table 4-11) are used across the CONUS 

region. 

 

The aircraft nodes traverse along their flight paths past other aircraft and base stations and use the 

air-to-air and air/ground communication networks to capture information on the list of adjacent 
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nodes (connected aircrafts) for connectivity to the base stations. They update the connection status 

of adjacent nodes in the list. 

 

Each node recursively looks at its list of adjacent nodes and searches for the number of nodes 

connected to the each connected node.  

 

Each aircraft has a range of 120 nm (range circle with 2 degree radius) and an aircraft is said to 

be connected if it satisfies anyone of the below criteria: 

1. If the aircraft falls in the range of another aircraft which falls in the range of a ground 

station  

2. If the aircraft falls in the range of another aircraft which is subsequently connected to a 

ground station through other aircraft 

 

An aircraft that is isolated and does not fall within range of any aircraft or ground station is 

disconnected as shown in Figure 4-44.  This figure shows a snapshot of a simulated air-to-air 

communication network, taken from the NAS Network Simulation and Visualization program, 

which is presented in section 4.2.7.  The aircraft nodes are represented as circles proportional to 

the radio range of the aircraft.  A blue circle indicates connectivity to a ground base station.  A 

red circle indicates the aircraft does not have connectivity to a ground base station. 

 

 

Figure 4-44  Aircraft-to-Aircraft Communication Connectivity Report 

 

4.2.6.4.3. Air-to-Air Data Traffic Estimates 

The estimated data traffic for aircraft-to-aircraft communication is similar to that provided in the 

Table 4-9 for ATC, AOC and AAC traffic. The high bandwidth requirement traffic types viz.; 

SWIM and APC traffic are not considered in aircraft-to-aircraft communication as the aircraft-to-
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aircraft communication may not be able to, and maybe should not, handle this traffic. Besides the 

unicast traffic from the aircraft, broadcast traffic in a 100 nm Cell service domain is also considered 

in the aircraft-to-aircraft communication. However, only the unicast traffic is considered to be 

relayed between aircraft towards the ground station. The broadcast traffic is not relayed beyond 

the Cell domain.  Table 4-12 gives the broadcast traffic rate within a 100 nm Cell service domain 

as provided in the COCR document for COCR Phase 2 [REF_COCR]. The APT domain COCR 

Phase 2 broadcast traffic rate is extrapolated at 2.5% YoY to obtain the estimates for the year 2060.  

Table 4-13 gives the broadcast traffic estimates for 2060, within a 100 nm Cell service domain. 

 

Table 4-12 COCR Phase 2 Broadcast Traffic Rate within a 100 nm Cell Service Domain 

Information 

Transfer Rate 

(kbps) - 100 

NM Range 

APT TMA ENR ORP AOA 

816 544 145 NA NA 

 

 

Table 4-13 Broadcast Traffic Rate Estimates within a 100 nm Cell Service Domain for 2060 Timeframe 

Estimated traffic in 2060 

(Kbps) – Broadcast Traffic  

in a 100 nm Service Domain 
Broadcast 

ATR  1,712 

Microjet  1,712 

Business Jets  1,712 

UAS 1,712 

 

 

4.2.6.4.4. Performance Requirement Analysis 

The aircraft-to-aircraft communication performance analysis is carried out at the cellular level. All 

the aircraft traffic in a given Cell is assumed to be relayed to one of its adjacent Cells towards the 

nearest ground station, as shown in Figure 4-45.  Hence the area serviced by a ground station is a 

group of Cells belonging to different levels, where the traffic in a higher level Cell is directed 

towards the lower level Cells. The number of Cells in each level is given below. 

 Level 0 – 1 Cell,  (Level 0 has one cell, the ground station located in the Cell) 

 Level 1 – 6 Cells 

 Level 2 – 12 Cells 

 Level 3 – 18 Cells 

 Level 4 – 24 Cells  

 And so on…  
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Figure 4-45  Cell Arrangement in Aircraft-to-Aircraft Communication Network 

 

The total traffic in a Cell is the sum of the Cell’s Self-Traffic and relay unicast traffic from higher 

level Cells. The Cell’s Self -Traffic is given by the Equation 4-7. 

 

Cell’s Self -Traffic = (No. of aircraft in the Cell)* (Per aircraft unicast traffic) + Broadcast traffic 

Equation 4-7 

 

Three technology links viz. VHF, L-band and FSO are considered for the aircraft-to-aircraft 

communication performance measurement in a Cell. The channel bandwidth assumed for the 

different links are 

 VHF band: 14 Mbps 

 L-band: 150Mbps 

 FSO: 10 Gbps  

 

The air-to-air network load and Cell-wise communication performance is determined using the 

NAS Network Simulation and Visualization program described in section 4.2.7.  The performance 

of the aircraft-to-aircraft communication network is presented in section 4.2.7.3. 
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4.2.7. NAS Network Simulation and Visualization 

The Air Traffic Simulation Model Tool is a NAS network simulation and visualization tool that 

generates the statistics characterizing the performance of the simulated network architectures. The 

key requirement that is considered to be fulfilled by the network architectures is the provision of 

guaranteed network bandwidth at least for safety critical services. The criterion which are defined 

for the assessment of network performance are the one-way packet latency, total achieved 

throughput and packet loss rate for the different kinds of services. 

The tool is developed using C++ and the Qt toolkit. The Qt toolkit is a cross-platform application 

framework that is used for developing application software with a graphical user interface (GUI) 

and it supports C++. All the configuration data is stored and processed in memory only to do the 

analysis and generate reports, i.e., no database is used for data storage in this simulation tool. 

 

Honeywell GDC organization has the capability to monitor all air traffic across the globe in real-

time.  Current air traffic information called Aircraft Situation Display to Industry (ASDI) is 

obtained from the Honeywell GDC database and is used by the Air Traffic Simulation Model Tool. 

ASDI data covers only the North America region.  
 

4.2.7.1. SIMULATION SCHEDULER 

The simulation scheduler module reads the aircraft, airport and single cellular network tower data 

from the CSV (comma separated values) files either explicitly or can be selected using the browse 

option provided. It takes files as inputs which are placed in the default configured folder path. 

 

The user can overlay the aircraft display on the world map using Configuration  ASDI data menu 

item.  See Figure 4-46. ASDI data is categorized and plotted based on the call sign of an aircraft.  

The simulation executes and displays the aircraft position at every 5 minute simulated time 

interval.   
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Figure 4-46 Overlay of Aircraft Display on Map 

 

Display and Run Simulation options are provided to display and simulate aircraft position data on 

the map to analyze the air traffic congestion zones in the CONUS region. The user can select the 

time (UTC time zone) and display the air traffic data for that instance of time. Run Simulation 

option runs the simulation up to 2 hours at 2 seconds screen refresh rate and displays the aircraft 

position data for every 5 minute simulated time interval.  

 

For the Single Cellular Network performance analysis, the tool provides the aircraft count and 

network performance report to analyze the network performance at a particular instance of time. 

The data is classified for different categories of aircraft such as ATR, General Aviation, military 

aircraft, microjets, cargo aircraft and UAVs and data service types, including ATC, AOC, AAC, 

SWIM and APC. 

 

4.2.7.2. USER INTERFACE 

The main menu of the tool includes the menus, namely Configuration, Simulation, World map 

options, Network Reports – Selected Day, Network Reports – Time Instance and Extrapolate. 

 

The Configuration menu consists of the options to load the ASDI data, Airport Information, 

Communication Information, Network Configuration (Cellular, HAP, Satellite) and Air-to-Air 

Network Configuration. Selecting the ASDI data will open up a browse option to select a CSV file 

to render the aircraft position data present in the file. Likewise, options are available for the Airport 

Information to render the airports and Communication Information to render the Communication 

Towers.  
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Network Configuration (Cellular, HAP, Satellite) opens a pop-up window in which channel 

bandwidth can be input, as shown in Figure 4-47. A user can also modify and save the data traffic 

rate for different aircraft and different network users. 

 

Figure 4-47 Configuration Network Dialog - Cellular, HAP and Satellite  

 

Air-to-Air Network Configuration opens a similar network configuration window with Broadcast 

and Unicast data traffic options as shown in Figure 4-48. A user can also select the type of air-to-

air link and can also input the corresponding data traffic in Kbps. The user can also modify the 

Broadcast and Unicast data traffic and can save the data traffic rate for different aircraft and 

different data service types.  

 

 

Figure 4-48 Air-to-Air Network Configuration Dialog 

The tool menu consists of the Start Simulation and Stop Simulation options, which enables and 

disables the run simulation feature, respectively. 
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The World Options menu has the zooming and pan options for effective viewing. This menu also 

has options to load the ASDI data, communication towers and airport information and uses as 

inputs files placed in the default configured folder. The display grid option displays a dotted line 

for every 5 degrees and a plain line for each degree, so the plain line grid indicates a 1 degree by 

1 degree grid. Display Airport Identifiers option lists the ICAO identifiers for all the airports in 

the CONUS and the “find ident” option takes a particular ICAO identifier as input and locates it 

on the map. 

The Network Reports menu provides the options to see the summary report on the map and 

generates the network coordinate information. This network report lists different aircraft category 

counts for all grids available in the CONUS region. 

There is an option in the menu called Extrapolate which takes the estimated percentage growth for 

every year and extrapolate year as inputs, as shown in Figure 4-49. It instantly displays the 

increased density of aircraft over the map upon clicking the “Extrapolate and Display” button.  

 

Figure 4-49  Extrapolate Dialog 

Extrapolate displays the aircraft density based on the time period to increase the number of aircraft 

in the CONUS region and to analyze the network demand for a future time frame such as 2060. 

Note that UAVs are added only to the 2060 timeframe based on the population in major cities as 

explained in section 4.2.3.2.  

Left click with a mouse device over the map displays a menu called context menu which has 

frequently used options like network performance statistics per grid, ASDI, airports, 

communication, zooming and display grid.  The tool provides a context menu option to move the 

map between world map and CONUS region only. 

A toolbar is available at the top of the tool’s window where Date and Time selection is provided 

in UTC time zone. The Date field is populated automatically by reading data from the input ASDI 

data file. Time can be input by selecting values from the drop-down box and clicking on the display 

button to render the aircraft traffic data on the map at that selected time instant. 
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The bar below the map is called the status bar which shows the Lat-Lon position of the cursor and 

also displays the number of aircraft in a particular hexagonal grid. 

4.2.7.3. PERFORMANCE STATISTICS REPORTS AND DISPLAYS 

The user can select the network type using a combo box available with the network types – 

Cellular, HAP, Satellite and Air-to-Air networks. The corresponding links in the Network Reports 

(selected day and time) menu are enabled when the user selects the network. 

The tool has the capability to extract the following four network summary reports for the three 

networks, namely Cellular, HAP and Satellite networks:  

1. Network Performance Statistics Report for the selected time instance for the North 

American region network grids 

2. Network Report for the Aircraft Count for the selected time instance for the North 

American region network grids 

3. Network Performance Statistics Report for the selected day for the North American region 

network grids 

4. Network Report for the Maximum Aircraft count for the selected day for the North 

American region network grids  

A Network Performance Statistics Report provides all the air traffic data over the network grids 

(Cellular, HAP and Satellite), which are overlaid in the North America region map. The traffic 

demand, generated traffic, system delay percentile and loss probability are listed for each grid for 

all the types of data service types, namely ATC, AOC, AAC, SWIM and APC. This data is saved 

in a CSV file which serves as input to a Microsoft ® Excel ® spreadsheet in which all the graphs 

are displayed. 

Network Report for the Aircraft Count gives the grid-wise air traffic data with latitude and 

longitude positions, different aircraft types and also the total number of aircraft per grid. 

Network Report for the Maximum Aircraft count for the selected day gives the maximum aircraft 

count along with the time instant in the selected day. For all the communication networks, 

performance statistics per grid reports can be generated for the desired time period. The user 

navigates to the specific grid and clicks on the network performance per grid option. It pops up the 

single grid report input dialog to enter the start time and end time to analyze the reports for that 

grid. See Figure 4-50. 
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Figure 4-50  Single Network Performance Report Input Dialog 

 

Once the user clicks on View Report option, the network performance data is displayed in a tabular 

format in grid wise network report dialog, as shown in Figure 4-51. This report provides the traffic 

demand, generated traffic, system delay percentile and loss probability for the selected grid for all 

the data service types, namely ATC, AOC, AAC, SWIM and APC, from the selected start time to 

the selected end time 5 minute time intervals.  

Export to Excel button exports the tabular data to a CSV file to generate graphs using the Microsoft 

® Excel ® graph template functionality.  

 

Figure 4-51  Grid Wise Cellular Network Report Dialog 
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4.2.7.3.1. Ground-based Cellular Network Display 

Figure 4-52 provides an example of the Ground-based Cellular Network performance statistics 

display.  It shows the display for the selected day on the CONUS map and includes all categories 

of aircraft and data service types. A hexagonal cellular grid covers about 2 degree by 2 degree grid 

with a channel capacity of 1Gbps and around 360 grids cover the entire CONUS region.  The user 

can configure the channel capacity and data traffic of different sources and aircraft types. A legend 

showing the different hex grid colors for different traffic options like Traffic but NO Loss, All 

Category Traffic Loss, AOC+AAC+SWIM+CABIN Loss, SWIM+CABIN Loss, Only Cabin Loss 

and No Traffic gives effective display for understanding the summary report on the map. The 

maximum aircraft count in that particular grid at the particular time in the selected day is displayed 

in the center of each grid. 

