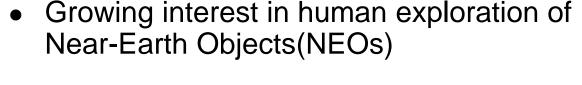


Identifying Accessible Near-Earth Objects for Crewed Missions with Solar Electric Propulsion


Stijn De Smet Jeffrey S. Parker Jonathan F.C. Herman Jonathan Aziz Colorado Center for Astrodynamics Research University of Colorado at Boulder

Brent W. Barbee Jacob A. Englander NASA Goddard Space Flight Center

University of Colorado Boulder, Colorado

Motivation

8/1/2015

- Crucial step in designing crewed missions to NEOs is identification of good targets
- Near-earth object Human space flight Accessible Targets Study (NHATS)
 - Only for chemical trajectories
 - Low thrust options were not considered because of computational cost
- This research lays some of the foundation for expanding the NHATS study with solar electric propulsion

Source: http://neo.ssa.esa.int/

NHATS background

- Identify all feasible trajectories to NEAs to all asteroids in time frame 2015-2040
- Requirements:
 - > Total mission $\Delta V \leq 12$ km/s
 - > Mission duration \leq 450 days
 - > Stay time \geq 8 days
 - > Re-entry velocity ≤ 12 km/s at 125 km
- Trajectory design: Lambert solver
- Highly automated system: automatically re-computes trajectories for asteroid when ephemeris of asteroid is updated, as well as automatically computing trajectories for newly discovered asteroids

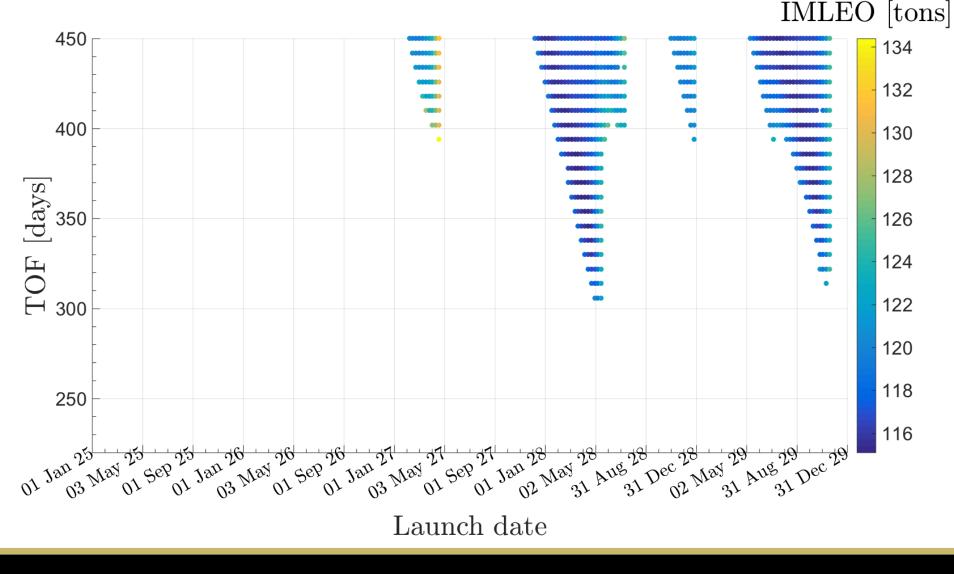
- To identify attractive rendezvous missions with NEAs using solar electric propulsion
- Compare those attractive SEP rendezvous trajectories with the chemical trajectories
 - Comparison is complicated by different nature of chemical and SEP trajectories

- Chemical trajectories are ranked based on total mission ΔV
 - > SEP operates on longer time scales \rightarrow also at kinematically inefficient points (gravity losses) \rightarrow higher ΔV
 - > SEP has higher Isp \rightarrow less propellant mass for same ΔV

