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This paper covers the development of stage-by-stage and parallel flow path compressor 

modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling 

approach is an extension of a technique for lumped volume dynamics and performance 

characteristic modeling. It was developed to improve the accuracy of axial compressor 

dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model 

presented here is formulated into a parallel flow path model that includes both axial and 

rotational dynamics. This is done to enable the study of compressor and propulsion system 

dynamic performance under flow distortion conditions. The approaches utilized here are 

generic and should be applicable for the modeling of any axial flow compressor design. 

 

Nomenclature 

𝐴 = area (m2) 

𝑐𝑝 = specific heat at constant pressure (J/kg K) 

𝐹 = flux term 

𝑔 = gravitational constant, 1 (kg m/N s2) 

𝐽 = total number of stages 

𝑙 = length (m) 

𝑀 = Mach number 

𝑁 = shaft rotational speed (RPM) 

𝑁𝑐  = corrected speed ratio 

𝑛 = compressor stage number 

𝑃 = pressure (N/m2) 

𝑟 = compressor radius (m) 

𝑅 = universal gas constant (287 N m/kg K) 

     S = source term 

𝑇 = temperature (K) 

𝑇𝑟 = temperature ratio 

𝑢 = axial flow velocity (m/s) 

𝑉 = volume (m3) 

𝑤 =  rotational flow velocity (rad/s) 

�̇�     =      mass flowrate (kg/s) 

    W     =      state term 

  �̇�𝑐𝑚𝑓 =  mass flowrate (kg/s) 

 

Greek 

𝛽 

𝛾 

= 

= 

area weighted factor 

specific heat ratio 
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𝜂 = efficiency 

𝜌 = density (kg/m3) 

𝜑 = variable associated with rotational dimension 

   

 

Subscripts 

𝑏 = variable associated with compressor bleed rate 

𝑐 = variable associated with stage characteristic 

𝑐𝑏 = variable associated with combustor 

𝑐𝑝 = variable associated with compressor 

𝑑 = variable associated with design value 

𝑗 = variable associated with state index (j=1..4) 

𝑘 = number of compressor stages 

𝑙𝑚𝑝 = variable associated with lumped volume 

𝑚 = parallel flow path number (m=1..q) 

𝑚𝑣 = variable associated with mixing volume 

𝑛 = compressor stage number (n=1…7) 

𝑟𝑒𝑓 = reference value of variable 

𝑠 = variable associated with static conditions 

𝑠𝑡 = variable associated with compressor stages 

𝑠𝑣 = static condition associated with stage volume 

𝑡 = variable associated with total conditions 

𝑡𝑐 = total condition associated with stage characteristic 

𝑡𝑣 = total condition associated with stage volume 

𝑥 = variable associated with the axial dimension 

 

I. Introduction 

upersonic vehicles are typically slender body aircraft with potentially pronounced structural flexibility modes. These modes 

can become exacerbated with the coupling of the propulsion system dynamics via thrust variations to cause performance 

challenges for vehicle ride quality and stability.1,2 The NASA Commercial Supersonic Technology (CST) Project under the 

Advanced Air Vehicles Program seeks to develop the technologies for commercial overland supersonic flight. Among several 

technical challenges is a task devoted to study AeroPropulsoServoElasticity (APSE), which deals with the study of vehicle 

dynamic performance. The propulsion system model utilized so far for APSE studies is based on 1-dimensional (1D) lumped 

volume component models with either lumped or quasi-1D models for the inlet and nozzle.2 The question remains, however, 

if lumped volume dynamic models provide sufficient fidelity for APSE dynamics, or if instead stage-by-stage or parallel flow 

path modeling may be necessary. Thus, the purpose of the stage-by-stage compressor modeling is to provide for more dynamic 

accuracy for investigating propulsion and APSE dynamic performance. The purpose of parallel flow path modeling is to provide 

the framework for more accurate engine component modeling to address the effects of flow distortion on the propulsion and 

APSE performance.  

In the past, a form of volume dynamics stage-by-stage compressor model has been developed and validated utilizing specific 

compressor test data.3,4 This model, called Dynamic Turbine Engine Compressor Code (DYNTECC),5 has parallel compressor 

modeling capability that allows for radial and circumferential passage of mass and energy in a steady state fashion. Modeling 

in DYNTECC is based on an experimental compressor, and no techniques were developed to derive generic stage-by-stage 

models starting from a lumped volume approach, which would be desirable for propulsion system modeling prior to availability 

of hardware. Moreover, the parallel compressor model capability in DYNTECC does not include the rotational dynamics 

(except for a time lag). Besides, this model is deemed too complex to use for an overall engine simulation.  Earlier, the Greitzer 

model6 was developed for predicting stall and surge behavior. These previous models did not meet the current needs, primarily 

due to not including the rotational dynamics that may become important relative to the overall APSE objectives in addressing 

the effects of flow distortion.  

This paper describes the methodology of developing stage-by-stage and parallel flow path models starting from a generic 

lumped volume compressor model. The methodology outlines the step-by-step process for developing sub-compressor models 
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for a stage-by-stage compressor model, and then extending this model to also develop circumferential sub-compressor models 

for each stage in order to develop a parallel flow path compressor model.  The stage-by-stage and parallel flow path models 

are compared for validation and accuracy against the lumped volume compressor model. The technique for lumped volume 

compressor modeling has been already validated in both steady state and dynamically against compressor engine test data.7 

The stage-by-stage compressor model developed here is qualitatively compared to another stage-by-stage model found in 

literature.5 The compressor model in this effort has been extended to cover stall and surge behavior. The objective in this effort 

is to capture the compressor dynamics while the compressor operation approaches surge and while it enters into stall conditions. 