 

Figure 4-52  Ground-based Cellular Network Performance Statistics Display for Selected Day 

 

 

4.2.7.3.2. HAP-based Cellular Network Display 

Similarly, the HAP-based Cellular Network is shown in Figure 4-53.  The display has around 100 

HAP platforms covering the CONUS region, Figure 4-53 which is depicted as 4 degree by 4 degree 

HAP cell with a channel capacity of 1 Gbps. The same legend of the data traffic loss is depicted 

for all the communication networks.  
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Figure 4-53  HAP Network Performance Statistics Display for Selected Time Instance 

 

4.2.7.3.3. Satellite Network Display 

In the Satellite Network display, about 100 spot beams covers the entire CONUS region as shown 

in Figure 4-54 the network is depicted as 4 degree by 4 degree spot beams, each with a channel 

capacity of 400 Mbps.  

 

 

Figure 4-54  Satellite Network Performance Statistics Display for Selected Time Instance 
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4.2.7.3.4. Air-to-Air Network Display 

In the Air-to-Air network, the CONUS region is covered with the 21 ground stations located at 

larger airports where air traffic control towers are present. Each aircraft has a range of 120 nm 

(range circle with 2 degree radius). The number of connected aircraft is dependent on the data 

traffic of the aircraft at each time instance. The connected aircraft are displayed in the color blue 

and the disconnected aircraft are displayed in the color red as shown in Figure 4-55. 

 

 

Figure 4-55  Air-to-Air Communication 

The user can view the connected aircraft by selecting the Air to Air network connectivity under 

the Network Reports – Time Instance menu. It displays a window in which the total connected and 

disconnected aircraft counts are displayed. The paths can be generated from any aircraft to any 

airport with intended Maximum Hop count and Maximum number of paths. The aircraft call sign 

and one airport or all airports can be selected to generate the paths. The paths generated are 

displayed in a table as shown in the Figure 4-56. 
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Figure 4-56  Air-to-Air Communication Generated Paths 

 

Figure 4-57, Figure 4-58, and Figure 4-59 provide the displays of air-to-air network performance 

using the following types of links: 

 VHF (Figure 4-57) 

 L-band (Figure 4-58) 

 FSO (Figure 4-59) 

 

The number inside a Cell indicates the aircraft count and the number in braces in a Cell indicates 

the relay count of the grid. Relay count is the summation of the air traffic of the adjacent cells that 

are relaying traffic towards the cell. A legend showing different hex grid colors for different traffic 

options like Traffic but NO Loss, All Category Traffic Loss, AOC+AAC+SWIM+BROADCAST 

Loss, SWIM+ BROADCAST Loss, Only BROADCAST Loss and No Traffic Loss provides 

effective display for understanding the traffic load in different regions. 
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Figure 4-57  Air-to-Air Communication (VHF Air-to-Air Link) 

 

 

Figure 4-58 Air-to-Air Communication (L-band Air-to-Air link) 
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Figure 4-59 Air-to-Air Communication (FSO Air-to-Air Link) 

 

 

 

 

4.2.8. Summary Analysis of Simulation Results 

Table 4-14 gives a summary of the observations based on the simulation modeling analysis and 

results.  Results explained above in section 4.2 are again summarized below. 

 For Ground-based Cellular and HAP-based Cellular networks, no significant degradation 

is observed in latency for supporting aircraft traffic of up to 400 aircraft in a Cell. 

 Latency is higher for geostationary satellite link owing to higher propagation delay, and 

may not be suitable for latency critical real-time applications.  

 As HAP coverage is higher than ground-based coverage, higher link capacity is required 

between aircraft and HAP to support the larger aircraft count per cell. 

 Optimum channel usage can be observed on the satellite spot beam network, owing to 

higher satellite coverage and higher number of aircraft served by the satellite. 

 With ground-based cellular and HAP-based cellular networks, the majority of packet loss 

is observed on the AC ↔ BS link and AC ↔ HAP link, respectively, whereas SAT ↔ GW 

link is the bottleneck in the satellite network. 

 Significant cabin and crew service degradation can be observed as the aircraft count per 

spot beam increases. APC traffic loss of 77% was estimated with as low as 5  aircraft per 

spot beam 
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Table 4-14 Simulation Analysis Observations 

 
Latency Packet Loss 

Ground-

based 

Cellular  

Low  
No Loss of safety critical traffic in the network with up to 400 

aircraft per Cell  

HAP-based 

Cellular  
Low 

No Loss of safety critical traffic in the network with up to 400 

aircraft per Cell  

Satellite  
Latency is higher owing to 

higher propagation delay  

77% APC traffic loss even with as low as 5  aircraft per spot 

beam and SWIM traffic loss is observed with 50 aircraft per 

spot beam  
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5. SECURITY ASSESSMENT 

Phase 1 activities in the NASA CDTI Project concluded that it might not be possible for a single 

technology or a platform to support the requirements of all airspaces and applications in a cost 

effective manner. For instance, the cost of deploying network platforms like Terrestrial towers, 

HAPs and Satellites would differ widely across airspaces such as oceanic, en-route, airport 

surfaces, etc, to achieve the required NAS datalink environment capabilities. Hence hybrid 

networks were recommended in phase 1 reports comprising multiple technologies and platforms. 

It is also envisaged that adapting some of the Commercial Off The Shelf (COTS) technologies for 

aeronautical commutations may become inevitable in the future, considering the merits of these 

technologies such as low cost systems, additional spectrum utilization, broader infrastructure 

support, etc. However, these adaptations may necessitate major security precautions for safety 

critical aeronautical applications. Hence, in phase 2 of the Project, security assessment was 

performed to identify and assess the safety threats to the communication infrastructure and make 

recommendations to address safety concerns. 

 

5.1. APPROACH FOR SECURITY ASSESSMENT 

Phase 1 reports predicted that the overall aeronautical network may span over both public and 

dedicated networks seamlessly and the boundaries between the networks will eventually disappear 

through 2060 timeframe. Aircraft will be using hybrid networks for safety critical applications 

such as air navigation, surveillance, Air Traffic Control (ATC) etc., which would demand higher 

levels of robustness and integrity from these networks, compared to requirements of regular 

commercial applications. The extended connectivity to public networks may also expose aircraft 

to all kinds of security threats in an open environment and hence, it becomes necessary to assess 

all security risks of aircraft in various architectures and recognize mechanisms to ensure their 

safety against the threats.  Figure 5-1 illustrates the approach for security assessment performed as 

part of phase 2 activities. 

 

 

Figure 5-1  Approach for Security Assessment 
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The initial task starts with the identification of the security perimeters of networks. In the context 

of the aeronautical network, a security perimeter is considered as a boundary between a regulated 

network and an unregulated network. A perimeter could be a device or a network entity in the 

regulated domain that is visible to the attackers outside the regulated domain. Some of the 

examples of network perimeters are radios, gateways, applications, etc., which are accessible to 

the external world. The scope of this assessment is limited only to the architectures discussed in 

phase 1 reports and considered in section 4.  

 

The next step is to identify the threat vectors such as mechanisms, paths and tools used by the 

intruders to attack the perimeters and gain access into the network and its critical information. 

Hence, in this task, all possible attacks to the networks are captured.  

 

COCR safety assessment [REF-COCR] identified the top level operational hazards that may arise 

during the use of datalink services such as: 1) Loss of Service and 2) Loss of Data Integrity. Loss 

of Service is attributed to the network failure that inhibits communications between two 

aeronautical systems. Threats such as Denial of Service (DOS), jamming, flooding of messages, 

etc., may cause loss of communications in the NAS environment. Loss of Data Integrity refers to 

corrupted messages, wrongly delivered messages, late or missing messages and out-of-sequence 

messages that are delivered undetected. As most of the communication protocols are equipped 

with robust error-detection algorithms such as, 64/128-bit Cyclic Redundancy Checks, the 

probability of an accidentally corrupted message, passing through all layers of communication 

protocols undetected, is very remote. However, the attacks like man-in-middle, masquerading, etc., 

may cause intentional damage to the data integrity of the systems. This assessment mainly focuses 

on such intentional threats to datalink services, as most of the non-intentional interferences are 

covered in the earlier technology assessment reports published in phase 1 reports. See Task 2 report 

[TASK2RPT]. 

 

Table 5-1 provides the COCR assessment of hazard severity categorization for Loss of Service 

and Loss of Data Integrity for various datalink services and the safety objectives needed for risk 

free operations (COCR ATS Phase 2). Figure 5-2 provides a standardized hazard severity

 categorization per COCR. 

Table 5-1 COCR Operational Safety Assessment and Safety Objectives for Datalink Services 

Service Category 

Loss of Service  
Hazardously Misleading 

Information 

Severity 

Class 
Safety Objective Severity Safety Objective 

Data Communications 

Management Services (DCM) 
4 Probable 3 Remote 

Clearance/Instruction Service 

(CIS) 
3 Remote 2 Extremely Remote 

Flight Information Service (FIS)  4 Probable 2 Extremely Remote 

Advisory Services (AVS) 3 Remote 2 Extremely Remote 
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Service Category 

Loss of Service  
Hazardously Misleading 

Information 

Severity 

Class 
Safety Objective Severity Safety Objective 

Flight Position/Intent/ Preference 

Service (FPS) 
3 Remote 2 Extremely Remote 

Emergency Information Service 

(EIS)  
4 Probable 3 Remote 

Delegated Separation Service 

(DSS) 
3 Remote 2 Extremely Remote 

Miscellaneous Services (MCS)  1 
Extremely 

Improbable 
1 

Extremely 

Improbable 

 

 

 

The severity levels of the hazards are different for various datalink services. For example, the 

hazard severity level of “Loss of Service” for “Data Management Service (DCM)” is “Minor”, 

while it is “Catastrophic” for “Miscellaneous Service (MCS)”. MCS comprises services such as 

“Autoexec” for controlling aircraft remotely from ground through datalink. Hence the 

requirements of MCS are more stringent than that of DCM. The safety objectives represent the 

degree of tolerance applicable to each class of hazard. Hazards of class 4 (Minor/Probable) 

category can occur more frequently than that of class 3 (Major/Remote) category, class 3 
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Figure 5-2  COCR Hazard Categorization 



 
 

(Major/Remote) can occur more frequently than class 2 (Hazardous/Extremely Remote) and so on. 

Hence, if MCS service is deployed over a datalink, the loss of service should be “extremely 

improbable”, but for DCM service “loss of service” can be “probable”.  

 

For the purpose of network vulnerability assessment, risks of various threats are assessed based 

on: 1) Threat Impact and 2) Required Capabilities to effect threats. Threat Impact is rated based 

on the potential damage that would be caused to NAS data exchange environment if the threat 

materializes. The score is given as a percentage of the estimated loss of communications to the 

overall NAS network infrastructure. For instance, if NAS extends over an area of 10 million square 

kilometers and if a threat causes outage over 1 million square kilometers, the Threat Impact score 

is 10%.  The score for Required Capabilities is estimated based on the availability of technical and 

financial capabilities needed to cause the threat. If the required capabilities to implement a threat 

are high, then the chances for carrying out such attacks are unlikely and vice versa.   

 

Finally the hazard score for a threat is calculated by multiplying “Threat Impact” and “Required 

Capabilities” as shown below. 

 

𝐻𝑎𝑧𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 =   𝑇ℎ𝑟𝑒𝑎𝑡 𝐼𝑚𝑝𝑎𝑐𝑡 × 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 
 

Based on hazard probability score, the level for a hazard is classified into five categories as 

provided in Table 5-2 

Table 5-2 Safety Hazard Level Classification 

 

 

 

 

 

 

 

 

 

The estimated hazard probability levels of various threats identified in a network are compared against the 

against the safety objectives of different datalink services as shown in  

Table 5-3. 

 

 

 

 

 

 

 

 

 

 

 

Hazard Score Probability Level 

<0.25% Extremely Improbable 

0.25% to 1% Extremely Remote 

1%-10% Remote 

10% - 25% Probable 

Above 25% Frequent 
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Table 5-3 Format of Threat Assessment for a Network 

 
 

If a hazard probability level of a threat is higher than the safety objective needed for a datalink 

service, then the network may not be suitable to handle such datalink services and if it is the only 

network deployed in NAS, there could a possibility of safety hazards impacting NAS operations. 

For example, if the safety objective of MCS service is 1 (extremely improbable) and if there are 

threats in a network that have hazard levels at “Remote” or “Probable”, then that network alone 

cannot be deployed for MCS service. Thus the table gives an overall idea about the possible threats 

that can impact network safety and the suitability of the network to handle various datalink 

services.  

 

The vulnerability assessment is done for the three network architectures identified in Phase -1 of 

the project namely, Cellular, Satellite and broad band Very High Frequency (VHF) networks. The 

susceptibility of various network architectures to support the required level of robustness for 

performing safety critical operations are compared and prioritized. Finally, the recommendations 

are made to mitigate the high priority threats and to improve the overall operations of the networks.  

