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The Problem

 Satellite conjunction risk typically evaluated through the probability
of collision (Pc)

— Considers both conjunction geometry and uncertainties in both state estimates
« Conjunction events initially discovered through JSpOC screenings,
usually seven days before Time of Closest Approach (TCA)
—However, JSpOC continues to track objects and issue conjunction updates

— Changes in state estimate and reduced propagation time cause Pc to change
as event develops

— These changes a combination of potentially predictable development and
unpredictable changes in state estimate / covariance

» Operationally useful datum: the peak Pc

— If it can reasonably be inferred that the peak Pc value has passed, then risk
assessment can be conducted against this peak value

— If this value below remediation level, then event intensity can be relaxed
« Can the peak Pc location be reasonably predicted?
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Conjunction Event “Canonical Progression”

» Conjunction typically first discovered 7 days before TCA
— Covariances large, so typically Pc below maximum
» As event tracked and updated, changes to state estimate are
usually relatively small, but covariance shrinks
— Because closer to TCA, less uncertainty in projecting positions to TCA
* Theoretical maximum Pc encountered when 1-sigma covariance
size to miss distance ratio is 1/12
— After this, Pc usually decreases rapidly TN HSSEE iy i
» Behavior shown in graph at right BRI R R
— X-axis is covariance / miss distance IR |
—Y-axis is log,, (P/max(P.))
— Order of magnitude change in Pc considered
significant, thus log-space more appropriate
* HOW mlght thIS behaVior be mOdeIed? T I R
— Underlying progression in presence of noise T
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Proposed Choice of Modeling Variables

* Dependent variable is log10 value of Pc
— Need to address problem of very small and 0 values for Pc
— Majority of Pc values for purposes of operations “essentially 0”: < 1E-10

 Small values of Pc can be “floored” at 1E-10

» Furthermore, long trains of leading or trailing 1E-10 values can also be eliminated
from dataset for model tuning and evaluation; really just a function of when updates
happen to occur.

* Independent variable is time before TCA (usually in fractional days)

— Canonical behavior curve uses independent variable as ratio of covariance
size to miss distance

— Problematic independent variable for fitting
* Not monotonic with time (but it does correlate at least moderately to time)
* Need temporal independent variable in order to map to operational timelines

— Thus, use time before TCA as independent variable for model
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WASA ROBOTIC Cap,

Bayesian Vertex Model

» Approximate theoretical progression of log(P.) values using a
downward-opening parabola
— Equation in vertex form: Y=a (x-h)?+b
—Can berecastas: Y =, + Bx + B,x?
— Location of peak more important than peak value,
so need not match functional form precisely
« With regression analysis of training dataset,
can establish prior distributions of set of
B values I I R
- Drawing from these priors, can use Bayes’ R S R
theorem to construct posterior distributions

— This allows priors to be combined with unfolding
data from current event

— Can then estimate log(P.) from mean values from parameter posteriors

Log10(Pc/MaxPc)
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WASA ROBOTIC Cap,

Using Frequentist Methods

* If we refit the line each time we receive a new OCM using frequentist
methods (i.e. least squares), we would see something like this

@ a.i. solutions

logy(Pg)

logyn(Pg)

Estimated Trend Before Data

4 Fusure Vales

Days Until TCA

Estimated Trend After 3 OCMs

< Obsened Values
4 Future Vakes
——  Least Squanes FR

Days Until TCA

logy(Pg)

logyn(Pg)

Estimated Trend After 2 OCMs

= Qosened vakes
& Future vales
— —  Lemat Squsres P

Days Until TCA

Estimated Trend After 4 OCMs

< Obsansd Values
& Future vakes
——  Least Squarnes FR

Days Until TCA

J. Vallejo et al. | Pc Behavior Prediction Models | AUG 2015 | 6



WASA ROBOTIC Cap,

+ RIS
MiTs
<£E52 "T'Gfdr 4
¥ g 3
&

Using Bayesian Methods

* If we use Bayesian methods, it is possible to incorporate prior
information into the estimates
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Comparisons Between the Bayesian and
Frequentist Models

* Using the Bayesian methods, we can make predictions using only
two OCMs (though generally these are not particularly informative)

— This is not possible with the frequentist model
* The frequentist model fits the points as closely as possible,

whereas the Bayesian model incorporates prior information,
compromising between the current and previous data

 The fits are generally similar, but the Bayesian fit is generally more
conservative

— The Bayesian model takes into account the uncertainty of the estimates, thus it
is less likely to fit the data “too well”

— As a result, the Bayesian model generally has wider error bounds, which are
usually more realistic

— The frequentist approach tends to chase the action, whereas the Bayesian
approach is more realistically predictive (because it considers prior
information)
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Methodology Details (1 of 3)

* We can calculate what is known as the posterior density of the
parameters given the data

—P(Bly) = p(yIB) * p(B)

— Thus, we specify a prior distribution for the beta parameters p([3), update it with
the data that we have seen p(y|B), and get an updated probability distribution
of the beta parameters given the data p(B|y)

* Now, we can force the parabola to open downwards by choosing
priors the allow only this shape

— Consider the model Y = B, + B,x + B,x? + €, where ¢ is the noise in the
measurement

— If we force B, and B, to be negative, this will ensure a downward opening
parabola will be fit each time and ensure that the vertex be realizable (e.g., not
have a y-value greater than 1, which is not possible for a Pc value)