The compressor models that are developed here are for the High Pressure Compressor (HPC) of a Variable Cycle Engine 

(VCE) concept for supersonic vehicle research. This VCE engine has 3 compression systems and the HPC for which these 

models are developed has 7-stages. However, the approaches developed for stage-by-stage and parallel flow path compressor 

modeling are generic, and can be applied to any axial compressor design. The results presented here are for the isolated 7-stage 

HPC component models for this VCE concept. 

The paper is organized as follows. First, the compressor modeling approach for stage-by-stage, followed by parallel flow 

path modeling are covered. This is followed by simulation results that compare the performance of the stage-by-stage and the 

parallel flow path compressor models to the respective lumped volume model, and comparison responses for time domain and 

frequency domain are shown. Finally, some concluding remarks are provided. 

II. Stage-by-Stage Compressor Model 

In the stage-by-stage compressor modeling approach, the lumped volume compressor maps are scaled down in a series of 

steps to develop a single stage model of appropriate size. The single stage models are then successively stacked and the cross 

sectional area of each of the stages is computed to develop an overall stage-by-stage compressor model. Through this process, 

this stacked model is stable and achieves the same steady state performance as the original lumped volume compressor model. 

A. Stage Volume Dynamics 

System dynamics are modeled for the stage volumes by the conservation of mass, momentum, and energy. Assuming perfect 

gas, adiabatic and compressible flow, the Euler formulations remain the same as those utilized for the lumped volume 

compressor model.7 The equations for mass, axial momentum, energy, and the state equation, respectively, are as follows.  

 

 𝑑

𝑑𝑡
𝜌𝑠𝑣,𝑛 =

1

𝑉𝑛

(�̇�𝑐,𝑛 −  �̇�𝑐,𝑛+1 −  �̇�𝑏,𝑛 ) 
(1) 

 𝑑

𝑑𝑡
�̇�𝑐,𝑛 =

𝐴𝑛𝑔

𝑙𝑛

(𝑃𝑡𝑐,𝑛 − 𝑃𝑡𝑣,𝑛) (1 +
 𝛾𝑐𝑝 − 1

2
𝑀𝑚𝑣

2 )

−𝛾𝑐𝑝

𝛾𝑐𝑝− 1
    

(2) 

 𝑑

𝑑𝑡
(𝜌𝑠𝑣,𝑛𝑇𝑡𝑣,𝑛) =

𝛾𝑐𝑝

𝑉𝑛

(𝑇𝑡𝑐,𝑛�̇�𝑐,𝑛 −  𝑇𝑡𝑣,𝑛�̇�𝑐,𝑛+1 −  𝑇𝑡𝑣,𝑛�̇�𝑏,𝑛 ) 
(3) 

 
𝑃𝑡𝑣,𝑛 =  (1 +

𝛾𝑐𝑝 − 1

2
𝑀𝑛

2)

1
𝛾𝑐𝑝−1

𝜌𝑠𝑣,𝑛𝑅𝑇𝑡𝑣,𝑛 
(4) 

For other supporting equations that complete the mathematical description of the stage element models see Ref. [7].  

The lumped volume performance characteristics are scaled appropriately to derive the stage performance characteristics for 

the stage-by-stage compressor model, which will be covered in the next subsection. If the stage performance of the compressor 

were known, these performance data would be used directly to construct the stage models and this scaling step would be 

skipped. 

B. Initial Scaling 

The stage performance characteristics (maps) will dictate the steady state conditions of the compressor. Equivalent stage 

compressor maps for simulation can be derived by scaling the lumped volume compressor maps, which may be available either 

from cycle analysis using the Numerical Propulsion System Simulation (NPSS),8 generically derived from a respective 

compressor map generation routine, or may be available from overall compressor testing. It is important to properly scale these 

maps so that the correct outlet conditions are met for each compressor stage, and the overall steady state performance of the 

stage-by-stage compressor matches that of the respective lumped volume model. In this case, lumped compressor performance 

characteristics, initially available through an NPSS model of the engine and utilized to develop a lumped compressor dynamic 

model, were scaled as follows.  
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𝑃𝑟,𝑠𝑡 =  √𝑃𝑟,𝑙𝑚𝑝

𝐽
 

            (5) 

 𝜂𝑠𝑡 =  √𝜂𝑙𝑚𝑝
𝐽

              (6) 

 𝑙𝑠𝑡 =
1

𝐽
𝑙𝑙𝑚𝑝 

             (7) 

 �̇�𝑠𝑡 = �̇�𝑙𝑚𝑝 
             (8) 

 �̇�𝑏,𝑠𝑡 =
1

𝐽
�̇�𝑏,𝑙𝑚𝑝  

              (9) 

 

Here, 𝐽 is the total number of stages. As will be described later in detail, the scaling for pressure ratio, efficiency, and 

corrected mass flow were all fine-tuned at a later point to improve the steady state accuracy of the model. There are four bleed 

flows extracted from this VCE HPC, which are scheduled based on operating conditions. For simplicity, it is assumed in this 

model that the bleed rates are equally distributed among compressor stages (Eq. (9)). The equal distribution of bleeds among 

compressor stages is not anticipated to have a significant impact on the results and it can be easily changed to match a specific 

configuration. Based on the equal distribution of bleeds simplification, the mass flowrate for each compressor stage coming 

from the downstream direction can be calculated as follows. 

