
Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

Kirsten P. Duffy – University of Toledo / NASA GRC

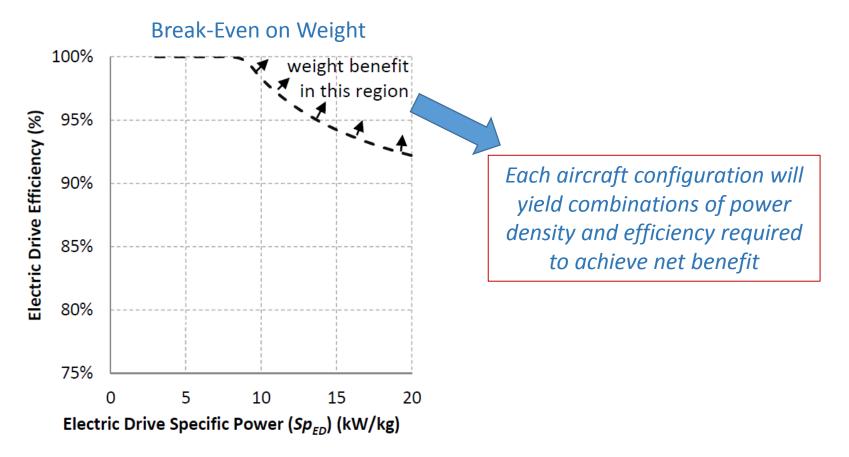
From Dr. Gerald Brown "Efficient Flight-Weight Electric Systems" Joint Propulsion Conference

2

Room Temperature Turboelectric Propulsion

Net extra fuel burn: 8% increase! (before iterating)

Need to determine combination of power density And efficiency to give net benefit


From Dr. Gerald Brown "Efficient Flight-Weight Electric Systems"

Turboelectric Propulsion Benefits Electric drive = motor + other electrical components

From Jansen et al. "Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements"

Joint Propulsion Conference

Application

- 1 MW motor application
 - Small eight-passenger aircraft, or distributed fans for larger aircraft
 - 7000 RPM fan speed
 - 0.8-meter fan diameter
- Motors
 - Permanent magnet, induction, synchronous reluctance
 - Target baseline motor performance
 - 5.8 kW/kg (3.5 HP/lb) power density
 - 96% efficiency
 - Based on electromagnetic weight and electromagnetic losses

Application

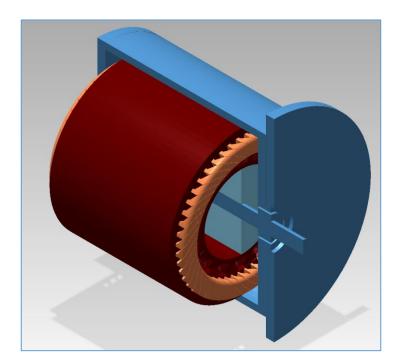
- How can motor performance be improved by using better component materials?
 - Conductor
 - Copper windings \rightarrow windings with CNT
 - Assume double conductivity
 - Permanent magnets
 - NdFeB \rightarrow nanocomposite material
 - Remanence flux increase to $B_r = 2.0 T$
 - Core material (soft magnetic material)
 - Hiperco 50 → composite material with hard and soft magnetic materials
 - Assume 50% loss, 75% saturation compared to baseline
 - Structural materials composite sleeve
 - Carbon fiber composite \rightarrow materials with CNT
 - Assume double strength

Electromagnetic analysis

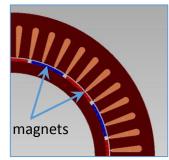
Structural analysis

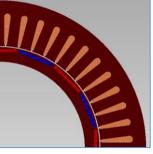
Assumptions

Standard Motor

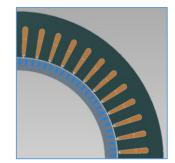

Tip Drive Motor

Parameter	Value		
Standard motor outer diameter, OD	0.5 m maximum		
Tip drive motor inner diameter, ID	0.8 m minimum		
Stator winding current density, J	10 A/mm ² rms maximum		
Target flux density in teeth, B	2.0 T rms maximum		
Target flux density in backiron, B	1.5 T rms maximum		
Frequency, f	1 kHz		


