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The Problem

• Satellite conjunction risk typically evaluated through the probability 
of collision (Pc)
– Considers both conjunction geometry and uncertainties in both state estimates

• Conjunction events initially discovered through JSpOC screenings, 
usually seven days before Time of Closest Approach (TCA)
– However, JSpOC continues to track objects and issue conjunction updates
– Changes in state estimate and reduced propagation time cause Pc to change 

as event develops
– These changes a combination of potentially predictable development and 

unpredictable changes in state estimate / covariance
• Operationally useful datum:  the peak Pc

– If it can reasonably be inferred that the peak Pc value has passed, then risk 
assessment can be conducted against this peak value

– If this value below remediation level, then event intensity can be relaxed
• Can the peak Pc location be reasonably predicted?
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Conjunction Event “Canonical Progression”

• Conjunction typically first discovered 7 days before TCA
– Covariances large, so typically Pc below maximum

• As event tracked and updated, changes to state estimate are 
usually relatively small, but covariance shrinks
– Because closer to TCA, less uncertainty in projecting positions to TCA

• Theoretical maximum Pc encountered when 1-sigma covariance 
size to miss distance ratio is 1/√2
– After this, Pc usually decreases rapidly

• Behavior shown in graph at right
– X-axis is covariance / miss distance
– Y-axis is log10 (Pc/max(Pc))
– Order of magnitude change in Pc considered

significant, thus log-space more appropriate
• How might this behavior be modeled?

– Underlying progression in presence of noise 3
10-1100101102103

-7

-6

-5

-4

-3

-2

-1

0

Ratio of 1-sigma Covariance Radius to Miss Distance

Lo
g1

0(
P

c/
M

ax
P

c)



J. Vallejo et al. | Pc Behavior Prediction Models | AUG 2015 | 4

Proposed Choice of Modeling Variables

• Dependent variable is log10 value of Pc
– Need to address problem of very small and 0 values for Pc
– Majority of Pc values for purposes of operations “essentially 0”:  < 1E-10

• Small values of Pc can be “floored” at 1E-10
• Furthermore, long trains of leading or trailing 1E-10 values can also be eliminated 

from dataset for model tuning and evaluation; really just a function of when updates 
happen to occur.  

• Independent variable is time before TCA (usually in fractional days)
– Canonical behavior curve uses independent variable as ratio of covariance 

size to miss distance
– Problematic independent variable for fitting

• Not monotonic with time (but it does correlate at least moderately to time)
• Need temporal independent variable in order to map to operational timelines

– Thus, use time before TCA as independent variable for model
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Bayesian Vertex Model

• Approximate theoretical progression of log(Pc) values using a 
downward-opening parabola
– Equation in vertex form:  Y = a (x – h)2 + b
– Can be recast as:  Y = β0 + β1x + β2x2

– Location of peak more important than peak value,
so need not match functional form precisely

• With regression analysis of training dataset,
can establish prior distributions of set of
β values

• Drawing from these priors, can use Bayes’
theorem to construct posterior distributions
– This allows priors to be combined with unfolding

data from current event
– Can then estimate log(Pc) from mean values from parameter posteriors
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Using Frequentist Methods

• If we refit the line each time we receive a new OCM using frequentist 
methods (i.e. least squares), we would see something like this
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Using Bayesian Methods

• If we use Bayesian methods, it is possible to incorporate prior 
information into the estimates
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Comparisons Between the Bayesian and 
Frequentist Models

• Using the Bayesian methods, we can make predictions using only 
two OCMs (though generally these are not particularly informative)
– This is not possible with the frequentist model

• The frequentist model fits the points as closely as possible, 
whereas the Bayesian model incorporates prior information, 
compromising between the current and previous data

• The fits are generally similar, but the Bayesian fit is generally more 
conservative
– The Bayesian model takes into account the uncertainty of the estimates, thus it 

is less likely to fit the data “too well”
– As a result, the Bayesian model generally has wider error bounds, which are 

usually more realistic
– The frequentist approach tends to chase the action, whereas the Bayesian 

approach is more realistically predictive (because it considers prior 
information)
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Methodology Details (1 of 3)

• We can calculate what is known as the posterior density of the 
parameters given the data
– p(β|y) ∝ p(y|β) * p(β)
– Thus, we specify a prior distribution for the beta parameters p(β), update it with 

the data that we have seen p(y|β), and get an updated probability distribution 
of the beta parameters given the data p(β|y)

• Now, we can force the parabola to open downwards by choosing 
priors the allow only this shape
– Consider the model Y = β0 + β1x + β2x2 + ε, where ε is the noise in the 

measurement
– If we force β0 and β2 to be negative, this will ensure a downward opening 

parabola will be fit each time and ensure that the vertex be realizable (e.g., not 
have a y-value greater than 1, which is not possible for a Pc value)