— This presents one potential hazard with the model: what if the observed data
actually had the shape of an upward opening parabola? It would be fit with a
horizontal line, which is not the correct shape
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Methodology Details (2 of 3)

* The resulting constraints are
Bo<O
(B4)? <4 By B,
B,<O0
* In order to specify these priors, we use truncated Normal
distributions, so that

Bo ~ Normal(ug,0,2)1(-=,0)

By~ Normal(Uo’Goz)l('z\/(Bo B,), 2\/([30 B2))
B, ~ Normal(u,,0,2)1(0,*)

« While other prior distributions are possible, we find that the
truncated normal have the best convergence properties

— Gamma distributions were also attempted but exhibited high levels of
autocorrelation and overall slow convergence
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Methodology Details (3 of 3)

« Assume that € ~ Normal(0, o?)

« Assume a Gamma prior on the inverse of the variance 1/0?2
— Common practice.

* Choosing the parameters of these prior distributions

— Use restricted maximum likelihood to estimate downward opening parabolas
on a set of test data (we examined over 1000 events)

— Collect all of the betas from the fits

— Find parameters of a truncated normal distribution that is close to the observed
distribution of each parameter by matching quantiles
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Bayesian Vertex Model:
Model Performance Investigation

« Conjunction data archive assembled for 2013-14 for well-populated
orbit regime
— Perigee height between 500 and 750 km and eccentricity < 0.25
— Thousands of events per year

» Use part of 2013 data to “train” model—set prior distribution
coefficients

 Use 2014 data as validation dataset

» Segregate performance results

— First, by total number of data points (CDMs) in the event
» Data-poor events may perform worse than data-rich ones

— Second, by data point number
» How does model perform after point 3 versus point 6 or 10?
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WASA ROBOTIC Cap,

Bayesian Vertex Model:
LEO2: Data Density

* Probably want at least 50 events
surveyed to feel confident about
model performance conclusions

* This achieved only for event
sizes smaller than 14 data points

» Should focus on performance
results for these shorter events—
sampling more plentiful

Data Density
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HASA ROBOTIC CARA

Bayesian Vertex Model:
Mean Peak Estimation Error

MaxPc Prediction Bias (Log10[Observed/Expected])

104

* mean(Y — Yhat) for all the events of each =

size
» Value becomes unstable beginning at
event sizes of about 13 observations
 Stable region shows mean values "
ranging from around 0 +- half an order of
magnitude
* Model is biased but biased in a favorable 2 mmi[m’wmn )
direction TTTTTIITIIT T T AN

— Overpredicting leads to conservative safety-
of-flight decisions—better than the reverse
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Bayesian Vertex Model:
50th and 95t percentile Peak
Absolute Residual Errors

50ile Pc Prediction Log10(Residual Absolute Value)

* Focus on more stable region (event
sizes of 13 or fewer points)

At the 50t percentile all of that area is
less than 0.5 of an order of magnitude
— An acceptable result

« At the 95t percentile, that area varies
between 0.5 and 3 orders of magnitude

— Probably not an acceptable result E N e
* Model probably not useful for peak y
prediction y
 However, could still be useful for
predicting whether peak has occurred

2 4 6 8 10 12 14 16 18 20

a i SOIUﬁonS ) ) E\.rt.ent ?ize (# of Data Points)
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Bayesian Vertex Model:
Peak Prediction Performance

» Operational question: has the event

reached its peak Pc value?

* Plot at right shows, for all events of a

certain size after a certain data point, _
the percent correct peak predictions 4

— % of the time the model indicates the peak <« -
has already passed, and in fact it has

* In region of interest (< 14 data points),
performance always better than 50%
once half the event points received

— Performance moves to 80-100% as number

of points reaches total event size

% of Events Before/After Peak Correctly Predicted

Data Point #

10

2 4 6 8 10 12 14 16 18 20

 However, difficult to use result, since # Event Size (# of Data Points)

of points not known in advance

— Examine predictive force at “times to TCA” of

operational interest

@ a.i. solutions

J. Vallejo et al. | Pc Behavior Prediction Models | AUG 2015 | 16

a0

180

170

1 60

i 50



Bayesian Vertex Model:
Peak Prediction Performance (cont’d)

« Examine situation at typical maneuver
planning and commit times

—4, 3, 2, and 1 days before TCA

- Blue bars show percentage of correct | N
before/after peak predictions at these
time points ol

* Yellow bars show number of events 0
for which prediction was possible
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— At least two points needed o
— MCMC fails to converge occasionally sl
* Not stunning performance, but could  «; Ej;;gggtg;é;k;ggg;;:ﬂ
be an operational tool of some utility 0 PR A L S

Days to TCA
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Conclusion/Future Work

* A simple statistical model shows operational promise in
determining whether the peak Pc value has occurred

- Additional areas requiring exploration

— Event Pc histories need categorization

« May be that algorithm performs well only in “obvious” cases; may not be helpful
more ambiguous situations where greater operational need

— Different overall functional forms may yield better results

* Forinstance, the log probabilities of collision are effectively bounded between -10
and 0, suggesting a different distribution (Beta) may be more appropriate

— Other modeling paradigms
« Other ways of borrowing information, e.g. mixed models

— Longitudinal data analysis, because the observations are repeated
measurements on different events
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