Increases power density, but also increases losses

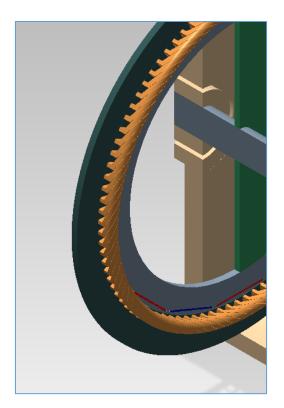


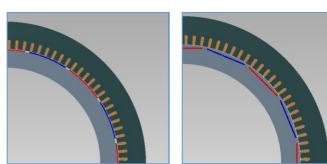
Standard Motor

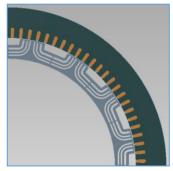


Surface-Mounted PM Motor (SPM)

Interior PM Motor (IPM)


Synchronous Reluctance Motor (SRM)


Induction Motor (IM)



Tip Drive Motor

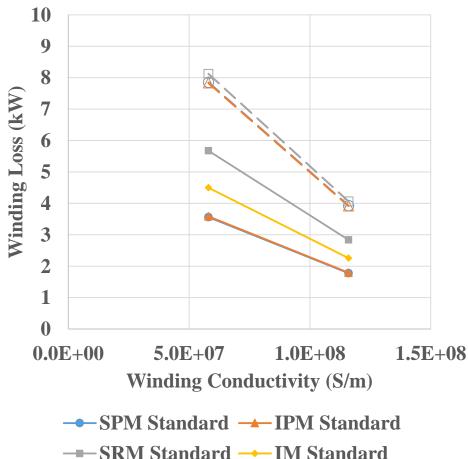
Surface-Mounted PM Motor (SPM)

Interior PM Motor (IPM)

Synchronous Reluctance Motor (SRM)

Developmenter	Standard Motor				Tip Drive Motor		
Parameter	SPM	IPM	SRM	IM	SPM	IPM	SRM
Outer diameter, OD (mm)	500	500	500	500	1184	1184	1184
Inner diameter, ID (mm)	292	292	255	290	800	800	800
Length, L (mm)	97	99	234	310	16.0	15.5	22.5
Stator copper mass (kg)	18.4	18.5	29.4	38.0	40.3	40.2	41.9
Stator core mass (kg)	58.3	59.5	140.7	186.8	39.3	38.1	55.3
Rotor copper mass (kg)	0.0	0.0	0.0	12.4	0.0	0.0	0.0
Permanent magnet mass (kg)	3.4	3.5	0.0	0.0	1.6	1.6	0.0
Rotor core mass (kg)	13.9	14.5	45.9	50.1	22.9	22.3	20.6
Total mass (kg)	94.0	96.1	216.0	287.2	104.1	102.2	117.7
Power density (HP/lb)	6.4	6.3	2.8	2.1	5.8	6.0	5.2
Power density (kW/kg)	10.6	10.4	4.6	3.5	9.6	9.8	8.5

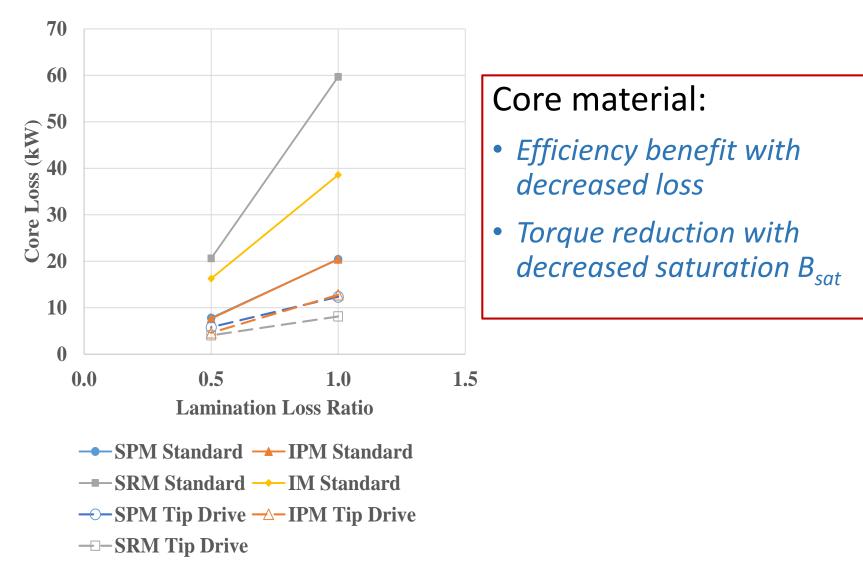
SPM = surface-mounted PM motor IPM = interior PM motor SRM = synchronous reluctance motor IM = induction motor