 

5.2. SCOPE OF ASSESSMENT 

In the earlier days, the only possible mode of data transfer to an aircraft was through physical 

media such as, floppy diskettes or magnetic tapes and aeronautical-specific air/ground datalinks in 

closed systems dedicated to aeronautical-specific data transfer only.  Hence, the aircraft’s security 

perimeter was confined to the physical boundaries of its closed datalink systems. However, in the 

recent years, with the deployment of new communication technologies and internet, the security 

perimeters have started expanding limitlessly, covering the entire globe virtually. Hence it 

becomes necessary to identify security perimeters at all levels to safeguard the aeronautical 

network against all threats. Figure 5-3 provides the overall context of security perimeters that are 

possible in NAS data exchange environment.   
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As shown in Figure 5-3, some of the security perimeters identified at various layers are provided 

below. 

 Physical access to avionics  

 Radios, Ground stations, Base stations, Satellite Ground stations  etc,  

 ATN routers/Gateways, ACARS Gateways, NextGen IP routers, Authenticators, VPN 

servers and other network devices that are accessible to the external world.  

 All application servers and end nodes that communicate with ground peers.  

 Proxy servers, DNS servers, Mail Servers and other servers in DMZ zones 

 Cabin entertainment systems, passenger laptops, Tablets, mobile and virtually any device 

that communicates with the internet are potential security perimeters.  

  

The scope of this assessment is limited only to the Air/Ground networks identified in Phase 1. 

Hence the assessment is performed only for RF Platform layer and Networking layer as identified 

in Figure 5-4.  
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Figure 5-3  Context of Security Assessment 



 

 

 

Considering, the overall NAS communication environment as provided in Figure 5-4, various 

network segments identified in the architecture are given below: 

 Aircraft network supporting both safety critical applications and non-safety critical 

services. 

  Air/Ground network providing connectivity to aircraft to reach ground network. 

 Air-to-Air network that interconnects aircraft 

 Ground-to-Ground backbone network that offers connectivity to ANSPs, Airline Operation 

Centers, ground sensors and other aeronautical services providers.   

 Various Ground networks supporting ATC, AOC operations and other aeronautical 

services. 

The assessment is done only for Cellular, HAP, Satellite and SO-OFDMA networks in the context 

of the architectures as defined in Phase 1 Task 3 Report [REF-TASK3RPT]. 

 

5.3. ASSUMPTIONS ABOUT NETWORK 

The aeronautical network is expected to have multiple domains as shown in Figure 5-5. A domain 

represents a logical network entity, managed under a single administrative control or policy, but 

at physical level, a domain may span over multiple private/public networks and internet. 
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Figure 5-4  NAS Data Communication Environment 



 

Figure 5-5  Network Domains 

Some of the domains identified in Figure 5-5 are, 

 Backbone network domain – managed by telecommunications service providers 

 ANSP domain – managed by CAA and other Air Navigation Service Providers 

 Mobile Service Provider (MSP) domain – managed by Air/Ground network service 

providers 

 Airline Domain – Airline Private Network  

 SWIM – Semi-regulatory network managed by SWIM service providers.  

 Aircraft Autonomous Domain – airborne network.  

 Cabin network domain 

 

The assumptions considered in this analysis are: 

 Air/Ground networks may provide layer 2 connectivity between aircraft and ground 

regulated network, with the network level traffic abstracted from the access network 

domains. Network level connection establishment between safety network domains may 

be handled transparent to MSP network. 

 Multiple MSPs may exist in the future and the MSPs may deploy their services through 

public network infrastructure.   
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 Airborne network segments/devices may require simultaneous connectivity to multiple 

ground network domains such as ANSP, Airlines, SWIM services, etc. 

 Airborne network will have appropriate security framework and the policies that govern 

both ingress and egress traffic in various domains.  

 Inter/Intra domain routing protocol or any other similar routing mechanism will be 

deployed across the domains through secured control channels.  

 Passenger traffic will be completely isolated from the avionics traffic so that the avionics 

network is invisible to the cabin network supporting passenger services.  

 VPN/VLANs or similar security mechanisms may exist to establish secured connectivity 

through internets to the safety network on ground. The traffic within VPNs may not be 

visible to the entities in the public network. 

These assumptions are common and applicable to all air/ground networks considered in this 

analysis.  

 

5.4. ARCHITECTURE OPTION 1 – CELLULAR NETWORK 

In this architecture, cellular network is used as an access network to connect aircraft with the 

ground side aeronautical network. The ground side network is a regulated network, while the 

access network is a public commercial network. Figure 5-6 shows a typical architecture of cellular 

network and the possible threat vectors that can act on it.  

 

 

Figure 5-6  Security Threats to Cellular Network 

 

In the future, commercial mobile service providers may offer air/ground service to aircraft in 

addition to offering services to their existing cell phone subscribers.  As discussed in the Phase 1 

Task3 report [TASK3RPT], the towers used for aeronautical communications may undergo minor 

modifications to accommodate communications with aircraft flying at high altitudes and with great 
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speeds. Other than this front end interface, all other portions of the network may remain the same 

between aircraft and cell phone users. Hence, beyond base stations, the data traffic from aircraft 

may pass through the same public network to reach the ground side aeronautical network. This 

exposes aircraft traffic to various threats and attacks similar to the ones present in the world of 

internet today. Of course, HAP-based cell towers are not shared with commercial cell phone users. 

 

5.4.1. Threat Analysis 

Various threats to the Cellular network are identified in Figure 5-6.  The threats possible at RF 

level, Layer 2 access network and through public internet are discussed in this section.  

 

5.4.1.1. JAMMING 

Jamming refers to an intentional transmission of strong noise in order to disrupt the legitimate 

signal and degrade signal-to-noise ratio of the communication channel. There are commercial cell 

phone jammers available in the market for blocking mobile phone operations in the restricted areas. 

The range of jamming for such devices depends upon the strength of the noise generated by them. 

Generally, these commercial jammers may have shorter range impacting only a few cell phone 

users in a small area. Hence, practically, these jammers may not have any significant influence 

over aircraft communications, as aircraft fly at high altitudes and use high power for their 

communications, compared to the handheld devices, but there is a possibility to build high powered 

jammers using base station hardware. These jammers may affect a few aircraft in a range 

equivalent to that of a base station, however, only for a short time, as the current technology in 

subscriber stations enable them to scan continuously for adjacent base stations and logon to one as 

soon as its signals are clear and available. In the future, cellular networks may have technologies 

to handle jamming in a better way. So, in case of jamming, the interruption to aircraft 

communication is expected to be  near-term problem. Considering these factors, loss of 

communication due to jamming is estimated around 70% of a single cell operation out of an 

estimated total of 200 cells in the NAS and the availability of capabilities to build such high 

powered jammer is foreseen as 90% considering the timeframe of 2060.  

 

Hazard Level for “Loss of Communication” due to jamming in a cellular network is concluded as 

“Extremely Remote” (Hazard score: 0.32%). Jamming may not be able to cause “Loss of Data 

Integrity”. Hence the hazard level for “Loss of Data Integrity” is concluded as “Extremely 

Improbable”. 

 

5.4.1.2. SCRAMBLING  

Scrambling is a technique in which jamming is done selectively on specific durations of 

communication to collapse the control flow between base stations and subscriber units.  

Scramblers may have implementations to understand the frame structure and send high powered 

short pulses to knock of specific portions of control frames or user frames that would cause 

maximum damage to the communication.  Because of the short pulse transmission, jam-detection 

systems find these devices difficult to locate compared to the jammers that transmit noise 

continuously.  Moreover scramblers consume lesser power than jammers owing to their 

intermittent transmission patterns. Hence scramblers could be very effective in causing outage in 

a cellular network. However, the implementation of a scrambler would require considerable 

amount of knowledge about the communication technology used in the cellular networks. 
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Nevertheless, since the cellular technology is a commercial technology and the “system on chip” 

concepts are more prevalent in the telecom industry, it may be possible to build scramblers with 

moderate efforts and funding.   

 

Assuming a scrambler can inhibit a base station operation completely, the loss of communication 

is estimated to be 0.5% in NAS region (1 out of 200 cells in NAS) and the availability of required 

capabilities is estimated around 50% considering the amount efforts required to build a scrambler 

from the COTs hardware. Hence, the estimated hazard level for scrambling is “Extremely 

Remote”.  (Hazard score: 0.25%).  Like jammers, scramblers are also expected not to cause any 

damage to data integrity, considering robust error-check protections available in higher layers and 

hence, the loss of data integrity is “Extremely Improbable”.   

 

5.4.1.3. IMPERSONATING AIRCRAFT 

In this attack, a hacker may use a commercial modem with fake aircraft credentials to gain 

access into the ground network and modify critical data to cause damage to NAS operations. 

However, mobile networks implement robust authentication mechanisms/algorithms based on 

digital certificates which are very difficult to break through. Hence gaining illegal access into the 

network may not be possible, unless the actual aircraft credentials are obtained.  (Threats related 

to key management issues are discussed separately in section 5.4.1.5). But it is possible for a 

masquerading station to send continuous messages flooding the network and causing denial of 

service (DOS) to other genuine aircraft in the cell. Hence, Loss of communication using this 

technique is estimated around 10% in a cell which amounts to 0.05% considering the entire NAS 

region.  The availability of capabilities required to cause such a threat is estimated around 90% 

(without aircraft credentials).  Hence the hazard score for Loss of Service is estimated around 

0.045% and its level is “Extremely Improbable”.   

 

Even considering the possibility of gaining access to the ground network, NAS may have 

sufficient policy implementations for data access restricting an aircraft’s visibility to NAS’s 

critical data. At the maximum, the hacker may be able to send wrong information about the 

aircraft being masqueraded, but the hacker may not be able to modify any other data existing in 

the NAS network. Hence the extent of Loss of Data Integrity is estimated around 20% within a 

cell and the availability of required capabilities is estimated around 10% considering the 

difficulty in accessing aircraft credentials. Hence, Loss of Data Integrity score is 0.01% and its 

level is “Extremely Improbable”.   

 

5.4.1.4. ROGUE BASE STATION 

Rogue base stations may be used by miscreants to fake the legitimate base station in a region and 

gain access into aircraft networks. A rogue base station (BS) may listen to the identities and 

credentials of genuine base station and use them in its broadcast with higher signal power so that 

aircraft in that region are attracted towards the fake base station.  The aircraft trying to logon to 

the fake base station may be vulnerable to attacks, as the hacker may gain access to aircraft network 

data. But most of the mobile networks use mutual authentication procedure during logon in which 

both the base station and the subscriber station (SS) authenticates each other before establishing 

connectivity.  Since the fake base station is just replaying the credentials of an actual base station, 

it will not have the private secret keys or the unshared secrets required for authenticating itself 

with the SS. In the future, it can be assumed that mutual authentication would be mandatory in all 
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mobile networks during link establishment or handover procedures and hence it can be safely 

assumed that a rogue BS may not be able to break into the aircraft network.  But the rogue base 

stations may cause a temporary denial of service, as it may cause multiple unsuccessful logon 

attempts at aircraft subscribers.  However, as discussed earlier, an SS will look for alternate base 

stations after maximum logon attempts.  

 

Hence a rogue BS may cause marginal loss to communications within a cell, with an approximate 

figure of 10% damage to a cell’s communication. The capabilities availability is estimated around 

80%. The overall loss of communication to NAS environment is calculated as a hazard score of  

0.04% which is “Extremely Improbable”.  Unless the rogue BS has access to the credentials of a 

legitimate BS, it may not be able to cause any data integrity issue in the network. Even in extreme 

cases, where it has access to legitimate BS credentials, the extent of impact to data integrity would 

be limited to a few aircraft within a cell. Hence, the loss of data integrity is estimated around 0.5% 

(1 out of 200 cells) and the availability of such capability is estimated around 1% considering 

robust credential management infrastructure. The overall loss of data integrity to NAS is estimated 

as 0.005% and “Extremely Improbable”.   

 

5.4.1.5. KEY MANAGEMENT ISSUES 

The mobile networks use certificates that contain information about shared public keys along with 

cryptographic suites for data security. Future NAS environment may use multiple such certificates 

for various purposes like, authentication of different user categories like aircraft, airlines, ATC 

and other service providers, VPN security, application security, selective authorization for 

different regions, etc. Hence the industry may develop a robust framework for issuing and 

managing these certificates. The NASA data exchange architectures discussed in Phase 1 Reports 

assume a common authentication framework in the ground side regulated network to authorize 

aircraft to use the networks. The front end access networks do not perform authentication by 

themselves, but pass the logon credentials to a common authenticator located in the regulated 

network at the back end. Based on the decision from the common authenticator, the access 

networks either allow or reject logon requests from aircraft. Such a centralized mechanism would 

help to avoid variations in the security procedures deployed across access networks compromising 

the security doctrines laid out for aeronautical applications. 

 

The management of such centralized infrastructure for issuing keys, transferring private secrets 

securely to the network entities, management of the certificate validities and signing authorities, 

etc., requires greater level of safety precautions. Any illegal access to the key management 

infrastructure may permit miscreants to have access or to modify any level of critical data in NAS, 

and thereby causing catastrophic damage to the overall operations of NAS. The extent of damage 

to NAS operations is estimated around 80%.  However it is presumed that the centralized key 

management infrastructure would be well protected and it would be highly impossible to break 

into the system. Hence the capability available for such an act is estimated around 0.1%. Since the 

key loss may cause both Loss of Communication and Loss of Data Integrity, the final hazard core 

of 0.008%, which is “Extremely Improbable”. 