 

 �̇�𝑐,𝑛 = �̇�𝑙𝑚𝑝 − 𝑛 ∗ �̇�𝑏,𝑠𝑡  
(10) 

  

  

The Mach number can be approximated for each stage as 

 

 𝑀𝑛 = 𝑀𝑖𝑛 −
𝑛

𝐽
(𝑀𝑖𝑛 − 𝑀𝑜𝑢𝑡)  (11) 

 

Here, 𝑀𝑖𝑛 and 𝑀𝑜𝑢𝑡 refer to the Mach number in and out of the lumped volume model, respectively. 

The first step is to develop a scaled down, single stage element of the lumped volume model. Doing so in one step, however, 

will result in an unstable model. This is because the initial conditions required for asymptotic convergence to an operating point 

for the single element model will be too different from those utilized to run the lumped volume model. Therefore, starting with 

the lumped volume compressor model, an intermediate scaling process is used as necessary to converge on stable initial 

conditions by scaling down, for example, by ¾, ½, 1/3, 1/4, . . , 1/7. By running the scaled model at each step, final state 

conditions are obtained, which are then substituted for initial conditions in order to minimize the startup transients. It may take 

two or three runs/substitutions for the same scaled model to converge to initial conditions with a sufficiently small startup 

transient, which allows for larger subdividing steps for the next scale down step of the single stage element model.  

Each of the VCE compression systems (3 in this case) comes with its own Variable Guide Vane (VGVs), whose angles are 

set based on an operating schedule that is derived in this case by using NPSS cycle analysis. The compression system 

performance characteristics (maps) change based on the VGV angle setting. To simulate this performance, typically, two sets 

of maps are utilized (derived using NPSS), which simulate the performance at the two extreme VGV angle settings, such as 0o 

and 45o. In order to simulate different VGV angles, these maps are interpolated accordingly. The same set of maps used for the 

lumped compressor model are also utilized for the stage-by-stage model, and these maps are scaled according to the equations 

above.  

Besides the set of VGV maps that are interpolated to simulate the effect of VGV angle on compressor performance, the 

lumped volume dynamic compressor model also calculates the flow area due to this angle setting, which affects the component 

dynamics. Thus, the flow area calculations due to VGV angle are also incorporated into the stage-by-stage model. The addition 

of the VGV model to the original volume dynamics model,2 which is also incorporated in this stage-by-stage model, is described 

in more detail in Ref. [9] for the compressor maps, and in Ref. [2] for the VGV effective area calculations.    

C. Stacking Compressor Stages 

The scaled down model (1/7th for this VCE compressor) with appropriate boundary conditions will serve as the first 

upstream stage in developing the stage-by-stage model. The reason stages are connected in order, starting from upstream to 

downstream, is that this way the inlet conditions for each stage connected in this process will be known. Prior to stacking the 

stage-by-stage model, the Mach number estimator7 is disconnected and instead replaced with a constant Mach number 

calculated based on Eq. (11). This is because mismatches in the Mach number can cause instabilities in the simulation. The 
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initial estimates for the cross sectional areas of the stages should be calculated as follows, by utilizing the corresponding stage 

Mach numbers obtained from Eq. (11). 

 

                                                                           𝐴𝑛 =
�̇�𝑐,𝑛

𝜌𝑠𝑣,𝑛𝑀𝑛√𝛾𝑅𝑇𝑠,𝑛
                                                               (12) 

 

The initial conditions for each subsequent stage connected are adjusted as described before, until the startup transients are 

minimized. For each step in this process, the final conditions from that run are also utilized to trim the corresponding area 

calculation for that stage, based on Eq. (12). When the startup transient is minimized, the Mach number estimator is reconnected 

for that stage, and the process is repeated for connecting the next downstream compressor stage and adjusting its cross section 

area and initial conditions, until all the stages have been successfully connected. When the Mach number estimator is connected 

for each stage, however, the Mach number should be verified and any final adjustments necessary for that stage should be 

made, before the next stage is connected. 

Before starting the stacking process, the compressor stage is fine tuned to ensure that it produces the correct pressure and 

temperature at steady state at the desired operating point. The desired operating point would be the proper corrected speed for 

the operating condition utilized in the scaling process, at the proper operating point at that speed line―near the knee of the 

speed line at a certain stall margin/max efficiency point. The design speed for a particular stage is adjusted as follows, in order 

for the corrected speed to fall at the desired operating point, like the 100% corrected speed or whatever turns out to be a 

reasonable corrected speed for the cruise operating condition. 

                                                                               

                                                                            𝑁𝒄,𝒏 =
𝑁

𝑁𝒅,𝒏
√𝑇𝒓𝒆𝒇/𝑇𝒕𝒗,𝒏−𝟏                                                          (13) 

 

The shaft speed is the same for all stages, but total temperature rises through each successive downstream stage. Hence, each 

stage will have a unique design speed in order to achieve a certain corrected speed ratio, according to Eq. (13). The reference 

temperature, Tref, used is typically the sea level static temperature.  

Figure 1 shows the pressure ratio operating point for stage 1. Notice that the operating point is situated near the knee of the 

speed line, at a sufficient stability margin, but also at about the point where maximum operating efficiency would be found. 