Devenuenter	Standard Motor				Tip Drive Motor		
Parameter	SPM	IPM	SRM	IM	SPM	IPM	SRM
Winding Loss (kW)	3.6	3.6	5.7	4.5	7.9	7.8	8.1
Core Loss (kW)	20.4	20.5	59.7	41.7	12.4	12.8	28.0
Solid Loss (kW)	24.9	9.7	0.0	6.1	70.6	13.9	0.0
Efficiency (%)	95.3%	96.8%	93.7%	95.0%	91.6%	97.3%	96.8%

SPM = surface-mounted PM motor IPM = interior PM motor SRM = synchronous reluctance motor IM = induction motor

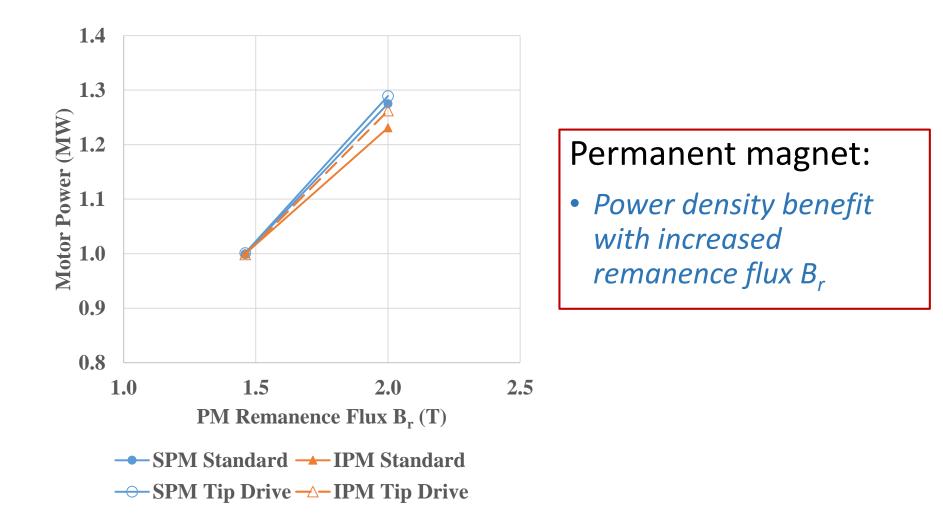
Improved Motor Performance

Conductor:

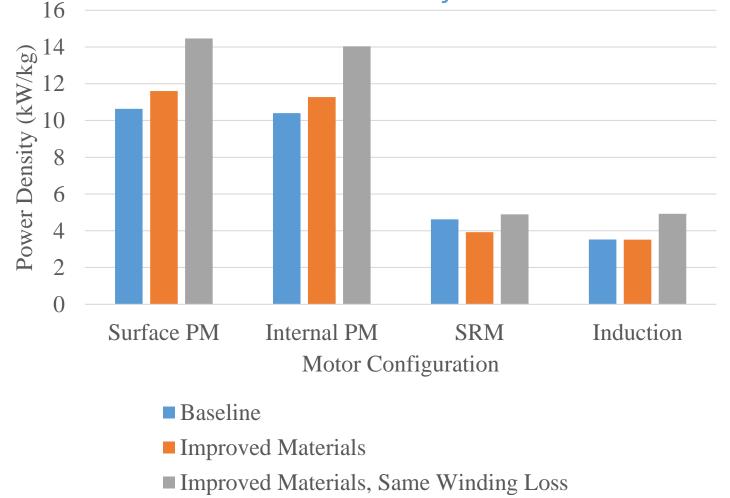

- Efficiency benefit with increased conductivity
- Power density benefit if winding loss kept constant