 

It is also theoretically possible that the aeronautical security framework may evolve independently 

without including public access networks within their scope of control. In such cases, aircraft may 

have to use public network credentials to logon to the front end public network and then use the 
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credentials corresponding to the aeronautical network to log into NAS infrastructure. If there are 

multiple access networks deployed in the system, aircraft may need to contain that many number 

of certificates corresponding to each service provider and manage them accordingly. However 

such implementations are not presumed to be deployed for safety critical services, as the 

aeronautical security framework is expected to include access networks’ safety within its scope of 

control. Hence, such architecture is not considered in this analysis.  

 

5.4.1.6. MAN-IN-MIDDLE 

Man-in-Middle threat considers the scenario where a hacker is present inside the cellular network. 

The hacker may attack network elements such as routers, firewalls, authenticators or network 

managers in order to bring down the network. He may also intercept the messages flowing through 

the network, modify them or divert them to wrong destinations to create confusion in the 

communication.  Since cellular network is a commercial network, there are good chances for 

commercial network infrastructure being managed by multiple smaller sub organizations. This 

increases the possibility for an intruder to get into the network from these organizations. Moreover, 

even a common security breach in such public networks may impact aeronautical communications 

though the target of the attacker may not be the aeronautical communications. However, the 

aeronautical messages are expected to be encrypted and secured when they pass through public 

networks using VPN or any other security mechanisms. Hence the hacker may not be able to 

intercept and tamper the aeronautical messages, but he can cause denial of service by dropping the 

packets illegally.  

 

Considering the motivation of a hacker to cause outage in the entire network, the estimated worst 

case impact that would impact the aeronautical communications before the affected network is 

brought back to control is considered as 20% and the availability of capabilities to cause such 

impact is estimated around 2% considering the difficulty in getting into the network and gain 

access to its critical resource, but insignificant impact to data integrity is anticipated. Hence the 

hazard level for Loss of Communication is “Extremely Remote” (0.4%) and Loss of Data Integrity 

is “Extremely Improbable”. 

 

5.4.1.7. BLACK HAT HACKER 

As shown in Figure 5-6, the cellular network is connected to the Internet. Hence, any random black 

hat hacker from the Internet community may try to attack the cellular network. If the attacker gains 

access to the cellular network gateway, the hacker may try to hack into aeronautical network and 

cause interruption to its communications.  Generally this type of attack is similar to the attacks 

being carried out on enterprise networks.  There are commercial solutions available in the market 

to handle such attacks. However, it may not be possible to eliminate such attacks on cellular 

networks completely as they are exposed to the Internet. Hence the aeronautical network may need 

to deploy sufficient tools, software and processes to monitor such attacks and to take corrective 

actions.  

 

Assuming sufficient preventive mechanisms are deployed in the network, the expected loss of 

communication and loss of data integrity to aeronautical communications due to such attacks in 

the cellular network are considered negligible. Hence the hazard levels are estimated as 

“Extremely Improbable” for both “Loss of Communications” and Loss of Data Integrity”.    
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5.4.2. Risk Assessment  

Table 5-4 and  

Table 5-5 contain consolidation of the threats analyzed in the above sections.  

The overall risks associated with the cellular networks to handle various datalink services are 

consolidated in Table 5-6 and Table 5-7. 
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Table 5-4 Hazard Assessment for Loss of Communications in Cellular Network 

 

 

Threat Vector 
Description 

Estimated Loss of Bandwidth 
Access to Required 

Capabilities 

Loss of 

Communication 

Score Remarks  Score Remarks Score Level 

Jamming  

A strong noise transmitted to affect the 

legitimate signal to cause denial of service to 

aircraft in that region  

0.35% 

70% of the cell affected 

due to Jamming. 200 cells 

in NAS 

90.00% 

Cellular Jammers 

are commercially 

Available 

0.32% 
Extremely 

Remote 

Scrambling  

Selective jamming of a specific frames / parts 

of a frame Knowledge of the frame structure 

known to scrambler  

0.50% 
1 cell affected. 200 cells 

per NAS 
50.00% 

May be difficult to 

build. But COTS 

HW can be used.   

0.25% 
Extremely 

Remote 

Impersonating 

Aircraft (AC)  

Hacker uses a legal Mobile Device with AC 

credential to impersonate AC and gain illegal 

access to the network.  

0.05% 

Hacker causes Denial of 

Service At least to 10% of 

aircraft in a cell  

10.00% 
Difficult to get AC 

credentials 
0.01% 

Extremely 

Improbable 

Rogue BS  

The ground station or Base station faked by a 

Rogue Station. Rogue Station listens to BS ID 

and other credentials and uses them in its 

broadcast with higher power so that Mobiles 

Stations are attracted towards it.  

0.05% 

10% reduction in the 

bandwidth. Mutual 

Authentication will inhibit 

AC logging into BS. DOS 

is possible.  

70.00% 

BS credentials 

difficult to get. 

Score for BS 

without credentials.  

0.04% 
Extremely 

Improbable 

Key Mgmt 

issues  

 Loopholes in key or credential management 

infrastructure leading to security breach on a 

large scale.  

80.00% 
Major issue. May impact 

the entire NAS.  
1.00% 

Very difficult to 

manipulate 

credentials 

0.80% 
Extremely 

Remote 

Man in the 

Middle 

Hacker is inside the cellular network and 

attacks network element such as 

authenticators, routers, network managers, 

etc., to divert the messages or corrupt the data 

or cause DOS  

20.00% 

This can be a major issue. 

The Hacker may bring 

down the entire cellular 

network. 

2.00% 

Assumed to be 

difficult for Hacker 

to be present inside 

cellular network 

0.40% 
Extremely 

Remote 

Black Hat 

Hacker 

Since cellular network is a commercial 

network it has access to internet. Hence any 

random hacker from internet anywhere may 

try to attack the gateways to ground side 

network.  

2.00% 

Estimate impact is 2% to 

AC communication.  This 

is similar to enterprise 

network hacking.  

5.00% 
Similar to enterprise 

network 
0.10% 

Extremely 

Improbable 
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Table 5-5 Hazard Assessment for Loss of Data Integrity in Cellular Networks 

Threat 

Vector 
Description 

Estimated Impact to Data Integrity 
Access to Required 

Capabilities 
Safety Hazard 

Score Remarks Score Remarks Score Level 

Jamming  

A strong noise transmitted to affect the 

legitimate signal to cause denial of service to 

aircraft in that region  

0.01% 

CRC checks at every layer 

are very robust against data 

corruption 

90.00% 

Cellular Jammers 

are commercially 

Available 

0.0045% 
Extremely 

Improbable 

Scrambling  

Selective jamming of a specific frames / parts 

of a frame Knowledge of the frame structure 

known to scrambler  

0.01% 

CRC checks at every layer 

is very robust against 

corrupted data 

50.00% 

May be difficult to 

build. But COTS 

HW can be used.   

0.0025% 
Extremely 

Improbable 

Impersonating 

AC  

Hacker uses a legal Mobile Device with AC 

credential to impersonate AC and gain illegal 

access to the network.  

0.10% 

Masqueraded AC may 

send wrong information 

but cannot modify critical 

NAS data. 20% of AC data 

within to a cell  

10.00% 
Difficult to get AC 

credentials 
0.01% 

Extremely 

Improbable 

Rogue BS  

The ground station or Base station faked by a 

Rogue Station. Rogue Station listens to BS ID 

and other credentials and uses them in its 

broadcast with higher power so that Mobiles 

Stations are attracted towards it.  

0.50% 

Masqueraded BS may send 

wrong information but may 

not be able to modify 

critical NAS data. 100% of 

AC data within a cell  

1.00% 

BS credentials 

difficult to get. 

Score for BS with 

credentials.  

0.01% 
Extremely 

Improbable 

Key Mgmt 

issues  

 Loopholes in Key or credential management 

infrastructure leading to security breach on a 

large scale.  

80.00% 
Major issue. May impact 

entire NAS.  
0.10% 

Very difficult to 

manipulate 

credentials 

0.08% 
Extremely 

Improbable 

Man in the 

middle 

Hacker is inside the cellular network and 

attacks network element such as 

authenticators, routers, network managers, 

etc., to divert the messages, corrupt the data or 

cause denial of service to all Aircraft.  

2.00% 

May corrupt 10% of 

Cellular Network 

information (5 service 

providers assumed)  

0.20% 

Assumed to be 

difficult for Hacker 

to be present inside 

cellular network 

0.0040% 
Extremely 

Improbable 

Black Hat 

Hacker 

Since cellular network is a commercial 

network it has access to internet. Hence any 

random hacker from internet anywhere may 

try to attack the gateways to ground side 

network.  

2.00% 
10% of a network 

population 
0.50% 

Similar to enterprise 

network 
0.01% 

Extremely 

Improbable 
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Table 5-6 Risk Assessment for Loss of Communication in Cellular Network 

Service Category 
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 Hazard Level  

 

Safety Objective 

Extremely 

Remote 

Extremely 

Remote 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Remote 

Extremely 

Improbable 

Extremely 

Improbable 

Data Communications 

Management Services 

(DCM) 

Probable 

No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Clearance/Instruction 

Service (CIS) 
Remote 

No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Flight Information Service 

(FIS)  
Probable 

No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Advisory Services (AVS) Remote No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Flight Position/Intent/ 

Preference Service (FPS) 
Remote 

No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Emergency Information 

Service ( EIS)  
Probable 

No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Delegated Separation 

Service (DSS) 
Remote 

No Threat No Threat No Threat No Threat No Threat No Threat No Threat 

Miscellaneous Services 

(MCS)  

Extremely 

Improbable Threat Threat No Threat Threat No Threat No Threat No Threat 
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Table 5-7 Risk Assessment for Loss of Data Integrity in Cellular Network 

Service Category 
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Hazard Level  

 

Safety Objective 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Data Communications 

Management Services 

(DCM) 

Remote 

No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Clearance/Instruction 

Service (CIS) 

Extremely 

Remote No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Flight Information Service 

(FIS)  

Extremely 

Remote No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Advisory Services (AVS) 
Extremely 

Remote No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Flight Position/Intent/ 

Preference Service (FPS) 

Extremely 

Remote 
No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Emergency Information 

Service ( EIS)  
Remote 

No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Delegated Separation 

Service (DSS) 

Extremely 

Remote No Impact No Impact No Impact No Impact No Impact No Impact No Impact 

Miscellaneous Services 

(MCS)  

Extremely 

Improbable 
No Impact No Impact No Impact No Impact No Impact No Impact No Impact 
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Some of the conclusions of this assessment are given below.  

 RF jamming and man-in-middle attacks are the major threats to cellular networks to cause 

loss of communication to critical datalink services. However the impact of jamming may 

not be severe owing to multi-carrier broad spectrum communication. The future cellular 

networks are expected to develop jamming proof mechanisms to minimize such 

vulnerabilities. 

 The following services can be deployed over cellular networks without major issues. 

o Datalink Communication Management  (DCM ) 

o Flight Information Service (FIS)  

o Emergency Information services (EIS ) 

o Clearance Instruction Service (CIS)  

o Advisory Service (AVS) 

o Flight Position/Intent/Preference Service (FPS) 

o Delegated Separation Service (DSS) 

 MCS services like Autoexec applications that are used to control aircraft remotely from 

ground using datalinks, may require higher level of network robustness and hence they are 

vulnerable to most of the threat vectors identified for cellular networks. Hence, the cellular 

network alone may not be able to support such datalink services. 

 

5.5. ARCHITECTURE OPTION 2 – SATELLITE NETWORK 

The architecture option 2 based on satellite networks is shown in Figure 5-7. The major 

components of a satellite network are: 1) GEO satellites that orbit around the earth at an altitude 

of approximately 35,786 Km above the sea level, 2) earth feeder stations to provide connectivity 

between satellites and ground stations and 3) aircraft modems to provide communication between 

satellites and aircraft. Beyond Ground Earth Stations, the network may use telecom infrastructure 

or the Internet to connect to the ground side aeronautical network or any other enterprise network. 

The satellite network is expected to provide network connectivity to both safety critical datalink 

applications and passenger applications.  
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Figure 5-7  Security Threats to Satellite Network 

Future GEO stationary satellites may use Ka band predominantly for both forward (satellite-to-

aircraft) and return links (aircraft-to-satellite).  The NAS region may have 75 to 100 spot beams 

spanning over an area of around 133,000 square kilometers. The US region may be supported by 

a pair of Ground Earth Stations for redundancy purposes, while the entire world may have three 

pairs of Earth Stations. Therefore, the entire aircraft data traffic over NAS region would be 

consolidated through a pair of feeder links towards the ground network. As the satellites are located 

at high altitudes, their communications would require phenomenal transmission power and focused 

directional beams. Such high power is required to compensate for the signal attenuation due to 

huge path loss over the long distance. Normally, the transmission power of feeder links will be at 

least ten times greater than that of spot beams.  Typical path loss in Ka band for Geo satellite 

communication would be around 215 dB. Ka band also suffers from weather conditions that impact 

signal transmissions further.  

 

5.5.1. Threat Analysis 

Figure 5-7 shows possible major threats to satellite networks such as, signal jamming in feeder 

links and user links, man-in-middle attacks in the ground portion of satellite network and black hat 

hacker attacks from the Internet. Jamming threat is analyzed in detail in the following subsections, 

while man-in-middle and black hat hacker attacks are similar to the ones explained in section 5.4. 

 

5.5.1.1. JAMMING 

GEO satellites may be viewed as difficult systems to jam, as they are placed at very high altitudes. 