For a generic map, if the operating point is placed further down, towards the high slope region of the speed line (high choking), 

the potential for instabilities increases. Such instabilities would not be due to stall or surge, but because the operating point 

moves into the highly choked region of the compressor, where, for relatively small changes in mass flowrate, there would be 

large changes in pressure ratio. For the desired pressure ratio of 1.419, in this case, the initial scaling put the operating point a 

little too low on the steep part of the speed line. Thus, the scale was adjusted slightly to put the operating point higher. A 

potential instability problem like the one that is described here for this 1D flow simulation would not be present in a 0D engine 

simulation. However, such instability behavior is expected to approximate the actual dynamics of a real compressor. 

Efficiency maps have been scaled in this process based on Eq. (6) to try to ensure that for a desired pressure ratio the correct 

temperature ratio is produced. For adiabatic efficiency, the temperature ratio is related to pressure ratio and efficiency as 

                                                                                 

                                                                          𝑇𝑟 = 1 +
𝑃𝑟,𝑛

(𝛾𝑐𝑝−1)/𝛾𝑐𝑝 
 −1

𝜂𝑐𝑝
                                                                (14) 

 

The objective is for the stage-by-stage compressor model to produce the same overall temperature and pressure ratio as the 

lumped volume compressor, while operating at the same corrected speed, at about the same point on the speed line. However, 

it is found that scaling the maps as prescribed by Eq. (6), can cause the temperature ratio for the whole stage-by-stage 

compressor to deviate by a few percent from that of the corresponding lumped volume compressor model. A procedure that 

was found to work better is to calculate instead, the desired stage temperature ratio, 𝑇𝑟,𝑠𝑡 =  √𝑇𝑟,𝑙𝑚𝑝
𝐽

.  Then utilizing Eq. (14), 

with the desired stage temperature ratio, 𝑇𝑟,𝑠𝑡, and the desired stage pressure ratio, 𝑃𝑟,𝑠𝑡 from Eq. (5), calculate the desired stage 

efficiency, 𝜂𝑐𝑝,𝑠𝑡 at this particular operating point. Next, by using the efficiency map of the lumped volume model, find the 

efficiency value, 𝜂𝑐𝑝,𝑙𝑚𝑝,  at the operating point (for the speed line and the pressure ratio). Lastly, scale the lumped efficiency 

map by the ratio of  𝜂𝑐𝑝,𝑠𝑡/𝜂𝑐𝑝,𝑙𝑚𝑝 to produce the stage efficiency map that should provide for a close matching between the 

temperature ratios of the lumped volume and the stage-by-stage compressor models.  

Some final trimming in the stage efficiency map may be required to more precisely match the temperature ratio, depending 

on the desired accuracy. Even though, for a dynamically accurate model, a few percent steady state error would not be 

significant. The reason that the objective here is to match the steady state performance of the lumped volume model is, as 

mentioned before, because the truth model here is considered to be the lumped volume model, whose development methodology 



6 

 

has been verified against experimental data.7 If experimental compressor performance data are available, the likelihood is that 

these data are not stage-by-stage. Thus, in that case, the same procedure outlined here would be followed to develop a stage-

by-stage model of the experimental compressor, by first developing a lumped volume compressor model. 

Corrected mass flowrate drives the performance maps, and as such it is important to know what corrected mass flowrate to 

expect from each stage, which can be calculated using the following equation. 

 

                                                                �̇�𝑐𝑚𝑓,𝑛 = (�̇�𝑐,𝑛 − �̇�𝑏,𝑛)
√𝑇𝑡𝑣,𝑛−1/𝑇𝑟𝑒𝑓 

𝑃𝑡𝑣,𝑛−1/𝑃𝑟𝑒𝑓
                                             (15) 

 

Because the inlet conditions for each stage will be different, each stage will have a unique scale factor for the corrected flowrate 

map, which will be the ratio of the corrected mass flowrate obtained in Eq. (15) to that of the lumped volume corrected mass 

flowrate. 

D. Stage-by-Stage Compressor Simulation Results 

Table 1 shows a steady state performance comparison between 

the lumped volume compressor model and the stage-by-stage model. 

Notice, all the errors are within a fraction of a percent. The objective 

is to develop a dynamically accurate model for closed loop 

propulsion system coupling to the AeroServoElastic (ASE) model of 

the vehicle to study APSE performance. The steady state accuracy of 

the model, as shown in Table 1, contributes to the dynamic accuracy 

in terms of low frequency offset error on the gain. For comparison, a 

3 dB gain offset of the frequency response, which is not excessive, 

translates to 41% steady state error. Therefore, the errors displayed 

in this table are well within the typical accuracy sought for dynamic 

models, whose other important measures of accuracy are to maintain 

the frequency modes and damping of the system dynamics for gain 

and phase. The frequency response of the stage-by-stage model will 

be compared against the lumped volume model. However, the two 

are not expected to match, especially for the higher frequency range, 

and only a relative comparison will be performed here. Since no 

dynamic truth model response is available in this development for 

the stage-by-stage model. 

III. Parallel Flow Path Model 

A. Stage Volume Dynamics 

The main purpose of developing a compressor parallel flow path 

model is to account for the effects of flow distortion entering the 

compressor on the compressor dynamics. In constructing this model, 

the compressor maps were also augmented to allow compressor 

operation in the stall-surge region, which can be done with either the 

parallel flow path model or with the stage-by-stage model, and will 

be described in the next section. The purpose of extending the 

compressor operation into the stall region is to model the onset of 

stall events, which would allow the model to closely capture the 

compressor dynamics when the compressor operates near stall 

conditions.  