– This presents one potential hazard with the model: what if the observed data 
actually had the shape of an upward opening parabola? It would be fit with a 
horizontal line, which is not the correct shape
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Methodology Details (2 of 3)

• The resulting constraints are
β0 < 0
(β1)2 < 4 β0 β2

β2 < 0
• In order to specify these priors, we use truncated Normal 

distributions, so that
β0 ~ Normal(μ0,σ0

2)I(-∞,0)
β1 ~ Normal(μ0,σ0

2)I(-2√(β0 β2), 2√(β0 β2))
β2 ~ Normal(μ2,σ2

2)I(0,∞)

• While other prior distributions are possible, we find that the 
truncated normal have the best convergence properties
– Gamma distributions were also attempted but exhibited high levels of 

autocorrelation and overall slow convergence
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Methodology Details (3 of 3)

• Assume that ε ~ Normal(0, σ2)
• Assume a Gamma prior on the inverse of the variance 1/σ2

– Common practice.
• Choosing the parameters of these prior distributions

– Use restricted maximum likelihood to estimate downward opening parabolas 
on a set of test data (we examined over 1000 events)

– Collect all of the betas from the fits
– Find parameters of a truncated normal distribution that is close to the observed 

distribution of each parameter by matching quantiles
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Bayesian Vertex Model: 
Model Performance Investigation

• Conjunction data archive assembled for 2013-14 for well-populated 
orbit regime
– Perigee height between 500 and 750 km and eccentricity < 0.25
– Thousands of events per year

• Use part of 2013 data to “train” model—set prior distribution 
coefficients

• Use 2014 data as validation dataset
• Segregate performance results

– First, by total number of data points (CDMs) in the event
• Data-poor events may perform worse than data-rich ones

– Second, by data point number
• How does model perform after point 3 versus point 6 or 10?
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Bayesian Vertex Model:
LEO2:  Data Density

• Probably want at least 50 events 
surveyed to feel confident about 
model performance conclusions

• This achieved only for event 
sizes smaller than 14 data points

• Should focus on performance 
results for these shorter events—
sampling more plentiful
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Bayesian Vertex Model:
Mean Peak Estimation Error

• mean(Y – Yhat) for all the events of each 
size

• Value becomes unstable beginning at 
event sizes of about 13 observations

• Stable region shows mean values 
ranging from around 0 +- half an order of 
magnitude

• Model is biased but biased in a favorable 
direction
– Overpredicting leads to conservative safety-

of-flight decisions—better than the reverse
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Bayesian Vertex Model:
50th and 95th percentile Peak 

Absolute Residual Errors
• Focus on more stable region (event 

sizes of 13 or fewer points)
• At the 50th percentile all of that area is 

less than 0.5 of an order of magnitude
– An acceptable result

• At the 95th percentile, that area varies 
between 0.5 and 3 orders of magnitude
– Probably not an acceptable result

• Model probably not useful for peak 
prediction

• However, could still be useful for 
predicting whether peak has occurred
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Bayesian Vertex Model:
Peak Prediction Performance

• Operational question:  has the event 
reached its peak Pc value?

• Plot at right shows, for all events of a 
certain size after a certain data point, 
the percent correct peak predictions
– % of the time the model indicates the peak 

has already passed, and in fact it has
• In region of interest (< 14 data points), 

performance always better than 50% 
once half the event points received
– Performance moves to 80-100% as number 

of points reaches total event size
• However, difficult to use result, since # 

of points not known in advance
– Examine predictive force at “times to TCA” of 

operational interest
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Bayesian Vertex Model:
Peak Prediction Performance (cont’d)

• Examine situation at typical maneuver 
planning and commit times
– 4, 3, 2, and 1 days before TCA

• Blue bars show percentage of correct 
before/after peak predictions at these 
time points

• Yellow bars show number of events 
for which prediction was possible
– At least two points needed
– MCMC fails to converge occasionally

• Not stunning performance, but could 
be an operational tool of some utility



J. Vallejo et al. | Pc Behavior Prediction Models | AUG 2015 | 18

Conclusion/Future Work

• A simple statistical model shows operational promise in 
determining whether the peak Pc value has occurred

• Additional areas requiring exploration
– Event Pc histories need categorization

• May be that algorithm performs well only in “obvious” cases; may not be helpful 
more ambiguous situations where greater operational need

– Different overall functional forms may yield better results
• For instance, the log probabilities of collision are effectively bounded between -10 

and 0, suggesting a different distribution (Beta) may be more appropriate
– Other modeling paradigms

• Other ways of borrowing information, e.g. mixed models
– Longitudinal data analysis, because the observations are repeated 

measurements on different events