Simple ground based jammers with omni-directional antennas will never be able to interrupt the 

signals at GEO satellites, owing to tremendous path loss. Jammers would require millions of watts 
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of noise to reach the satellites, compensating path loss and other miscellaneous losses during their 

propagation. Practically, it is impossible to achieve such a high transmission power. However, 

satellites expose more wireless links to jammers such as, feeder uplinks/downlinks and user 

uplinks/downlinks, providing more vulnerable points for attacks. Moreover, technologies like, 

directional antennas, Unmanned Air Vehicles (UAVs) high power sources, etc., are expected to 

become commercially available in the 2060 timeframe and hence, the attackers would be capable 

of using such technologies in the future to develop sophisticated devices for jamming satellite 

systems. Some of the jamming techniques that could be deployed against satellite networks are 

explained below.  

 

1. Full Barrage 

In this attack, random noise is generated across the entire transmission spectrum to 

degrade satellite link performances. These jamming devices can be easily 

implemented, but the power requirements of such devices would be extremely high.  

 

2. Partial Jamming 

This technique uses power optimally to generate noise in a limited portion of the 

operational spectrum. Hence, partial jamming may cause more degradation to a 

communication link performance compared to full barrage jammers.   

 

3.  Single Tone: 

Single tone jamming can be very effective against systems that use single carrier 

frequency for their transmissions, but the advanced satellite systems are expected 

to be based on multiple carrier frequencies and use spread spectrum for their 

communications. Hence, the impact of such jammers to modern satellite systems 

would be very negligible.  

 

4. Pulsed Multi-Tone 

In pulsed multi-tone jamming, random short pulses with high power and small duty 

cycle are generated across the entire operating spectrum to jam the signals in the 

communication link. This techniques uses power very optimally. Hence it can be 

one of the most effective techniques to cause large impact to satellite 

communications using less power.  

 

5. Follower 

In this technique, the jammer understands signals, underlying communication 

technologies, frequency hopping, and other anti-jamming techniques implemented 

in the transmitter to jam its signals. Hence the follower can be very effective, even 

against devices that have anti-jamming techniques implemented. However, these 

kinds of systems would be very difficult to implement, as high technical capabilities 

are required to develop them.   

 

A satellite network has at least three network devices that are exposed to jamming attacks. They 

are receivers at satellite, aircraft and ground earth stations. The following subsections explain the 

potential jamming attacks possible on these devices.  
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5.5.1.1.1. Threats to Receivers at Satellites 

The footprint of a GEO satellite is very large, as it covers over 35% of total earth’s surface. 

Therefore, geometrically, GEO satellites can be easily targeted by an attacker, as he would be able 

to jam the main lob of the transmitted signals even from a region located outside US boundaries. 

However, the power required to jam these signals at satellites would be immensely high due to the 

propagation loss of around 215 dB to the signal. Without directional antennas, even to create a 

noise power of -150 dBm/Hz at satellite receivers, the amount of transmission power required on 

ground level would be equivalent to 70dBm/Hz.  If a bandwidth of 1 GHz is considered, the total 

power requirement would be 160 dBm (more than a billion kilowatt!!). Hence, it may not be 

possible to affect signals at satellites without using directional antennas.   

 

As shown in Figure 5-8, a jammer may choose to attack a feeder link or a user link. To attack a 

feeder link, the jammer would require transmitters with very high power and large directional 

antennas, similar to the ones used in ground earth stations, to focus noise transmissions towards 

GEO satellites accurately. Hence, the required equipment capabilities are very high and unless 

funded by government agencies or huge organizations, acquiring such technical capabilities would 

be impossible. Hence it is concluded that jamming feeder uplink signals would be very difficult.  

 

 

Figure 5-8  Jamming at Satellites 

 

For user link jamming, equipment similar to aircraft modems could be deployed. Such equipment 

may be easier to acquire, but its impact to overall communications would be marginal.   

 

Table 5-8 summarizes different jamming techniques and their impact to receivers at satellites.  

Shared Satellite 
Network 

Jammer 

Jammer 
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Jamming 

Technique 
Description 

% of Loss 

of 

Bandwidth 

% of Loss 

of Data 

Integrity 

Remarks 

Full 

Barrage 

Noise generated in the entire 

communication band to 

interrupt the signal receptions 

0.01% 0.0001% 

It is practically impossible to 

generate huge power to jam  

satellites, as they  are located at 

very high altitude 

Partial 

Spectrum 

 Attacker chooses a part of 

operational spectrum to jam.  

 

 

0.50% 0.0001% 

If directional antennas are used 

and feeder links are targeted, it 

may cause very minimal 

degradation to communications. 

Assumption 1% of the spectrum 

targeted and 50% effectiveness 

Single Tone 

A single carrier frequency is 

targeted and corrupted.  

 

0.10% 0.0001% 

Most of the satellite system 

would use multi carrier 

communication. Hence the 

impact is considered to be very 

less.  

Pulsed 

Multi Tone 

High strength pulses spread 

across the operational spectrum 

transmitted. Uses power in an 

effective way. 

10% 0.0001% 

 May cause considerable amount 

of degradation if feeder link is 

affected. Assumption is based 

on the usage of directional 

antennas and high powered 

transmitters.  

Follower 

Equipage similar to ground 

stations used. Follower can 

understand the signal, 

technology, anti-jamming 

mechanism and follows 

transmitters and its frequency 

hops in order to spoil the 

reception 

20% 0.0001% 

Can be very effective, but, very 

complex to implement. 20% 

degradation assumed 

considering the usage of 

equipment levels similar to 

Ground Earth Stations.  

 

 

 

5.5.1.1.2. Threats to aircraft receivers 

The possible scenarios of jamming aircraft modems are provided in Figure 5-9. Aircraft receivers 

can be jammed either from ground or from UAVs. 

 

Table 5-8 Impact of Jamming on Receivers at Satellites 

Impact on Receivers at Satellites 
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Figure 5-9  Jamming at Aircraft 

In ground based jamming, a strong noise is sent from ground towards aircraft to impact the 

reception of downlink signal from satellites. Generally, the antennas of satellite modems are 

installed on the top of aircraft’s fuselage and these antennas are directional and steered towards 

satellites. Hence, the aircraft body itself will act as a huge barrier for the ground based jammers. 

Therefore, the impact of ground based jammers on aircraft modems would be very minimal.  

 

However, jammers hosted in UAVs flying at altitudes higher than that of aircraft will be able to 

affect satellite downlink signals at aircraft receivers. The strength of the transmitted signals from 

satellites would be weak at aircraft modems considering the huge path loss during their 

propagation from GEO orbits. Hence it would be possible to jam these signals from UAVs, even 

with considerably low noise power. For example, if a satellite transmitter’s EIRP power is around 

1000 watts (60dBm) at its transmitter antenna, considering the path loss of 213 dB and other 

miscellaneous losses amounting to 12 dB, the signal power at the receiver antenna of an aircraft 

will be around -165 dBm. UAVs flying at an altitude of 30 Km above the sea level would require 

only 1 dBm (1.25 milliwatts) transmit power to generate noise equal to the signal strength at 

aircraft receivers. The path loss from the UAV would be only 151 dB, considering UAV altitude 

of 30 to 40 Km above sea level. Hence an UAV, equipped with a jammer, even with 10 watts 

would be able to jam communications between satellites and aircraft phenomenally. UAV based 

jammers are estimated to impact aircraft in a region equivalent to 50% of a single spot beam 

footprint.  

 

Table 5-9 summarizes different jamming techniques and their impact to receivers at aircraft. 
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Table 5-9 Impact of Jamming on Receivers at Aircraft 

Impact on Receivers at Aircraft 

Jamming 

Technique 
Description 

% of Loss 

of 

Bandwidth 

% of Loss 

of Data 

Integrity 

Remarks 

Full 

Barrage 

Noise generated in the entire 

communication band to 

interrupt the signal 

receptions 

 

 

0.2500% 0.0001% 

 Ground based jammers may not 

impact aircraft, as the antennas are 

isolated from jammers by the body 

of the aircraft.. UAVs deployed may 

be able to impact up to 50% of a 

spot beam area with 50% loss of 

BW to ACs. For airport region the 

number of AC impacted could be 

high. 

Partial 

Spectrum 

 Attacker chooses a part of 

operational spectrum to jam.  
0.2500% 0.0001% 

Attacks based on UAVs possible. 

Impact would be similar to Full 

Barrage 

Single 

Tone 

A single carrier frequency is 

targeted and corrupted.  

 

0.05% 0.0001% 

Most of the satellite system would 

use multi carrier communication. 

Hence the impact is considered to be 

very less. 1% of one spot beam is 

assumed to be impacted 

Pulsed 

Multi Tone 

High strength pulses spread 

across the operational 

spectrum transmitted. Uses 

power in an effective way. 

0.400% 0.0001% 

 UAV based jamming may have 

similar impact. 80% loss of BW to 

ACs within 50% of spot beam area 

assumed to be impacted in the 

Airport regions 

Follower 

Equipage similar to ground 

stations used. Follower can 

understand the signal  

technology, anti jamming 

mechanism and follows 

transmitters and its 

frequency hops in order to 

spoil the reception 

0.4500% 0.0001% 

Can be very effective, but, very 

complex to implement.  Worst case 

scenario of 90% loss of 

communications to 50% of AC 

within a spot beam footprint 

assumed.  

 

5.5.1.1.3. Threats to Earth Station  

The earth stations have large dish antennas with high directionality. Hence it may not be possible 

to jam these antennas from a ground based jammers. The possibility of ground based jammers 

getting physically closer to the dish antenna and injecting noise within its solid angle of 

reception may be very difficult. However, UAVs flying at altitudes around 20 Km to 30 Km 

should be able to accomplish this without much of a geometrical problem.  

 

Figure 5-10 shows a scenario of an UAV based jamming of an earth station. As discussed earlier 

UAVs with moderate jamming power and directional antennas should be capable of jamming 

earth stations. The feeder link contains the consolidated data traffic from all aircraft.  The GEO 

satellite system may have a pair of Earth Stations working in redundant mode to handle the entire 

NAS region traffic. Hence the feeder link attack may cause serious impact to NAS operations. 
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Figure 5-10  Jamming at Earth Station 

 

Table 5-10 summarizes different jamming techniques at ground earth stations. 

Table 5-10 Impact of Jamming on Receivers at Ground Earth Stations 

Impact on Receivers at Ground Earth Stations 

Jamming 

Technique 
Description 

% of Loss of 

Bandwidth 

% of Loss 

of Data 

Integrity 

Remarks 

Full 

Barrage 

Noise generated in the entire 

communication band to 

interrupt the signal receptions 

1.00% 0.0001% 

Ground based Jammers 

may not be effective. 

UAVs equipped with 

jammers may cause 

damage. 1% impact to 

feeder link assumed 

Partial 

Spectrum 

 Attacker chooses a part of 

operational spectrum to jam.  
5.00% 0.0001% 

Power can be utilized more 

optimally. Considering 

damage to 10% of the 

spectrum with 50% 

efficiency.  

Single Tone 
A single carrier frequency is 

targeted and corrupted.  
0.10% 0.0001% 

Most of the satellite system 

would use multi carrier 

communication. Hence the 

impact is considered to be 

very less.  

Pulsed 

Multi Tone 

High strength pulses spread 

across the operational 

spectrum transmitted. Uses 

power in an effective way. 

50% 0.0001% 

 May cause considerable 

amount of degradation to 

feeder links. 50% damage 

to a feeder link assumed 

Shared Satellite 
Network 

UAV 
Jammer 

NASA/CR—2015-218842 107



 

Impact on Receivers at Ground Earth Stations 

Jamming 

Technique 
Description 

% of Loss of 

Bandwidth 

% of Loss 

of Data 

Integrity 

Remarks 

Follower 

Equipage similar to ground 

stations may be used. 

Follower can understand the 

signal , technology, anti 

jamming mechanism and 

follows transmitters and its 

frequency hops in order to 

spoil the reception 

75% 0.0001% 

Can be very effective, but, 

very complex to 

implement. 75% damage 

assumed 

 

5.5.2. Capability Assessment for Jamming 

UAV technologies are expected to mature over decades, acquiring capabilities to support long 

uninterrupted flight hours. Some of the internet companies show major interests to offer network 

access in remote areas of the world using cost effective UAV based solutions. Considerable 

amount of advancements are also happening in fuel cell technologies in increasing the capacity of 

fuel cells and reducing their form factors. Such fuel cells could power UAVs and onboard 

electronics in future. The technology advancements in metamaterials may yield lightweight, 

electronically steerable directional antenna that may not have moving parts or large dishes. These 

directional antennas could be easily hosted over UAVs.  Hence considering the 2060 timeframe, 

jammers may not have difficulties in building jamming devices based on UAV platforms.  

 

A rough estimate on the availability of technology capabilities for both UAV based and ground 

based jamming of satellite networks is provided in Table 5-11.  

