View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

NASA KSC/Intern Report— Summer 2015 — 08/10/15

Augmented/Virtual Reality Laboratory

Student: Benjamin Tully-Hanson
Computer Science/Physics, Junior
University of California, Irvine

Mentor: William Little
Aerospace Technologist, Software Systems
IT-C1
Information Technology and Communication Services Directorate

https://core.ac.uk/display/42706336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Real time motion tracking hardware has for the most part been cost prohibitive for
research to regularly take place until recently. With the release of the Microsoft Kinect in
November 2010, researchers now have access to a device that for a few hundred dollars is
capable of providing red/green/blue (RGB), depth, and skeleton data. It is also capable of
tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used
with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon
found that although the sensor is versatile, it has limitations in real world applications. I was
brought aboard this summer by William Little in the Augmented/Virtual Reality (AVR) Lab at
Kennedy Space Center to find solutions to these limitations.
2 Setup

When motion tracking research began in the AVR Lab, it became apparent that using
multiple Kinects at a time would be beneficial. Attempts were made to attach multiple Kinects to
a single computer, but due to oversaturation of USB bandwidth this approach simply did not
work. Instead, a client-server architecture was implemented. Four
Kinects are positioned in a square facing inward, each connected to
its own computer designated as a client machine. The positioning
can be seen in Figure 1. These four machines then transmit their

separate Kinect data over the network to a server, which then

processes the collection of streams and produces a single “resolved

Figure 1

skeleton” that tracks the user.
3 Limitations

There are three main problems that arise when researching the Microsoft Kinect’s
shortcomings: self-occlusion, bone-length variation, and artificial joint vibration. As a general
rule, self-occlusion occurs when a joint on the human body is hidden from the Kinect’s view by a
different part of the body. Common examples include a user facing the Kinect and putting a hand
behind his or her back, or turning 90° from the Kinect and therefore hiding either the left or right

side of his or her body. In these scenarios, the joints that are hidden from the sensor change from

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center Pg. 1

having a tracked state to having an inferred state. What this means is that although the sensor
doesn’t know the position of the joint, it will make an educated guess based on the anatomy of
the human body. Unfortunately, this guess can be extremely inaccurate in certain positions.

Bone-length variation occurs when the distance between two connected joints on the
human body changes. In the real world, the distance between any number of connected joints
should remain constant. This problem is especially apparent when the user makes a swift motion,
such as kicking out a leg or swinging an arm as if to serve a tennis ball. Various tests have shown
bone-length to almost double in certain scenarios, certainly something that needs to be fixed.

Artificial joint vibration is slightly harder to pinpoint, and can be seen even when the user
is standing still. When the Kinect slightly mistracks a joint repeatedly, the position can oscillate
wildly between two or more positions. This oscillation is especially apparent in the joints of the
user’s hands. Even when standing still with the hands away from the body in an attempt to avoid
mistracking, the hand points jump around and frequently bend in ways that are impossible for the
human body to bend.

It is the AVR Lab’s goal to be able to use a system of Kinects as a robust and affordable
method of motion tracking. A number of applications are possible, including realistic training of
astronauts, remote control of hazardous ground operations, and more efficient relay of
information in video conference calls. However, the above listed limitations must be overcome
for the Kinect to become a useful tool in real world use.

4 Joint Occlusion

When I started working with the Kinects this summer, the most glaring issue to me
initially was the joint occlusion. If the user came close to a 90° angle to the sensor, the displayed
skeleton barely looked human. I was given papers to read concerning this issue, the most notable
being Improved Skeleton Tracking by Duplex Kinects [1]. This particular paper implemented a
duplex-Kinect system, with two Kinect sensors at orthogonal angles to each other, in an attempt
to resolve the joint occlusion issue. By combining the data from Kinects with different views of
the person, the hope is to have a “resolved” skeleton that is more accurately tracked. I read
through this paper over the course of a few weeks, implementing bits and pieces as I went, and

eventually came to have an intuitive understanding of the algorithms outlined. Figure 2 shows

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center Pg. 2

an example of the raw data

given by the Kinect sensor,
along with an example with my
implemented algorithm.

The general idea behind
this algorithm works off of the
concept of perspective distance
difference between two
orthogonal views. Say for
example we have a person

positioned facing Kinect A, as

shown in Figure 3. Kinect A
will have a view of the scene
that looks similar to the image
in Figure 4. While Kinect B,
which is at a 90° angle from
Kinect A, will have a view of
the scene that looks very similar B
to the Raw image in Figure 2. Figure 3

We first cycle through
the joints for each respective Kinect, and find the joints
with the closest distances that are not connected to each
other by a bone. Whichever Kinect has the smallest
distance, we then assume that those joints could have
been incorrectly tracked by the Kinect sensor. Now that
we have the potentially incorrect joints, we compare the
joint distances in both of the views of A and B.
Whichever Kinect has the greater distance, we assume to

be more accurate as it is less likely that the joints were

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center

Figure 4

Pg. 3

tracked incorrectly. Following the above process using both the left and right hand joints as
examples, one can see that the algorithm would then choose the hand positions of Kinect A as
being more accurate. This same process carries throughout the rest of the skeleton, and the result
is a resolved skeleton.
5 Bone-length Variation

After resolving most issues with the joint occlusion, I began to notice more clearly the
changes in bone length. The hands and feet would repeatedly stretch in their length, and could
even be seen doubling at some points. The general approach I took was to implement a
“calibration stage” at the beginning of the motion tracking. In this stage the user would stand still
for about two seconds while an algorithm calculated the distance between all the stationary
joints. After completing the calculation, these bone lengths were then implemented as hard
constants for the joint distances. At each frame, a unit vector is calculated that represents the
normalized direction of the bone. From here all we must do is multiply it by its respective bone
length, propagating this change down the limbs, generating a constant bone-length skeleton. To
monitor the impact of my method, I constructed a table that monitors the value of each bone
length. When a length changes more than a designated amount that rectangle flashes red. Figure

5 demonstrates the raw data from the Kinect without my bone-length constraint.