Starting from the stage-by-stage model (7 stages), the compressor 

stages are subdivided into quadrants as shown in Fig. 2. The paths do 

not necessarily need to be the same size, and the stages can be divided 

into more or fewer paths as desirable. As shown in Fig 2, the 

distortion pattern can be applied as different total conditions for each 

path at the inlet of the compressor. The last volume in Fig. 2 is a 

mixing volume, where the flow for the four paths comes together. 

 
Figure 2. Pictorial diagram of a parallel 

flow 7-stage compressor model. MV is a 

mixing volume where the flows combine. 

Figure 1. Pressure ratio map for stage 1. The 

circle indicates the operating point. 
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Table 1. Stage-by-stage and lumped volume  

compressor model steady state comparison 

Compressor Stage-by-
Stage 

Lump 
Volume 

Percent 
Error 

Pres. Out (Pa) 1,219,493 1,219,867 0.031% 

Temp. Out (K) 855.19 856.59 0.163% 

Massrate In 
(kg/s) 

18.43 18.43 0% 
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As seen in Fig. 2, this model depicts 2-dimensional flow in cylindrical coordinates, axial (x-dimension) and rotational (𝜑-

dimension). The boundary conditions set forth in this model, as shown in Fig. 2, are customary for subsonic flow in 

computational fluid dynamics (CFD). The stages could have also been subdivided in the radial dimension for a 3-dimensional 

flow model. This could have improved the accuracy of the model, especially for angle of attack (AOA) distortion effects. 

However, the added computational expense may not be justified in terms of added dynamic accuracy and there may be ways 

to compensate by averaging AOA flow distortion. Dynamic effects of the model due to radial dimension variation effects could, 

however, be a topic of future research.  

Assuming again perfect gas, adiabatic and compressible flow, the Euler volume dynamics of the compressor stage as 

depicted in Eqs. (1) - (3) were recast in cylindrical coordinates in the axial and rotational dimensions, assuming that radial flow 

changes can be neglected. 

 

 
𝜕𝜌𝑠

𝜕𝑡
=  −

𝜕(𝜌𝑠𝑢)

𝜕𝑥
−

1

𝑟

𝜕(𝜌𝑠𝑤)

𝜕𝜑
 

 

   (16) 

 
𝜕(𝜌𝑠𝑢)

𝜕𝑡
=  −𝑢

𝜕(𝜌𝑠𝑢)

𝜕𝑥
−

𝑤

𝑟

𝜕(𝜌𝑠𝑢)

𝜕𝜑
−

𝜕𝑃𝑠

𝜕𝑥
 

 

   (17) 

 𝜕(𝜌𝑠𝑤)

𝜕𝑡
=  −𝑢

𝜕(𝜌𝑠𝑤)

𝜕𝑥
−

𝑤

𝑟

𝜕(𝜌𝑠𝑤)

𝜕𝜑
−

1

𝑟

𝜕𝑃𝑠

𝜕𝜑
 

   (18) 

 𝜕

𝜕𝑡
(

𝑃𝑠

𝛾 − 1
+

𝜌𝑉2

2
) =  −

𝜕

𝜕𝑥
[(

𝛾𝑃𝑠𝑢

𝛾 − 1
+

𝜌𝑢3

2
)] −

1

𝑟

𝜕

𝜕𝜑
[(

𝛾𝑃𝑠𝑤

𝛾 − 1
+

𝜌𝑤3

2
)]   

 

                 (19) 

 

 

where Eq. (16) is the continuity equation, Eqs. (17) and (18) represent the axial and rotational momentum, and Eq. (19) is the 

energy equation. If Eqs. (16) – (19) are expressed in terms of states,  W, fluxes, F, and source terms, S, the following equation 

is obtained. 

 

                                                             
𝜕

𝜕𝑡
(𝑊𝑗) = −𝑎𝑥𝑗

𝜕

𝜕𝑥
(𝐹𝑥𝑗)−𝑎𝜑𝑗

𝜕

𝜕𝜑
(𝐹𝜑𝑗) + 𝑆𝑗                                                (20) 

 

where the state terms are the flow quantities in the left side of the Eqs. (16) – (19), the fluxes are represented by the derivative 

quantities in the parentheses of the first two terms on the right side of these equations, the source terms are the third terms, and 

the proportional a-terms are represented by the associated multiplicative expressions.  

As necessary for engine component integration and associated interface boundary conditions, forward difference is 

maintained here to approximate spatial derivatives in the axial dimension, while due to the closed rotational domains, central 

difference is used to approximate spatial derivatives in the rotational dimension. Based on that, Eq. (20) can be expressed as 

follows. 

 

 

      
𝑑

𝑑𝑡
(𝑊𝑗,𝑛,𝑚) = −𝑎𝑥𝑗,𝑛,𝑚 (

𝐹𝑥𝑗,𝑛+1,𝑚−𝐹𝑥𝑗,𝑛,𝑚

∆𝑥
) − 𝑎𝜑𝑗,𝑛,𝑚 (

𝐹𝜑𝑗,𝑛,𝑚+1−𝐹𝜑𝑗,𝑛,𝑚−1

2∆𝜑
) −

𝑆𝑥𝑗,𝑛+1,𝑚−𝑆𝑥𝑗,𝑛,𝑚

∆𝑥
−

𝑆𝜑𝑗,𝑛,𝑚+1−𝑆𝜑𝑗,𝑛,𝑚−1

2∆𝜑
      (21)   

 

 It is assumed that by the time the flow gets into the combustor, after fuel is mixed, the flow should be fairly uniform with 

no remaining flow distortion effects. Any distortion downstream of the combustor would be instead due to pattern factor. The 

last volume in the model shown in Fig. 2, is a mixing volume. In general, a mixing volume at the component exit is appropriate 

when the component model is developed in isolation, and it can be removed later, if necessary, when parallel flow path 

component models are integrated together to form a system. Typically, in turbine engine design architectures, components are 

joined together with separating ducts. Even adjoining ducts can be modeled similarly as a parallel flow path in order to continue 

the modeling of downstream effects of flow distortion, starting from the inlet to the compressor exit or the combustor entry.  