 

Table 5-11 Capability Assessment for Satellite Network Jamming 

Electronics Availability 

Full Barrage Partial 
Single 

Tone 

Pulsed Multi 

tone 
Follower 

20% 80% 100% 75% 10% 

UAV Platform 

Availability 
30% 6.00% 24.00% 30.00% 22.50% 3.00% 

Ground Based  

Platform 

Availability 

50% 10.00% 40.00% 50.00% 37.50% 5.00% 

Platform 

Availability 
40% 8.00% 32.00% 40.00% 30.00% 4.00% 

 

 

5.5.3. Risk Assessment 

This section consolidates safety hazard assessments for Loss of Communications and Loss of Data 

Integrity in Table 5-12 and Table 5-13  and overall risk assessments for supporting various datalink 

services in Table 5-14 and Table 5-15. 
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Table 5-12 Hazard Assessment for Loss of Communication in Satellite Networks 

Jamming 

Techniques 
Description 

Access to 

Required 

Capabilities 

% Loss of Bandwidth Hazard 

Satellite 

Receiver 
AC Receiver 

GES 

Receiver 
Score Level 

Full Barrage 

Noise generated in the entire 

communication band to 

interrupt the signal 

receptions 

10% 0.01% 0.25% 1.00% 0.13% 
Extremely 

Improbable 

Partial Spectrum 
 Attacker chooses a part of 

operational spectrum to jam.  
40% 0.50% 0.25% 5.00% 2.30% Remote 

Single Tone 
A single carrier frequency is 

targeted and corrupted.  
50% 0.10% 0.05% 0.10% 0.13% 

Extremely 

Improbable 

Pulsed Multi Tone 

High strength pulses spread 

across the operational 

spectrum transmitted. Uses 

power in an effective way. 

37% 10% 0.40% 50% 22.35% Probable 

Follower 

Equipage similar to ground 

stations used. Follower can 

understand the signal , 

technology, anti jamming 

mechanism and follows 

transmitters and its frequency 

hops in order to spoil the 

reception 

5% 20% 0.45% 75% 4.77% Remote 
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Table 5-13 Hazard Assessment for Loss of Data Integrity in Satellite Networks 

Jamming 

Techniques 
Description 

Access to 

Required 

Capabilities 

Loss of Data 

Integrity 

Hazard 

Score Level 

Full Barrage 

Noise generated in the entire 

communication band to interrupt 

the signal receptions 

10% 0.00010% 0.00001% 
Extremely 

Improbable 

Partial Spectrum 
 Attacker chooses a part of 

operational spectrum to jam.  
40% 0.00010% 0.00004% 

Extremely 

Improbable 

Single Tone 
A single carrier frequency is 

targeted and corrupted.  
50% 0.00010% 0.00005% 

Extremely 

Improbable 

Pulsed Multi Tone 

High strength pulses spread 

across the operational spectrum 

transmitted. Uses power in an 

effective way. 

37% 0.00010% 0.00004% 
Extremely 

Improbable 

Follower 

 

 

 

 

Equipage similar to ground 

stations used. Follower can 

understand the signal , 

technology, anti jamming 

mechanism and follows 

transmitters and its frequency 

hops in order to spoil the 

reception 

5% 0.00010% 0.00001% 
Extremely 

Improbable 
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Table 5-14 Risk Assessment on Loss of Communications in satellite Networks 

Service Category 

Loss of 

Communications 

F
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F
o

ll
o
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Safety Hazard 

 

Safety Target 

Extremely 

Improbable 

Remote Extremely 

Improbable 

Probable Remote 

Data Communications 

Management Services (DCM) 
Probable Ok OK OK OK OK 

Clearance/Instruction Service 

(CIS) 
Remote OK OK OK Threat OK 

Flight Information Service 

(FIS)  
Probable OK OK OK OK OK 

Advisory Services (AVS) Remote OK OK OK Threat OK 

Flight Position/Intent/ 

Preference Service (FPS) 
Remote OK OK OK Threat OK 

Emergency Information 

Service ( EIS)  
Probable OK OK OK OK OK 

Delegated Separation 

Service(DSS) 
Remote OK OK OK Threat OK 

Miscellaneous Services(MCS)  
Extremely 

Improbable 
OK Threat OK Threat Threat 
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Table 5-15 Risk Assessment on Loss of Data Integrity in satellite Networks  

 

Service Category 

Loss of 

Communications 
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Safety Hazard  

 

Safety Target 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Improbable 

Data Communications 

Management Services (DCM) 
Probable Ok Ok Ok Ok Ok 

Clearance/Instruction Service 

(CIS) 
Remote OK OK OK OK OK 

Flight Information Service (FIS)  Probable OK OK OK OK OK 

Advisory Services (AVS) Remote OK OK OK OK OK 

Flight Position/Intent/ 

Preference Service (FPS) 
Remote OK OK OK OK OK 

Emergency Information Service 

( EIS)  
Probable OK OK OK OK OK 

Delegated Separation 

Service(DSS) 
Remote OK OK OK OK OK 

Miscellaneous Services(MCS)  
Extremely 

Improbable 
OK OK OK OK OK 
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Some of the conclusions of the assessments are given below.  

 By design, the entire air-ground data is consolidated through feeder links to reach ground 

stations in satellite and downstream networks. Hence any impact to feeder links may cause 

severe performance degradation over a wide area.    

 The advancements in technologies such as UAVs, fuel cells and lightweight directional 

antennas may help miscreants to design airborne jammers that can cause serious damage 

to feeder link performances.  

 Hence, the assessment concludes that, unless the feeder link is safeguarded from UAV 

based jamming attacks, the satellite network may not be safe for datalink services such as 

Clearance/Instruction Service (CIS), Advisory Services (AVS), Flight Position/Intent/ 

Preference Service (FPS), Delegated Separation Service (DSS) and Miscellaneous Services 

(MCS). 

 

5.6. ARCHITECTURE OPTION 3 – SO-OFDMA NETWORK  

As per the concept definition of SO-OFDMA network in Phase 1 of the project, the network does 

not have its own security framework at the Physical (PHY) and Link layers. The packets are 

broadcasted in clear text at the SO-OFDMA level. As per the model, if the data messages are to 

be secured, they have to be protected by the higher layers, either at higher MAC level or at network 

layer level. Hence, this architecture exposes SO-OFDMA link control messages and the broadcast 

messages that originate at SO-OFDMA level to cyber attacks. Figure 5-11 shows SO-OFDMA 

network architecture and its vulnerabilities to various attacks.  

 

 
 

  

Figure 5-11  Security Threats to SO-OFDMA network 
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. 

In the SO-OFDMA architecture the base stations do not control or coordinate network functions, 

but act as mere data nodes connecting aircraft to the ground network. The ground node may be 

connected to aeronautical ground network as well as to the internet for accessing SWIM services. 

Hence this architecture exposes the network to a host of attacks similar to the ones explained in 

section 5.4 for cellular networks.  

 

5.6.1. Threat Analysis 

The types of threats possible in an SO-OFDMA network are: 

 Jamming 

 Scrambling (Selective Jamming)  

 Impersonating AC 

 Impersonating Ground Node 

 Key Management Issue 

 Black Hat Hacker Attack 

 

Please refer Section 5.4 for details about these threats as these attacks are similar to the ones 

explained there. 

 

5.6.2. Risk Assessment 

Safety hazard assessments for SO-OFDMA network is provided in Table 5-16 and Table 5-17  

and the overall risk assessments of Loss of Communications and Loss of Data Integrity in 

supporting various datalink services are provided in Table 5-18 and Table 5-19.  
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Table 5-16 Hazard Assessment on Loss of communications in SO-OFDMA Networks  

Threat Vector Description 
Estimated Loss of Communication Access to Required Capabilities Safety Hazard 

Score Remarks Score Remarks Loss of Communications 

Jamming 

A strong noise transmitted to affect 

the legitimate signal to cause denial 

of service to aircraft in that region  

0.25% 

Assuming 20% of the pseudo cell 

communication impacted by 

continuous jamming. Creating 

continuous jamming noise will require 

high amount power.  The cell range is 

larger than commercial mobile towers.  

90.00% 

Generic commercial 

cell phone jammers 

may be deployed  

0.23% 
Extremely 

Improbable 

Scrambling 

Selective jamming of a specific 

frames / parts of a frame 

Knowledge of the frame structure 

known to scrambler  

0.50% 

The entire cell operations can  be 

brought down by selectively knocking 

off control part of the frame  

50.00% 
May require additional 

engineering efforts.  
0.25% 

Extremely 

Remote 

Impersonating 

AC 

Hacker uses a SO-OFDMA modem 

with AC Id to impersonate AC and 

broadcast wrong AC positions and 

IDs to confuse the network.  

0.40% 

Broadcast traffic may be severely 

impacted. Flooding AC Ids and 

positions may confuse the network 

50.00% 

SO-OFDMA modem 

can be modified to 

send wrong 

information 

0.20% 
Extremely 

Improbable 

Impersonating BS 

The ground station or Base station 

faked by a Rogue Station/Aircraft. 

Rogue Station uses legitimate Base 

station ID in its routing broadcast 

so that all aircraft in the pseudo cell 

and adjacent pseudo cells are 

attracted towards it.  

12.00% 

The entire routing information may be 

modified in the region covering 

multiple cells. (Assuming 30 cells 

impacted by wrong info. The impact is 

on Air Ground communications. Air to 

Air may remain unaffected)  

50.00% 

BS credentials difficult 

to get. Score for BS 

with credentials.  

6.00% Remote 

Key Mgmt issues 

 Loopholes in Key or credential 

management infrastructure leading 

to security breach on a large scale.  

50.00% Major issue. May impact entire NAS.  0.10% 
Very difficult to 

manipulate credentials 
0.05% 

Extremely 

Improbable 

Black Hat Hacker 

SO-OFDMA may use cellular 

network for ground connectivity. 

Since cellular network is a public 

network any random hacker from 

internet anywhere may try to attack 

the gateways to ground side 

network.  

2.00% 10% of a network population 0.50% 
Similar to enterprise 

network 
0.01% 

Extremely 

Improbable 
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Table 5-17 Hazard Assessment on Loss of Data Integrity in SO-OFDMA Networks  

Threat Vector Description 
Estimated Loss of Data Integrity Access to Required Capabilities Safety Hazard 

Score Remarks Score Remarks Loss of Data Integrity 

Jamming 

A strong noise transmitted to affect the 

legitimate signal to cause denial of 

service to aircraft in that region  

0.01% 

Jamming may not impact 

data integrity owing to 

integrity algorithms  

90.00% 

Generic commercial cell 

phone jammers may be 

deployed  

0.00% 
Extremely 

Improbable 

Scrambling 

Selective jamming of a specific frames / 

parts of a frame Knowledge of the frame 

structure known to scrambler  

0.01% 
Same as Jamming. May not 

impact integrity much 
50.00% 

SO-OFDMA modem can 

be modified to impact the 

control frames May require 

additional engineering 

efforts.  

0.00% 
Extremely 

Improbable 

Impersonating AC 

Hacker uses a SO-OFDMA modem with 

AC Id to impersonate AC and broadcast 

wrong AC positions and IDs to confuse 

the network.  

0.50% 

As the broadcasts are sent as 

clear text, Surveillance 

information may get 

severely impacted in the cell 

range. (1 cell out of 20 cells 

assumed) 

50.00% 

SO-OFDMA modem can 

be modified to send wrong 

information 

0.25% 
Extremely 

Remote 

Impersonating BS 

The ground station or Base station faked 

by a Rogue Station/Aircraft. Rogue 

Station uses legitimate Base station ID 

in its routing broadcast so that all 

aircraft in the pseudo cell and adjacent 

pseudo cells are attracted towards it.  

12.00% 

Surveillance information in 

multiple cells may be 

impacted causing confusion 

in the region. (8-% of 30 

cells out of 200 cells 

impacted ) 

50.00% 

SO-OFDMA modem can 

be modified to send wrong 

information 

6.00% Remote 

Key Mgmt issues 

 Loopholes in Key or credential 

management infrastructure leading to 

security breach on a large scale.  

50.00% 
Major issue. May impact 

entire NAS.  
0.10% 

Very difficult to 

manipulate credentials 
0.05% 

Extremely 

Improbable 

Black Hat Hacker 

SO-OFDMA may use cellular network 

for ground connectivity. Since cellular 

network is a commercial network it has 

access to internet. Hence any random 

hacker from internet anywhere may try 

to attack the gateways to ground side 

network.  