Weighting Factor: 0.99

Bone Length

Flagged Percent: 0.5
Torso Right Leg
hipCToSpine: |0 0.082511 hipCToHipR: |0.104323197342 0.131098
spineToShoulderC: |0.373167015553 0.397782 hipRToKneeR: |0.434337100¢ 0.192478
shoulderCToHead: |0.203674851163 0.641371 kneeRTodnkleR: 0.2£0152899134 0.362359
ankleRToFootR: |0.097130397367 0.219571

Figure 5

As shown, the bone length in this example changes more than 50% of the actual value. If
the bone-length constraint is enabled, the resulting tracking is much more accurate. As

Figure 6 shows, the bone length is constant with less than 0.00001% error.

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center Pg. 4

Weighting Facton 0.99
Flagged Percent: | 0.0000001

Bone Length

Torso Right Leg

hipCToSpine: | 0.082526248249 0.082526 hipCToHipR: 0.104323197343 0.104323

spineToShoulderC: |0.373167015552 0372167 hipRToKneeR: | 0.494337100939 0.494337
shoulderCToHead: |0.203674651163 0.203674 kneeRTafnkleR: 0340152899134 0340152
ankleRToFootR: | 0.027120397867 0.097130

Figure 6

6 Artificial Joint Vibration

Joint Vibration, or what we call jitter, is one of the more difficult challenges to overcome
with raw Kinect data. There are a number of dampening algorithms that can be implemented but
we walk a fine line of over dampening the data and introducing latency into the system, or under
dampening and still having significant jitter. Although this is still an area of active development,
my hope is to eventually use the depth data provided by the Kinect to reduce jitter. Depth data is
inherently more stable than skeleton data, as instead of just having a single data point for a joint
we have a large surface area of pixels upon which we can make calculations. By monitoring the
number of depth pixels within a certain area per frame, we can use this as a second check to
determine if a joint has truly moved or not.

Depth data is initially reported by the Kinect as a single value-per-pixel that signifies the
distance in millimeters from the sensor. By filtering this data, I remove the background and leave
only information about the user, achieving a green screen like effect. I then assign an RGB value
to each pixel depending on the reported distance; the closer to the camera, the darker the color.
Figure 7 shows an example of the resulting depth image.

7 Directional Tracking

Although implementing a multi-Kinect system is beneficial in providing more data points

for accurate tracking, it also introduces a limitation of its own. Kinect sensors were built with the

idea that the user would be facing them directly. As such they cannot distinguish if they are

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center Pg. 5

looking at the user’s front or back, and will always
assume the former. Various research papers have
made mention of being able to use a marker on the
front of the user to distinguish it to the Kinects as
the front. I had yet to see one that tested and
implemented this method effectively, so I decided
to do it myself.

Each Kinect client is set up to pay special
attention to the middle spine position on the user,
while still transmitting the full body/camera/depth
data to the server. It then pulls a square sample
surrounding this position from the color stream, and

begins to check the color of each pixel while also

displaying it on the screen. If the user is facing the
Figure 7
Kinect, the sampled area should be the color of the

marker (in our case I used a red marker), and a
notification rectangle will turn green as shown in

Figure 8. If instead the user is not facing the Kinect,

the sampled area will generally be a color other than

the marker, and the notification rectangle will turn
red as shown in Figure 9.

The specific values of the algorithm are
modifiable by the user, but in general it calculates

the percentage of the region that is within a range of

red shades. This percentage is then reported back to

the server, where it can distinguish based on the

percentages exactly which direction the user is

facing. This method is not only useful on its own,

Figure &

but can also be used to aid in more accurate

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center Pg. 6

resolution of the joint occlusion limitation. A

. . . Socket: 4550
simple compass-like display was also created to e, WO |
. . . . Client is Listenin
show the direction of the user in real time, as
shown in Figure 3. For]

8 Conclusion

This paper demonstrates methods to
resolve common issues with the Microsoft
Kinect motion sensor. By implementing the
steps shown here, a multi-Kinect system can be
used as a robust and cost-effective way to track
human motion. Common issues that are

prevalent in single Kinect tracking, such as

joint occlusion and bone-length variation, have

Figure 9

been resolved in the AVR Lab’s setup. Future
research will focus on ways to resolve the artificial joint vibration seen in real time motion

tracking, as well as increase the fidelity of current motion capture techniques.

References
[1] Improved Skeleton Tracking by Duplex Kinects: A Practical Approach for Real-Time
Applications, J. Yeung, T. Kwok, and C. Wang, The Chinese University of Hong Kong, Journal

Of Computers and Information Division In Engineering, October 16, 2013.

B. Tully-Hanson, Summer 2015 Intern, NASA Kennedy Space Center Pg.7

