

GSFC: Shuvo Mustafi, John Francis, Xiaoyi Li, Hudson DeLee, Lloyd Purves, Dewey Willis, Conor Nixon, Dan Mcguinness, Sara Riall MSFC: Matt Devine, Ali Hedayat

Contact: shuvo.mustafi@nasa.gov

Cryogenic Propulsion for Planetary Science Missions

- Why is liquid hydrogen (LH2) useful?
- LH2+LO2 Storage
- Subcooling Technique
 - Thermodynamic Cryogen Subcooler (TCS)
 - Launch Pad Cryocoolers
- Current Work
 - Missions of Interest: Any mission that requires high ΔV and high delivered and high returned mass to and from planets, moons, asteroids, comets with lower spacecraft wet mass.
 - Examples:
 - Titan Orbital Polar Surveyor (TOPS)
 - Europa or Enceladus Missions
 - Lunar Sample Return Mission
 - Comet and Asteroid Missions
 - Hardware: Subcooling using launchpad cryocooler demonstration
- Roadmap
- Summary

Why LH2+LO2 vs Hypergols (MMH+NTO)

TOPS Launched Mass - Various Configurations

- LH2+LO2 provides the highest specific impulse of any practical chemical propulsion system.
- For the TOPS Mission this means a 44% reduction in launched mass. This mission can be completed using an Atlas Launch Vehicle using LH2+LO2 but not with MMH+NTO.
- LH2+LO2 can enable missions that deliver/recover substantially larger masses to/from the target destinations, or launch the mission on smaller and cheaper launch vehicles, or both.
- LH2+LO2 can be also be used to reach the surfaces of atmosphere less planetary bodies without exposing the target bodies to hazardous and toxic hypergols, eg. Europa or Enceladus
- If required the LH2+LO2 could also provide an alternative to heavier batteries with the use of fuel cells, eg. shadowed regions of the moon.

8/20/2015

TOPS Launch Vehicle Performance

	LH2+LO2	MMH+NTO -	LH2+LO2 -	MMH+NTO -
	- HGA	HGA	LaserComm	LaserComm
Total Delta - V	5887	5887	5887	5887
Dry Mass - Nominal [Kg]	739	878	739	878
Dry Mass - With Variable Dry Mass Contingency [Kg]	880	1053	880	1053
Launch Mass with Variable Dry Mass Contingency [Kg]	3174	5587	2947	5266
AV 431 - Separated Launch Limit [Kg]	2827	2827	2827	2827
AV 431 - Separated Launch Mass Margin [%]	-11	-49	-4	-46
AV 541 - Separated Launch Limit [Kg]	3105	3105	3105	3105
AV 541 - Separated Launch Mass Margin [%]	-2	-44	5	-41
AV 551 - Separated Launch Limit [Kg]	3430	3430	3430	3430
AV 551 - Separated Launch Mass Margin [%]	8	-39	16	-35

Includes a 25% Dry Mass Margin

8/20/2015

LH2+LO2 Storage

Combination of Smart Cryogenic Design with Subcooling and Lowering Solar Flux (artificially and naturally) allows long term storage of LH2+LO2 for Planetary Science propulsion

Pre-Launch Isobaric Subcooling for Storage

- •RL-10s operated with densified hydrogen
- Other Engines would have to be qualified

- **Objective:** Delay venting of the cryogen as long as possible.
- Fluid Conditioning
 - Engine Start Box High End (SBHE)
 - Fluid at Normal Boiling Point (N)
 - Isobaric Subcooling (B)
 - Proposed fluid conditioning method
- Physics
 - Substantially lower heat flux in-space than in-atmosphere exploited or enhanced
 - Dominant in-space load < 0.25 W/m²
 - Dominant in-atmosphere load >63 W/m²
 - Available heat capacity of the stored cryogen - Unexploited
 - Heat Capacity from N to SBHE = 18.2 KJ/Kg
 - Heat Capacity from B (@ T=16 K) to SBHE = 55.0 KJ/Kg
 - Isobaric Subcooling to 16 K allows hydrogen to absorb ~ 3x the energy before venting has to be initiated => hold time before venting for isobaric subcooling is ~ 3x
- Pre-launch Subcooling using launch pad subcoolers or a thermodynamic cryogen subcooler

Subcooling Demonstration

490 N LH2+LO2 Engine

Joint GSFC+IVISFC Development Effort

Roadmap

8/20/2015

Summary: Cryogenic Propulsion for Planetary Science Missions

- Cryogenic LH2+LO2 Propulsion provides high specific impulse chemical propulsion for planetary science exploration
- Provide high ΔV and high delivered and high returned mass to and from planets, moons, asteroids, comets with lower spacecraft wet mass.
- For the TOPS mission, subcooled LH2+LO2 reduces launched spacecraft mass by 43% and allows for launch on an Atlas launch vehicle. The same mission cannot be performed using a MMH+NTO propulsion and an Atlas launch vehicle.
- Subcooling cryogenic propellants on the launch pad enables multi-year storage of LH2+LO2 without adding launched mass for LH2+LO2 storage