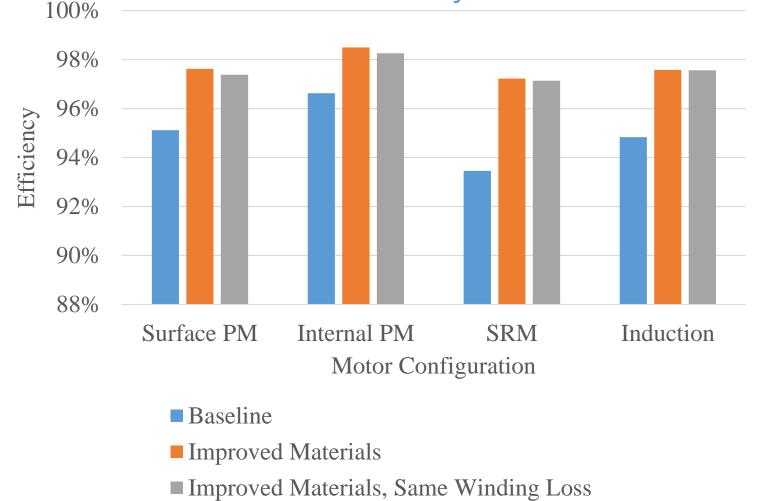
- -D-SRM Tip Drive

Improved Motor Performance

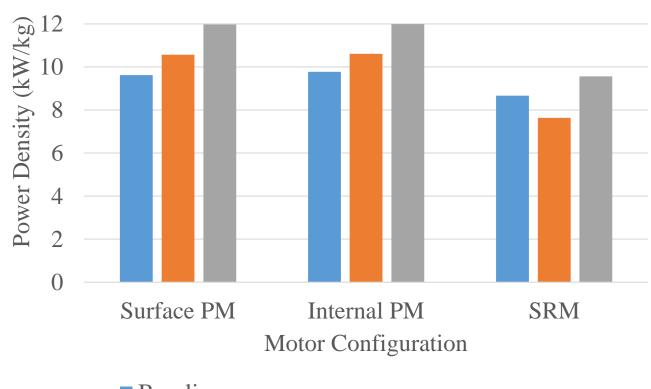


Improved Motor Performance



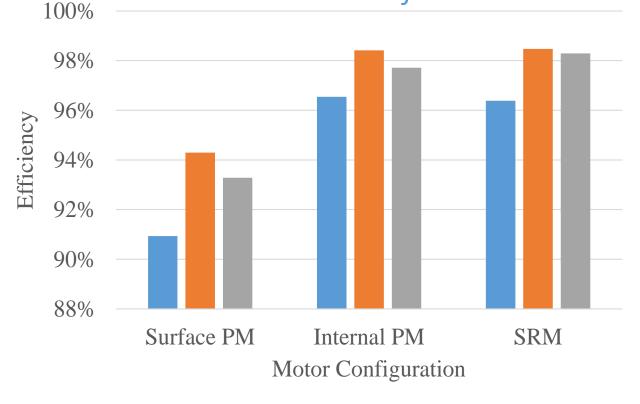

Improved Motor Performance Standard Motors – Power Density Combined Benefits

Improved Motor Performance Standard Motors – Efficiency Combined Benefits



Joint Propulsion Conference

Improved Motor Performance Tip Drive Motors – Power Density *Combined Benefits*



- Baseline
- Improved Materials
- Improved Materials, Same Winding Loss

Improved Motor Performance Tip Drive Motors – Power Density Combined Benefits

Baseline

- Improved Materials
- Improved Materials, Same Winding Loss

Summary

• 1 MW Application – Target 5.8 kW/kg, 96% efficiency

	Motor Type	Baseline N	Materials	Improved Materials		
Drive		Power Density kW/kg (HP/Ib)	Efficiency	Power Density kW/kg (HP/Ib)	Efficiency	
Standard	SPM	10.6 (6.4)	95.1%	14.5 (8.8)	97.4%	
	IPM	10.4 (6.3)	96.6%	14.0 (8.5)	98.3%	
	SRM	4.6 (2.8)	93.5%	4.9 (3.0)	97.1%	
	IM	3.5 (2.1)	94.8%	4.9 (3.0)	97.6%	
Tip Drive	SPM	9.6 (5.8)	90.9%	12.0 (7.3)	93.3%	
	IPM	9.8 (6.0)	96.5%	12.0 (7.3)	97.7%	
	SRM	8.7 (5.3)	96.4%	9.6 (5.8)	98.3%	

• 1 MW Application – Benefits

Drive	Motor Type	Power Density Increase	Winding Loss + Core Loss Decrease		
Standard	SPM	37%	14.3 kW / 60%		
	IPM	35%	14.4 kW / 60%		
	SRM	7%	36.7 kW / 56%		
	IM	40%	27.6 kW / 60%		
Tip Drive	SPM	25%	8.1 kW / 40%		
	IPM	22%	8.6 kW / 42%		
	SRM	10%	19.0 kW / 53%		

- 1 MW motor design and analysis
 - Combine effects of materials into re-design
 - Tradeoffs
- Design, build, and test high performance noncryogenic motors
 - State-of-the-art materials
 - New configurations
 - Maximize power density and efficiency