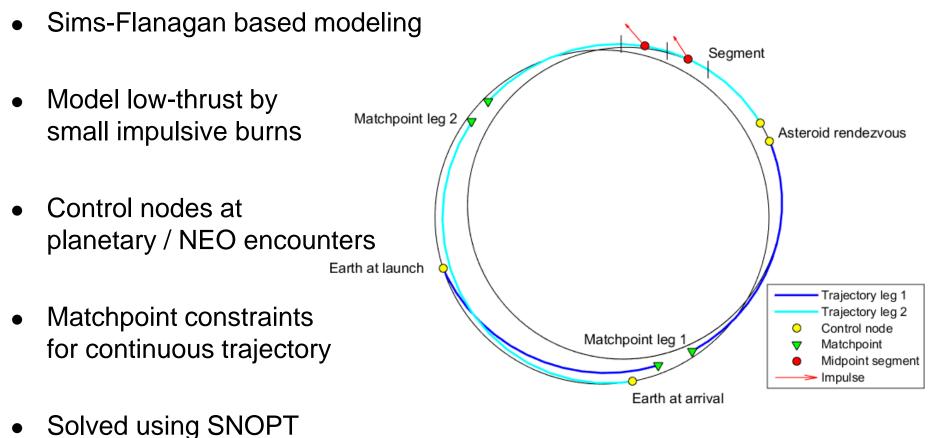
 \blacksquare Unfair to only compare on total mission ΔV

- Comparison will be made based on initial mass in low-Earth orbit (IMLEO)
- For same payload mass, increasing IMLEO for chemical systems leads to higher achievable ΔV , increasing mission opportunities
 - SEP systems can only expel certain amount of propellant in certain time frame dependent on power of system
 - Increasing IMLEO / propellant mass does not always result in more mission opportunities

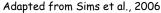
Use chemical trajectories to estimate lower bound on required power for each SEP trajectory


Method

- Use this information as filter for SEP trajectories to avoid running clearly infeasible trajectories
- Implement SEP & optimize trajectories
 - Using chemical trajectory design variables as initial guess
- Compute IMLEO for both SEP and chemical trajectories and compute their difference