The mixing volume combines the outlet conditions of each path through the use of a weighted average and 1D volume 

dynamic equations, similar to those used in the stage-by-stage and lumped volume compressor models. The weighting factor, 

𝛽, is proportional to the angular coverage of each parallel flow path. In this case, the four flow paths are selected to be equal 

in size, with the values of 𝛽 equal to ¼. The mixing volume mass flowrate going to each of the compressor paths is multiplied 

by this weighting factor to get 1/4th the mixing volume mass flowrate to be distributed to each of the parallel flow paths. 
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Maintaining generality, the weighting factor,  could be selected to be different for each flow path, resulting in the following 

expressions for the continuity, momentum, and energy equations in the mixing volume: 

 

 
𝑑

𝑑𝑡
𝜌𝑠,𝑚𝑣 =

1

𝑉𝑚𝑣

(�̇�𝑚𝑣 − �̇�𝑐𝑏) 

 

  (22) 

 
𝑑

𝑑𝑡
�̇�𝑚𝑣 =

𝐴𝑚𝑣𝑔

𝑙𝑚𝑣

[∑ (𝛽𝑚𝑃𝑡𝑚,𝑛=𝑘) 
𝑞

𝑚=1
− 𝑃𝑡,𝑚𝑣] (1 +

 𝛾𝑐𝑝 − 1

2
𝑀𝑚𝑣

2 )

−𝛾𝑐𝑝

𝛾𝑐𝑝− 1
 

 

  (23) 

 𝑑

𝑑𝑡
(𝜌𝑠,𝑚𝑣𝑇𝑡,𝑚𝑣) =

𝛾𝑚𝑣

𝑉𝑚𝑣

[�̇�𝑚𝑣 ∑ (𝛽𝑚
2 𝑇𝑡𝑚,𝑛=𝑘) 

𝑞

𝑚=1
− �̇�𝑐𝑏𝑇𝑡,𝑚𝑣] 

  (24) 

  

For the isolated compressor model, the mixing volume size is selected to be relatively small, comparable in size to or 

preferably smaller than an individual compressor stage. The reason is that the stage-by-stage dynamics for the parallel flow 

path compressor model should not be significantly affected by the inclusion of the mixing volume. Keep in mind that a smaller 

volume than that of the compressor stage will have an impact on the simulation maximum sampling time. The assumption here 

is that the flow is uniform by the time it reaches the compressor exit and as such the mass flowrates into the four flow paths of 

the nth compressor stage are divided according to the weighting factor, 𝛽. Alternatively, the boundary conditions for the exit 

static pressures of all the flow paths could be assumed to be equal and Eqs. (22) - (24) could be modified accordingly. If no 

flow uniformity is assumed at the compressor exit, the exit pressures could be instead left free, and the mass flowrate of each 

path could be calculated according to the following relations: �̇�𝑚,𝑛=𝑘 = 𝛽
𝑚

�̇�𝑚𝑣
∆𝑃𝑚,𝑛=𝑘𝐴𝑚,𝑛=𝑘

∑ ∆𝑃𝑚,𝑛=𝑘𝐴𝑚,𝑛=𝑘
𝑞
𝑚=1

, ∆𝑃𝑚,𝑛=𝑘 =

𝑃𝑚,𝑛=𝑘 − 𝑃𝑚,𝑛=𝑘−1, where pressure in these expressions signifies static pressure.  

  

B.   Stall Region Modeling 

For the parallel compressor model, the compressor maps as shown in Fig. 1 for the first stage, were extended into the stall 

region for each parallel sector in a compressor stage, in order to properly model compressor dynamics at or near stall operating 

conditions. This required modification of the stage characteristics calculations7 as well as extending the compressor maps into 

the stall region. Extended compressor maps can be seen in Fig. 3. The stall region was approximated by a straight line down to 

a minimum pressure ratio of one, at which point there is no mass flow. The maps as shown could have been further extended 

into the back flow region. However, an encompassing compressor simulation is not the purpose of this particular study. 

Efficiency in the stall region will trend towards zero percent as corrected mass flowrate drops. In the stall region, the drop in 

pressure is used as the driving force behind the simulation.  Entering into the stall region will cause the pressure ratio, Pr, to be 

driven down to a minimum value of one in this case, in a delayed fashion, which can be approximated as  

 

 
Figure 3. Example of compressor maps extended to the stall region―circle indicates the operating point at the 

particular corrected speed line; a) Pressure ratio map; b) efficiency map. 
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𝑑

𝑑𝑡
𝑃𝑟,𝑑𝑒𝑙𝑎𝑦 =

1

τ
(𝑃𝑟 −  𝑃𝑟,𝑑𝑒𝑙𝑎𝑦) 

 

   (25) 

where  signifies this time constant and 𝑃𝑟,𝑑𝑒𝑙𝑎𝑦  is the pressure ratio from this delayed process. 

 An appropriately sized nozzle, like a plug, was also added for both the stage-by-stage and parallel flow path compressor 

models in order to model the change in the mass flowrate due to changes in compressor outlet conditions. The nozzle was 

designed using the compressible flow equation based on the procedure outlined in Ref. [2]. 