2.00% 
10% of a network 

population 
0.50% 

Similar to enterprise 

network 
0.01% 

Extremely 

Improbable 
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Table 5-18 Risk Assessment on Loss of communications in SO-OFDMA Networks  
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Safety Hazard 

 

Safety Objective 

Extremely 

Improbable 

Extremely 

Remote 

Extremely 

Improbable 

Remote Extremely 

Improbable 

Extremely 

Improbable 

Data Communications Management 

Services (DCM) 
Probable No Threat No Threat No Threat 

No 

Threat 
No Threat No Threat 

Clearance/Instruction Service (CIS) Remote No Threat No Threat No Threat 
No 

Threat 
No Threat No Threat 

Flight Information Service (FIS)  Probable No Threat No Threat No Threat 
No 

Threat 
No Threat No Threat 

Advisory Services (AVS) Remote No Threat No Threat No Threat 
No 

Threat 
No Threat No Threat 

Flight Position/Intent/ Preference 

Service (FPS) 
Remote No Threat No Threat No Threat 

No 

Threat 
No Threat No Threat 

Emergency Information Service (EIS)  Probable No Threat No Threat No Threat 
No 

Threat 
No Threat No Threat 

Delegated Separation Service (DSS) Remote No Threat No Threat No Threat 
No 

Threat 
No Threat No Threat 

Miscellaneous Services (MCS)  
Extremely 

Improbable 
No Threat Threat No Threat Threat No Threat No Threat 
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Table 5-19 Risk Assessment on Loss of Data Integrity in SO-OFDMA Networks  

Service Category 

Loss of Data integrity 
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Safety Hazard 

 

Safety Objective 

Extremely 

Improbable 

Extremely 

Improbable 

Extremely 

Remote 

Remote Extremely 

Improbable 

Extremely 

Improbable 

Data Communications 

Management Services 

(DCM) 

Remote No Impact No Impact No Impact No Impact No Impact No Impact 

Clearance/Instruction 

Service (CIS) 
Extremely Remote No Impact No Impact No Impact Threat No Impact No Impact 

Flight Information 

Service (FIS)  
Extremely Remote No Impact No Impact No Impact Threat No Impact No Impact 

Advisory Services (AVS) Extremely Remote No Impact No Impact No Impact Threat No Impact No Impact 

Flight Position/Intent/ 

Preference Service (FPS) 
Extremely Remote No Impact No Impact No Impact Threat No Impact No Impact 

Emergency Information 

Service (EIS)  
Remote No Impact No Impact No Impact No Impact No Impact No Impact 

Delegated Separation 

Service (DSS) 
Extremely Remote No Impact No Impact No Impact Threat No Impact No Impact 
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Miscellaneous Services 

(MCS)  
Extremely Improbable No Impact No Impact Threat Threat No Impact No Impact 
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The conclusions of the SO-OFDMA security assessment are listed below:  

 At the current level of definition, SO-OFDMA network may be able to satisfy the 

requirements of Data Communication Management Service (DCM) and Emergency 

Information Service (EIS) only. All other datalink services demand higher level of 

robustness from the network.  

 Lack of security features at link and physical layer is a major concern for SO-OFDMA 

network to support safety critical datalink applications.  

 Link layer broadcast in clear text communication makes the network vulnerable to 

masquerading attacks that may impact data integrity. It may not be possible to support 

surveillance applications requiring air-to-air broadcast such as ADS-B, if there are integrity 

issues. 

 SO-OFDMA being defined as an ad hoc network that works without a central network 

control node, the network is immune to single point failures, as experienced by the centrally 

controlled networks. However, the addition of security features at physical and link layers 

would be required to improve the robustness of the network comprehensively.     

 

5.7.   MITIGATION TECHNIQUES 

The security assessments done so far, on the three network architecture options, reveal that none 

of the networks would be able to support all requirements of future safety critical datalink 

services completely. The services like A-Exec involve  controlling aircraft from ground remotely 

and hence they require a very high robust network.  Some of the concerns about the network 

architectures are listed below.  

 Most of the traditional networks are based on the architectures that have central node to 

control network operations. Hence jamming these control nodes may cause network 

outages in the regions serviced by those nodes. 

 Generally in communication networks, the initial control messages for link establishment, 

ranging, etc., are sent in clear text which is vulnerable to attacks. 

 Absence of a common security framework across networks in NAS environment to 

implement common policies, cryptographies and keys, required by NextGen safety critical 

applications, may be viewed as a serious limitation over a period of time. 

 NextGen Datalink applications may become more sensitive even to loss of communications 

in the future. 

 

Considering the above limitations, some mitigations techniques are identified in the following 

sections and the approach to incorporate them in NAS environment is also explained. 

 

5.7.1. Decentralized network 

The main purpose of a decentralized network is to remove the dependency on ground stations to 

control network operations and thereby avoiding single point failures in the network. Aircraft 

flying over a region should be able to form a network in an ad hoc manner and support both air-
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to-air and air/ground communications without the need of a control node. Figure 5-12 illustrates 

a concept to implement ad hoc network over the NAS region. This proposal extends some of the 

concepts from the SO-OFDMA architecture.  

 
The overall NAS space is be divided into cells and capsules. Capsule size is determined based on 

separation minima definition for aircraft in a region so that a capsule can hold only one aircraft at 

any point of time. The frequency spectrum is divided into multiple carrier frequencies. Space Time 

Frequency multiplexing scheme can be followed to allocate resources to a capsule for various 

timeslots. Every capsule is allocated with a schedule of carrier frequency and time slot combination 

that varies dynamically with time. Such resource allocation plan is standardized and loaded into 

aircraft modems. Depending upon the aircraft position, corresponding capsule can be identified by 

the modem and the allocated carrier frequencies for various time slots can be derived from the 

resource plan and utilized accordingly for its transmissions. Thus, the need for a central network 

node to coordinate resource allocations can be eliminated.  
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Figure 5-12 Space Time Frequency Resource Allocation Scheme



 
 

5.7.2. Allocation of Network resources 

The ad hoc network environment for NAS explained in section 5.7.1 would require a mechanism 

to configure aircraft with the pre-allocated network resource plan. Figure 5-13 shows such a 

mechanism for providing resource allocation plans to aircraft.  

 

 

 

 

A common resource allocator manages the overall resource schedule for the NAS region. The 

resource schedule has a mapping of capsules to timeslots and carrier frequencies. The resource 

allocator will periodically configure all ground systems with this information through a secured 

communication link. Aircraft will receive NAS resource allocation plan, only if they are cleared 

for flying.  When an aircraft files a flight plan with ATC, the network resource plan corresponding 

to its time window of flight can be configured into the aircraft on its flight plan approval. Thus the 

system ensures that only the authorized nodes get the resource allocation information of NAS. The 

resource allocator can periodically change the resource allocation schedule for the NAS region to 

improve security.  The network configurations are transferred to aircraft securely as per the 

mechanism defined in section 5.7.5. 

 

5.7.3. Configurations of Security Parameters 

In addition to the resource allocations, security plan can also be configured to the aircraft during 

flight plan filing phase as shown Figure 5-14.  
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Figure 5-13  AC Resource Allocation Mechanism 



The security plan may include cryptographic algorithms and keys that are to be used in each cell 

(if not capsule) for various traffic like broadcasts, unicasts, network packets, Layer 2 packets, 

etc., depending upon the security policies in place. Aircraft can use the appropriate security 

policy for its transmission or reception.  Aircraft and other network nodes are expected to 

support a set of pre-approved security algorithms and the security plan is arrived by selecting a 

combination of security algorithm from the pre-approved list for various traffics. The security 

plan for a region will be refreshed periodically. 

 

5.7.4. Configurable Radios 

Considering 2060 time frame, the availability of software defined radios and capabilities to 

support multiple waveforms in a single radio box would be common, as illustrated in Figure 

5-15.  
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Figure 5-14  Security Plan configuration 



 

Figure 5-15  Radio Parameter Configuration 

 

Hence the radio parameters can also be defined for every cell and configured into the aircraft and 

other network nodes using the same or similar framework explained in section 5.7.3. 

 

5.7.5. Network Configuration Management 

Since the entire network operations depend upon the network configurations, a robust 

configuration management procedure is required to transfer network parameters to aircraft. 

Figure 5-16 illustrates the network configuration management scheme.  

 

 

 

Figure 5-16  Network Configuration Management 

As per this mechanism, an aircraft files the flight plan with the ATC. ATC on approving the flight 

plan passes the flight information to the Network Resource Manager. The Network Resource 

Manager maintains complete information about resource allocation plan, security plan and radio 
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configuration plan for the NAS region. These details are configured into the aircraft as indicated 

in the flight plan. The information exchanges between aircraft, ATC and Network Resource 

Manager would happen through secured datalinks. The trust between the three parties could be 

established by digital certificates signed by common certificate authority servicing the NAS region 

for other datalink services. The network manager periodically refreshes the resource allocation and 

configuration plans. In addition to updating aircraft, the ground nodes also have similar mechanism 

to acquire the network configuration information from the network manager. FAA or any other 

agency appointed by FAA may provide such service in NAS region.   

 

 

 

 

 

5.7.6. Safety Considerations 

Figure 5-17 shows the extent of safety considerations addressed in approach discussed so far.  

 

Figure 5-17  Safety Considerations 

 Waveform designs are configured for every cell. Unless this information is known to the 

intruder, he will never be able to decode the waveforms and extract data out of it. Hence 

the network becomes resistant to eavesdrops at physical layer. 

 The carrier frequencies are allocated for every capsule–timeslot combination. The carrier 

frequencies are spread across the entire aeronautical spectrum used for communication. 

Unless such allocation scheme is available to the jammer, the jammer will not be able to 
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follow the carrier signals to jam it or decode control information. Hence selective jamming 

techniques may not be effective in such networks.  

 The security framework ensures that the messages are protected at MAC and higher layers.  

 In absence of a centralized network control, every node in the network operates 

independently of each of each other. Hence the network is immune to single point failures.  

 

Hence such a network would be very robust and immune to most of the threats.    

 

5.7.7. Strategy for Cellular Network  

As discussed earlier, some minor modifications would be required in cellular networks to support 

air-ground communications. Increased transmission power to support long range communications, 

strategies to handle higher Doppler shifts because of higher aircraft speeds, antenna designs to 

support   emission towards aircraft, etc., are some of the changes anticipated in the cellular network 

designs. Therefore, the base stations are expected to be modified to support air-ground 

communications as shown in Figure 5-18.  

 

 

Figure 5-18  Cellular Network 

Hence, while redesigning the base stations for aeronautical purposes, the security risk mitigation 

techniques identified in the sections above could be implemented at the same time. Beyond base 

stations, the network would be common for both commercial and aeronautical data traffic. There 

are no changes expected in the network nodes such as message switches or gateways that are 

present in the cellular network beyond base stations.    

 

5.7.8. Strategy for Satellite Network  

As per the assessment, the major concern for the satellite network is the attack on its feeder links 

using airborne platforms. UAV based jammers with nominal noise power would be able to jam the 

feeder links at ground earth stations. Hence the strategy for the satellite network is to eliminate the 

feeder links completely for the satellite networks. See Figure 5-19. 
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Figure 5-19  Satellite Network without Feeder Links 

In this proposal, the satellites have only user links for both aircraft and ground systems. ATC 

centers  and airline operations centers may have the user terminals similar to aircraft modems 

installed in their premises.  The satellites have onboard routing/switching capability. Satellites will 

establish direct point to point connections between the user terminals for their communications 

based on their requests. Bandwidth allocations will depend upon the number connections 

established by the terminals. For example: Aircraft may require one or more connections to 

communicate with ATC or airline centers, while ATC centers might require multiple connections 

to communicate with all aircraft within its control.  The satellite network should be capable of 

supporting such dynamic bandwidth aggregation depending upon the connection requirements. 

The satellite control link may make use of user terminal connections for communicating with 

satellite control systems. Thus the feeder link can be completely eliminated in this design and the 

satellite network becomes almost immune to all types of attacks discussed so far.  

 

5.7.9. Jammer Localization 

By implementing the strategies discussed above, the networks may become more robust and 

immune to attacks that would cause network outages. But still jammers would be able to cause 

minor disturbances to the network causing marginal degradation in network performances. Hence, 

it is also important to identify the jamming incidents, locate jammers and stop them to limit the 

duration of disturbances to the network. Figure 5-20 illustrates such a technique to locate jammers.  

 

 

 

 

 

 

 

ATC1  Airline 

ATC2 

Safety Critical NW Domain
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It should be possible to locate the jammers roughly by tracking the noise power continuously along 

the aircraft flight trajectory and applying multilateration technique to determine the approximate 

location of the jammer. Analysis of the jammer localization technique was not within scope of this 

project, but a further study on this area is highly recommended.  

 

5.7.10. Hacker monitoring 

Generally, the networks would be connected to the Internet for accessing some services or to 

provide website/email connectivity to passengers. Hence the network becomes exposed to black 

hat hacker attacks. It should be noted that black hat hacker attacks from the Internet can never be 

avoided completely, but it should be possible to locate the hacker threats and alert network 

administrators for corrective actions.  The corrective actions may include shutting down certain 

interfaces, blocking some traffic, masking some network domains, etc. 

 

As shown in Figure 5-21, traffic monitors can be included in the networks in strategic locations 

to look for patterns of hacker attacks in the network. In case of a hacker attack, the hacker would 

be generating data traffic in a particular pattern, such as continuous login messages, etc. Traffic 

monitors would look for such patterns and identify the potential threats to the network and alert 

the centrally located NAS network monitor. Such a network monitoring framework and tools 

could be considered for deployment in the NAS network. 
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Figure 5-20  Multilateration Technique to Locate Jammers 



 

 

5.8. SUMMARY OF SECURITY ASSESSMENT 

Security assessments were carried out with the objective of identifying the vulnerabilities of 

candidate technologies and architectures to intentional safety threats, assessing safety hazards to 

datalink services and recommending mitigation strategies to improve overall safety aspects of the 

NAS environment. The candidate technologies down-selected from phase 1 tasks were considered 

for the assessment. Future Cellular, GEO Satellite and SO-OFDMA technologies were considered 

for the assessment. The assessment was carried out in three stages, namely, Threat Identification, 

Hazard Estimation and Risk Assessment. Finally, mitigation techniques were identified and the 

strategies to implement them in NAS environment were recommended.  

 

Some of the observations of this assessment are listed below: 

 Cellular networks should be able to handle most of the data link services except the 

applications like Autoexec that would be used to control aircraft remotely from ground 

using datalinks. Such services may require very high network robustness. The architectures 

with base stations controlling network operations are vulnerable to network outages when 

the base stations are targeted by the attackers. RF jamming and man-in-middle attacks are 

the major concerns for Cellular Networks.  