Method – filtering of 2000 SG344

University of Colorado Boulder, Colorado



CCAR

University of Colorado Boulder, Colorado

Method – trajectory optimization

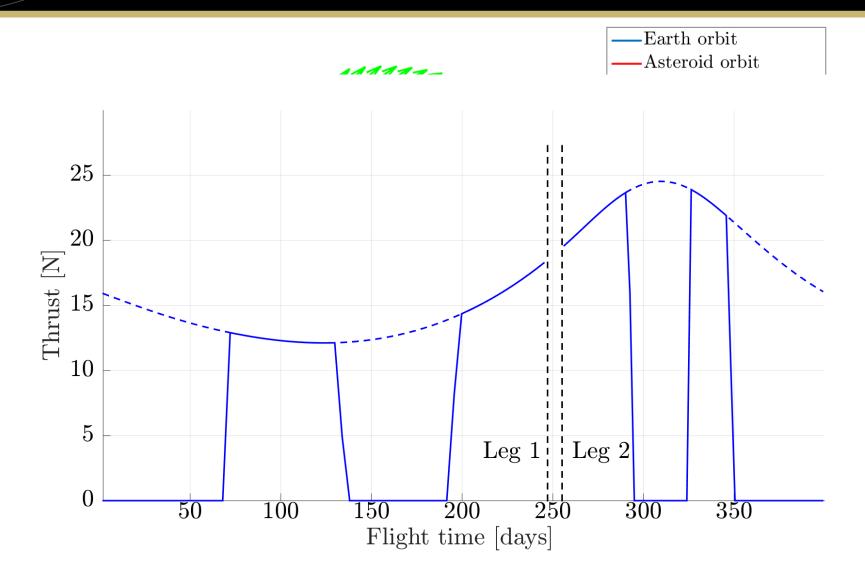
CCAR

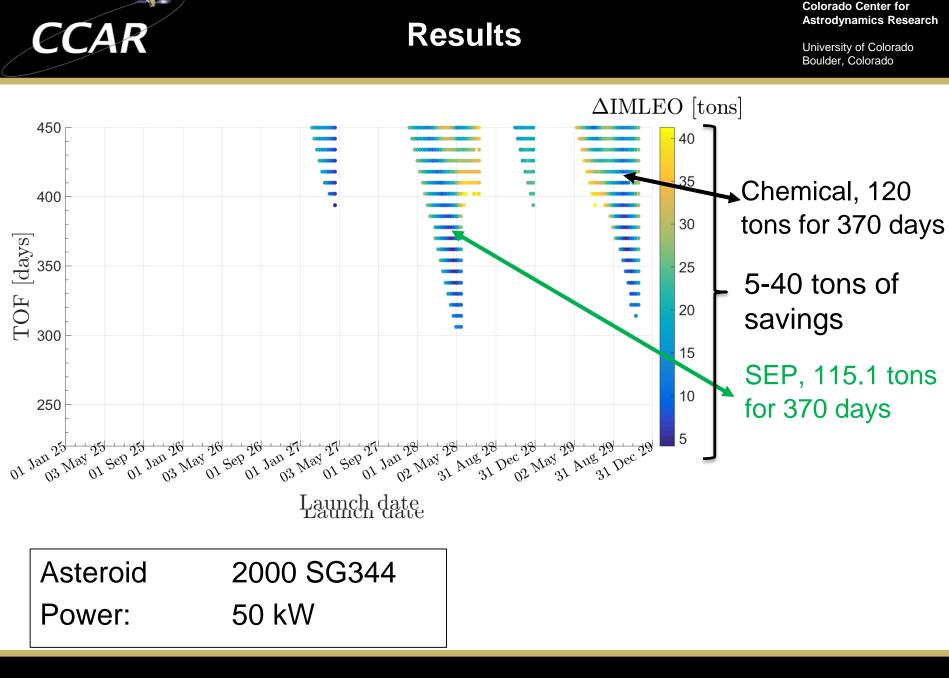
University of Colorado Boulder, Colorado

Optimization parameters

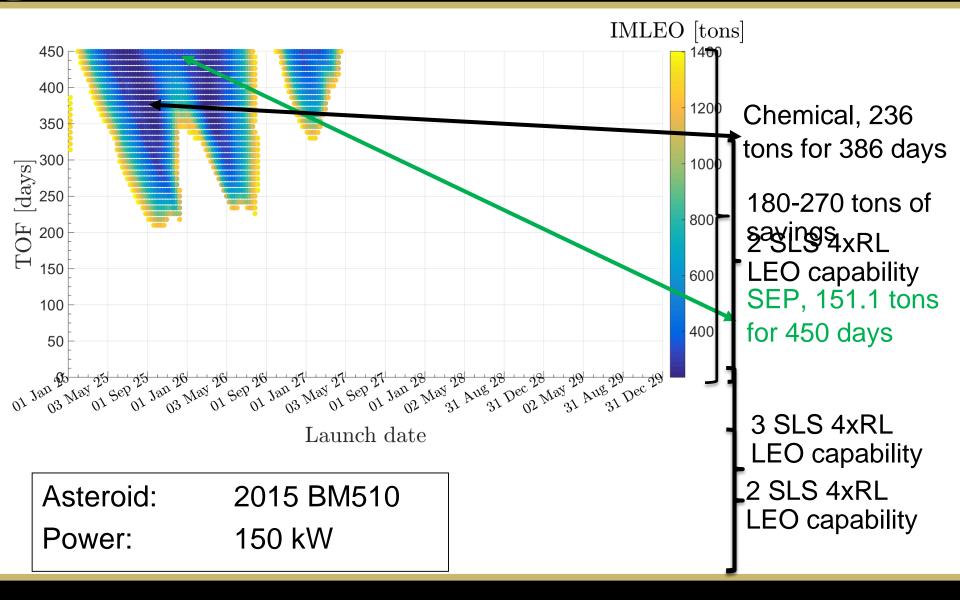
Assumptions for SEP

Mass-to-power ratio	30 kg/kW
Jet efficiency	60%
Duty cycle	90%
Chemical specific impulse	450 s
Specific Impulse	2000 s