IV. Results  

Figure 4 shows qualitative simulation comparisons between the stage-by-stage model developed in this paper and 

DYNTECC.5 This comparison is for the time it takes for compressor stages to move into stall conditions due to a pressure rise 

at the compressor inlet, which propagates downstream and to some degree amplifies, before the first downstream compressor 

stage stalls, followed by the rest. For the DYNTECC simulation, the figure shows the entrance static pressure to the stages, 

while for the simulation in this paper, it shows the actual static pressure of the stages. For the DYNTECC simulation, the input 

to stage 8 or stage 7 stalls first due to a pressure rise in stage 6 (not shown). For the DYNTECC simulation, which was developed 

from an experimental compressor, the simulation data produced the same pressure signatures that were observed 

experimentally. For the model developed in this paper, the entrance pressure to stage 5 or stage 4 stalls first (not shown). Even 

though the compressor geometries may not be the same (DYNTECC geometry is not known) and this compressor has seven 

stages, while DYNTECC’s has ten, these results show that it takes approximately 17 msec for the stages of each compressor 

to move into the stall condition, where pressure starts to drop. This overall time response, which is about the same for both 

compressors could signify that the stage geometries may not be appreciably different. The time constant for the pressure drop, 

when the compressor enters into stall conditions, was arbitrarily chosen for this simulation. Thus, this portion of the time 

response, which can easily be changed and adapted to an actual 

compressor stall response, is not meant to be compared for these two 

models. This comparison with DYNTECC, which has been verified 

against experimental data, validates to some degree this generic stage-

by-stage modeling approach. 

For the parallel flow path compressor model, a pressure distortion of 

500 Pa is applied to path 1, at the inlet of the compressor, to see its 

response and how distortion propagates to the downstream compressor 

stages.  Figure 5 show this response across multiple stages, with the 

distortion applied in both positive and negative directions. This level of 

distortion is not sufficient to move the compressor into the stall region. 

The negative part of the pulse has a more pronounced effect, especially 

for later stages, as the operating point moves further down from the knee 

and deeper into the steep or choked operating region of the compressor 

(Fig. 3). Operating in this region leads to instabilities for this dynamic 

simulation, which would also be expected to be the case for actual 

compressor operation, as small changes in corrected mass flowrate 

produce large fluctuations in the pressure ratio.  

Proportionally, the later stages are progressively more affected by 

flow distortion as shown in Fig. 5, which is not what was originally 

expected. This result together with the results discussed for Fig. 4 negate 

the previous assumption that the flow could be assumed to be uniform 

by the time it reaches the compressor exit, and as such the exit pressure 

boundary conditions for the different paths could be assumed to be 

approximately the same. The later stages first enter into the stall 

operating region, which quickly causes the stall conditions to cascade to 

the upstream compressor stages. As seen in Fig. 5, a pressure distortion 

in path 1 primarily affects path 1 and 3. Path 2 and 4 remain the same 

due to the fact that incoming flowrates originating from the mixing 

volume are all assumed to be the same, and as such the change in 

pressure and temperature have no effect on the mass flowrate. Based on 

 
Figure 4. Relative comparisons for the time it 

takes for compressor stages to move into stall 

for DYNTECC (top 3 – copied from Ref. 5) and 

this compressor model  (bottom 2) – the time 

constant for the pressure drop in stall is 

arbitrarily chosen in this case. 
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how flow distortion affects different paths for this problem setup, and based on the fact that the flow is not well mixed by the 

time it gets to the compressor exit (in fact the opposite seems to be the case), the more appropriate boundary conditions at the 

compressor exit would be to let the mass flowrates vary as discussed in the previous section. 

 
Figure 6. Pressure response at stage 7 to 1000 Pa step 

input into Path 1. Pressure increase in path 1 causes 

a similar increase in path 3. 

 
Figure 7. Operating point shift due to pressure 

step applied for Fig. 6. Operating points for path 

1 and path 3 shift towards the stall line; path 2 

and 4 remain the same. 
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Figure 5. Pressure disturbance for various stages. Path 1 and 3 both experience a large drop in pressure ratio 

due to the pressure distortion pulse applied to path 1 at the inlet of the compressor. 
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Figure 6 shows the pressure response to stage 7 for a 1000 Pa step applied at the compressor inlet to path 1. The pressure 

increase in path 1 produces a similar increase in path 3. The shift in the operating points can be seen in Fig. 7. Both path 1 and 

path 3 move closer to the stall region, while path 2 and 4 remain the same. The time response as seen in the inset of Fig. 6 is 

relatively fast, less than 20 msec.  

Figure 8 shows the pressure response to a 5000 Pa step applied at the compressor inlet to path 1, which is near the pressure 

distortion level that would cause the compressor to go into stall conditions. As seen in this case, the pressures for all four paths 

respond to this distortion level, where the pressures for path 1 and 3 move closer to stall (larger pressures) and the pressures 

for path 2 and 4 move away from stall. 

Figure 9 show the response to a 5900 Pa step input into path 1. It can be seen that this first pushes path 3 into the stall 

region, followed by the rest of the paths, as their pressure ratios are driven down. The stall of path 3 takes place shortly after 

distortion is applied at approximately 2 s. Eventually, all the other paths stall as well, and surge occurs towards the end of the 

simulation time. This particular simulation becomes numerically unstable towards the end, due to rapid transients as surge takes 

place. If the exit mass flowrates of the individual paths were allowed to be different from each other, as discussed before, it 

could be expected that the results may look somewhat different.  