 Satellite networks are generally immune to most of the attacks, but in the 2060 timeframe, 

the attacks based on UAV platforms may become more common and such attacks on feeder 

links at ground earth stations may cause a serious impact in the NAS region. Unless 

protected from such feeder link attacks, the satellite network may not be safe for datalink 
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Figure 5-21  Hacker Monitoring 



 

services such as Clearance/Instruction Service (CIS), Advisory Services (AVS), Flight 

Position/Intent/ Preference Service (FPS), Delegated Separation Service (DSS) and 

Miscellaneous Services (MCS). 

 SO-OFDMA concept in its current level definition does not support security mechanism at 

the PHY and Link levels. This makes SO-OFDMA network highly vulnerable to many 

attacks. The network is susceptible to data integrity issues because of the absence of 

protection for broadcast messages. Unless security features are incorporated in the network, 

the network may not be able to support most of the datalink applications. Assessment 

revealed that SO-OFDMA network may be able to satisfy the requirements of Data 

Communication Management Service (DCM) and Emergency Information Service (EIS) 

only. Hence additional security features is highly recommended.   

 

Satellite and Cellular networks suffer from the central node based architecture that controls 

network operations, while SO-OFDMA network is immune to such single point failures, but, it 

lacks other security features that are available in other networks. Hence, mitigation objectives were 

identified by combining the merits of all networks. Some of the mitigation strategies recommended 

are decentralizing network, pre-allocated network resources, configurable radios, configurable 

security parameters, position based resource allocation scheme and Jammer/Hacker location 

strategies.  
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6.   CONCLUSIONS 

This section summarizes the results of the operational and security assessments of the best 

alternative technologies.  It provides recommendations for future work beyond this project to 

further analyze and develop the technologies and architectures with the goal of defining 

requirements and approach for proof-of-concept activities. 

 

6.1. SUMMARY 

This report provided the results of operational and security assessments of the best technology 

alternatives.  The best alternative technologies were selected based on analyses performed in 

previous analysis and assessment tasks in the project.   The best alternative technologies selected 

include next generation 5G+ cellular, Ku/Ka band SATCOM and SO-OFDMA.  FSO was 

identified as a supplementary technology for high throughput point-to-point links.  In this Task 6, 

the subject of this report, the best alternative technologies and architectures are analyzed in 

operational and security assessments in providing air/ground and air-to-air communications for 

ATM applications in the 2060 timeframe.     

 

The results of the best alternatives assessment reinforce the conclusion of the previous project 

analysis tasks that the three remaining technology and architecture candidates together provide a 

suitable hybrid solution.  They generally meet latency and data throughput performance 

requirements of ATM applications in the 2060 timeframe.  Security was analyzed in terms of the 

susceptibilities inherent in the nature of the technologies.  Potential security protections were 

analyzed for mitigation of the security risks presented by the threats.  Security measures can be 

put in place to mitigate the risks but not completely eliminate the risks.  A defense in depth will 

be a good approach to mitigate risks. Summaries of the operational and security assessments are 

provided below. 

 

Summary of Operational Assessment 

The operational assessment consisted of an operational view analysis and simulation modeling 

analysis.  In the operational view analysis, a concept of operations of communication services 

supporting ATM application services was developed.  It identified information flows of the 

communication services for the following types of data traffic: critical safety services - ATS and 

AOC; non-critical services - AAC and SWIM; and passenger traffic - APC.  The concept of 

operations assumed that these data traffic types, including APC, will share common links in future 

broadband air/ground communication systems in the 2060 timeframe.  Air-to-air communication 

systems were assumed to be dedicated to ATS, AOC and AAC traffic only.   

 

Communication scenarios were analyzed in context of the architectures using the best alternative 

technologies for air/ground and air-to-air communications.  The architectures included ground-

based and HAP-based 5G+ cellular architecture (architecture option 1), Ku/Ka SATCOM 

architecture (architecture option 2) and SO-OFDMA architecture (architecture option 3).  The 

hybrid architecture is a combination of the three architectures and thus an analysis of the hybrid 

architecture was covered by the analyses of the three architectures. 
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The operational view analysis results included the data traffic throughputs or bandwidth predicted 

for the 2060 timeframe for the data traffic types (ATS, AOC, AAC, SWIM and APC) in each 

airspace domain and flight phase (pre-departure, arrival and taxi in APT domain; departure and 

arrival in TMA; operations in ENR, OPR and AOA).  The data traffic was analyzed across various 

aircraft types, including ATR, microjets, BGA, UAS and military aircraft flying civilian routes 

under CAA rules.  The single-aircraft data flow results for each of these aircraft types were used 

for input to the simulation modeling analysis.   

 

The next phase of the operational assessment used modeling and simulation to further assess the 

best alternative technologies.  Starting with the latency, data bandwidth (per-aircraft data traffic 

estimates provided by the operational view analysis) and priority requirements of the data traffic 

types, the architectures were modeled and analyzed, which included computer-based modeling.  

Data packet loss and scalability performance were also analyzed. Aircraft traffic information was 

taken from current ADSI data and extrapolated for the 2060 timeframe. The simulation and 

analysis produced performance results to assess if and how well the technologies met the 

requirements.  The technologies were modeled and analyzed in context of the three architectures.   

 

The modeling and simulation part of the operational assessment utilized a combination of 

modeling of the single-system architectures, which included computer-based modeling of the 

systems, and a traffic and network simulation covering the CONUS.  The traffic and network 

simulation, the Air Traffic Simulation Model Tool, applied the models of the three best alternative 

architectures to a planned CONUS-wide network for air/ground and air-to-air communications.  

The Microsoft Windows® based tool is a NAS network simulation and visualization tool to 

generate performance statistics for analysis and evaluation.  It is a highly configurable tool and 

provides a GUI for setup, operation and report generation.      

 

A summary of the modeling and simulation results are provided below.  

- Ground-based Cellular Network Results 

Latency requirements of ATS, AOC, AAC, SWIM and APC data types were met for high-density 

aircraft traffic (up to 400 aircraft per 2 degree by 2 degree cell).  However, APC, having the lowest 

priority for transmission and much greater traffic volume, experienced significantly more latency 

at 400 aircraft per cell and significant packet loss starting at 50 aircraft per cell.  There was no 

packet loss experienced by ATS, AOC, AAC and SWIM up to 400 aircraft per cell.  To cover the 

CONUS, 360 cells (ground base stations) were needed. 

 

- HAP-based Cellular Network Results 

Results were similar to the results of the ground-based cellular network.  A single HAP cell is able 

to support a greater number of aircraft and thus fewer HAP cells are needed to cover the CONUS 

in comparison to the coverage of ground-based cells.  However, a higher link capacity is required 

for the aircraft-to-HAP link to support the greater number of aircraft in the cell (4 degree by 4 

degree cell).  This link represents a potential bottleneck in traffic flow.  To cover the CONUS, 100 

cells (HAP base stations) were needed. 
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Latency was significantly higher due to the inherent propagation delays in satellite 

communications.  SATCOM is not suitable for latency critical real-time applications.  SATCOM 

supported ATS, AOC and AAC with up to 300 aircraft per spot beam (4 degree by 4 degree spot 

beam).  Packet loss was experienced by SWIM and APC starting at 5 aircraft per spot beam.   The 

potential bottleneck in the SATCOM system is the satellite-to-ground gateway link.  To cover the 

CONUS, 100 spot beams from a satellite were needed.    

 

- Aircraft-to-Aircraft Communications Network Results 

The simulation results showed generally good air-to-air and air/ground coverage across the 

CONUS, based on the aircraft flight schedules, routes and aircraft density represented by the ASDI 

data used in the simulation.   There were instances of disconnected aircraft (from the ground) 

during times when the aircraft did not have a complete path to a ground station.  This occurs in 

sections of lightly traveled routes such as routes between the east and the northwest over areas 

such as Montana.  A disconnected occurrence was also indicated as such when the number of hops 

between an aircraft to a ground station exceeded a maximum number of hops, which was 

configurable in the simulation.  An aircraft RF range of 120 nm was represented as a mobile node 

with a range circle with 2 degree radius.  The ground stations were placed at major airports and 21 

selected airports provided the coverage for the CONUS.   

 

Summary of Security Assessment 

The security assessment considered security in context of the architectures and defined a security 

perimeter boundary to properly set the context of the security analysis of the technologies.  The 

security perimeter included the physical and link layers and the access network layer.  However, 

potential hackers (black hat hackers) operating on the ground-based networks further back from 

the aircraft/ground network in the overall end-to-end network topology were also considered as 

potential threats in the analysis.  The following threats were identified and analyzed: jamming, 

scrambling, aircraft impersonation, rogue (fake) base station, key management breaches, attacks 

from man-in-the-middle hackers and attacks from black hat hackers.  These threats were 

numerically analyzed on the extent of impact they would have on data integrity and loss of 

communications (percentage of system degraded or disrupted by the attack) and the required 

capabilities to effect the attacks (percentage estimate of likelihood the attack can be done given 

cost and complexity to do it).  The product of the impact and likelihood of each threat to data 

integrity and communications was assigned a hazard level classification.  The hazard level of each 

threat was compared against the safety objective of each ATM service to determine the level of 

security risk.  A hazard level that is greater than the safety objective indicates a security risk.  The 

safety objectives of the ATM application services were defined using the same set of 

classifications and were based on COCR   requirements.  Technical mitigations of the security 

risks were identified and analyzed.   
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- Satellite Network Results 



 

A summary of the security assessment results are provided below.  

- Cellular Network Results 

The assessment of cellular networks showed that all data communication services can be supported 

without major security issues with the exception of very safety critical, future services such as the 

Autoexec service, which will require more robust security to protect it against threats. A service 

such as Autoexec is susceptible to jamming, scrambling and rogue base station threats.  

- Satellite Network Results 

Feeder links (satellite-to-ground station) were found to be susceptible to attack.  Emerging and 

more prevalent UAVs were found to be a good platform from which to jam the downlinks in the 

feeder link.   To mitigate this risk, the feeder link could be eliminated in lieu of user links between 

satellite and user terminals on the premises of ground-based users. 

- Aircraft-to-Aircraft Communication Network Results 

The self-organized aircraft-to-aircraft network, which is in the conceptual phase of development, 

was recognized as lacking security mechanisms at this point in its development.  Without security 

mechanisms, it is susceptible to attacks such as jamming and impersonation.  An aircraft-to-aircraft 

network uses non-centralized control as an ad hoc network, which provides some immunity to 

single point failures that can be experienced by centrally controlled networks. 

 

Application of the self-organized cell concept and the concept of the decentralized network with 

appropriate security measures and key management were proposed to mitigate risks.  Aircraft 

would form an ad hoc network to use space, time and frequency domain separation to allocate 

resources and provide security in a way to avoid the impact of attacks on single control points.   

 

Other mitigation strategies include jammer localization and hacker monitoring, which is based on 

the observation that jammers and hackers are typically localized.  By localizing the jammer and 

hackers through monitoring preventive measures can be implemented effectively. 

 

6.2. RECOMMENDATIONS 

Recommendations for further work are provided below.  Further analysis, modeling and simulation 

are needed to define the requirements and approach for proof-of-concept activities to build and 

test systems to validate the requirements.  Validated requirements can subsequently be used to help 

develop standards needed for implementations.  The essential recommendations for future study 

are: 

 Detailed analysis of the impact of low-altitude UAS, specifically in urban areas, on future 

NAS communications.  The analysis should include harmonization strategies for UAS 

command and control links with traditional ATC communications as well as general 

integration of UAS information for situational awareness of the pilots and controllers. 

 Develop high fidelity simulation models of the proposed architectures to perform tradeoff 

analyses and operational scenario-based simulations.  In addition, by integrating these 

simulation models with other pre-existing NASA models, higher fidelity system models 

can be developed to aid future system design. 
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 One of the key challenges for applying FSO to aeronautical communications is the 

acquisition and tracking of aircraft moving at very high relative speeds.  Therefore, a future 

study should undertake this challenge to develop technical approach and system design for 

aircraft acquisition and tracking to support FSO communications. 

 Security analysis presented in this paper provides a high level assessment of the security 

threats, risks and their potential mitigation approaches.  A future study should specifically 

expand this analysis to fully address the security vulnerabilities of the proposed 

architectures and develop mitigation approaches. 

 RF spectrum is a very limited resource and its demand is increasing exponentially with 

time. Therefore, a future study should analyze the availability of effective spectrum for 

aeronautical communications and develop a technical approach for reuse and dynamic, on 

demand, allocation of spectrum. 

 The aviation network of the future needs to be very dynamic with multiple air/ground 

connectivity options supporting simultaneous traffic flows with varied quality of service 

requirements and ad-hoc, self-configuring air-to-air networks.  To maintain robust data 

flows and to assure low latency and jitter, future aeronautical networks must support 

sophisticated routing algorithms that can converge very quickly and impose very little 

system overhead.  It is essential to research and design this routing algorithm soon such 

that it would be ready for standardization within the next ten years.  This research should 

include management of multiple links for seamless inter-technology handovers and 

leverage currently evolving IP mobility standards. 

 Similar to the routing challenges, aircraft architecture may also need to be investigated to 

facilitate such a dynamic network operation while ensuring security of the flight critical 

services and safety of flight.  
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