Figure 10 shows the corrected mass flow rates of the four paths of stage 1. Comparing Fig. 9 with Fig. 10, it can be seen 

that for some of the paths, a downward trend in pressure is followed by a corresponding downward trend for their mass flow 

rates. This indicates that these paths have entered the stall region. On the other hand, a downward movement of the pressure in 

path 1 causes its corresponding mass flow rate to remain about 

constant. This indicates that unlike the other three paths, the initial 

trajectory of path 1 is in the choked region of the speed line. 

Eventually, however, all the paths experience surge oscillations. In 

this simulation, the surge time constant was arbitrarily chosen to be 

slow, compared to what would be normally the case, which allows 

the time responses of these trends to be seen a bit more clearly.  

Figure 11 shows a snapshot as the operating points of the flow paths 

of stage 7 transition into the stall region, which further clarifies 

comparisons between Fig. 9 and Fig. 10. In Fig. 11 path 2 operation 

is overshadowed by path 4, as the snapshot is taken before the 

conditions for these two flows change as seen in Fig. 9 and Fig. 10.     

In these simulations the rotating velocity of the flow is changing 

as well due to the distortion that is applied. A simulation of the 

rotational velocities in stage 1 of the compressor is shown in Fig. 

12. This is for a relatively low amplitude distortion applied to path 

1, which does not cause stall. As seen in this figure, for a pressure 

pulse applied to path 1, the rotational velocities of path 2 and 4 are 

changing, compared to previous results that show that for the same 

pressure pulse the axial pressures of path 1 and 3 are primarily 

effected.  

 
Figure 10. Mass flow rate response during 

compressor stall. Path 3 enters stall region 

after a 5900 Pa step input into path 1. 
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Figure 9. Pressure response during 

compressor stall. Path 3 enters stall region 

after a 5900 Pa step input into path 1. 
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Figure 8. Pressure response to 5000 Pa step 

into path 1. 
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Applying distortion to a different path than path 1, 

produces correspondingly similar results. Also, applying 

temperature distortion produces similar results, albeit with 

different magnitudes.  

Frequency responses for comparison were simulated for all 

three compressor models: the lumped volume, the stage-by-

stage, and the parallel flow path model. The frequency 

responses were generated by applying a relatively small 

pressure perturbation to the input of each simulation. The 

frequency was varied from about 1 to 3000 Hz. These 

responses are shown in Fig. 13. As seen in this figure, there is 

a significant difference in the response between the lumped 

volume model and the other two, in both magnitude and phase. 

Compared to the lumped volume model, the other two models 

exhibit higher frequency dynamics. This is evident by 

comparing the flat frequency phase response at higher 

frequency for the lumped volume model to the corresponding 

downward trend for the other two models. This is expected, 

since compared to the lumped volume, the volumes of the 

multi-stage models are distributed smaller volumes, which 

would exhibit high frequency content. Up to approximately 60 

Hz (the frequency range of interest for propulsion and the 

structural dynamics coupling for APSE), both the magnitude 

and the phase deviate significantly, by about 10 dB and 50o, 

respectively. This difference is more than sufficient to produce 

a stable vs. unstable overall APSE response. The difference in 

magnitudes between the stage-by-stage and the parallel flow 

compressor models is rather insignificant. The difference in 

phase, however, which is about 10o at 60 Hz, could be significant if the stability margin of the overall APSE response is 

relatively low, or if there are some time domain oscillations already existing at this frequency in an APSE simulation that 

utilizes a stage-by-stage compressor model. This frequency response comparison does not include the stall dynamics due to 

flow distortion, which could have a significant impact on propulsion and APSE. A parallel compressor model, however, that 

lets the mass flow rates be free at the outlet boundary as discussed before, should provide more concrete evidence to form these 

conclusions.   

Figure 13. Pressure frequency response 

comparisons for the three compressor models. 
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Figure 12. Stage 1 rotational velocities for a 

relatively small non-stalling pressure pulse 

applied to path 1. 
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Figure 11. Snapshot of stage 7 operating points as 

the stage transitions into stall. 
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V. Conclusions 

In this paper methodologies and formulations were introduced to help develop generic stage-by-stage and parallel flow 

dynamic compressor models. Even though the objective for developing these types of models is to apply them for analysis of 

AeroPropulsoServoElasticity performance for supersonic vehicles, the concepts introduced are rather generic. These 

methodologies have been systematically developed in an explicit way, which should be relatively easy to use and apply. The 

steady state results of the stage-by-stage and parallel flow path models are compared to the respective lumped volume dynamic 

model, whose development process has been verified previously against experimental results. The stage-by-stage model 

developed in this paper has been verified to a degree with a previous model developed and verified for an experimental 

compressor. For the parallel flow compressor model, there are no experimental data available to verify the model. Thus, at the 

moment, the trust in the accuracy of this model is placed on the soundness of the modeling methodologies developed and the 

results, which for the most part showed expected trends. However, more analysis would be needed to verify these models, 

especially, by modifying the compressor exit boundary conditions and repeating the analyses. This is based on the evidence 

that in response to distortion the flow does not seem to become uniform as the flow propagates into the downstream compressor 

stages, as was originally assumed. Preliminary results also indicate that the dynamics of the stage-by-stage and paralllel flow 

path compressor models differ significantly from those of the lump volume compressor model, which may be evidence for the 

need of these higher fidelity propulsion component models to sufficiently assess AeroPropulsoServoElasticity performance.  
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