Derived from NHATS


Maximum re-entry velocity12 km/sMaximum total mission duration450 days

Trajectory example


Colorado Center for Astrodynamics Research

University of Colorado Boulder, Colorado

Results

ECAR

- 2004 VJ1 150 kW: similar to 2015 BM510: could be launched with 2 SLS 4xRL10, its chemical counterpart needs at least 3 SLS 4xRL10
- Also scenarios with 300 kW have been investigated
 - Launch window for 3 SLS 4xRL10 with SEP allows for smaller TOF's than chemical

- SEP can be used to significantly enhance crewed NEO rendezvous missions
 - Initial mass in LEO can be reduced
 - Launch periods can be extended
 - Additional mission opportunities become available
 - TOFs can be reduced
- These benefits are not achievable with traditional impulsive maneuvers
- Results presented here suggest that many other targets in the asteroid population would enjoy similar performance improvements through the use of SEP

University of Colorado Boulder, Colorado

Identifying Accessible Near-Earth Objects for Crewed Missions with Solar Electric Propulsion

Stijn De Smet Jeffrey S. Parker Jonathan F.C. Herman Jonathan Aziz Colorado Center for Astrodynamics Research University of Colorado at Boulder

Brent W. Barbee Jacob A. Englander NASA Goddard Space Flight Center

Extra slides

Colorado Center for Astrodynamics Research

University of Colorado Boulder, Colorado

• Extra slides

University of Colorado Boulder, Colorado

• Rough guess for required spacecraft power is

 $P_0 = \frac{\Delta V \cdot m_{\text{avg}} \cdot I_{\text{sp}} \cdot g_0}{2\Delta t \cdot \eta_{\text{jet}} \cdot \varepsilon_T}$

• Average mass is the average of the mass after the chemical departure burn and the mass at Earth return

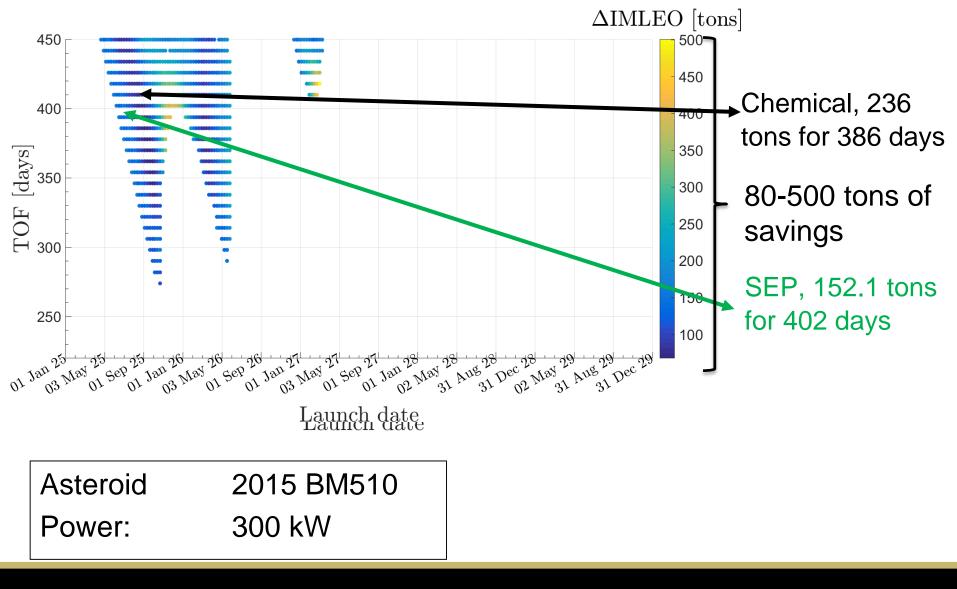
$$m_{\rm avg} = \frac{m_{0,\rm SEP} + M_{\rm Earth\ return}}{2} = \frac{M_{\rm Earth\ return}}{2} \cdot \left(1 + \exp\left(\frac{\Delta V}{I_{\rm sp} \cdot g_0}\right)\right)$$

• This gives

$$P_{0} = \frac{\Delta V \cdot m_{\mathrm{PL}} \cdot \left(1 + \exp\left(\frac{\Delta V}{I_{\mathrm{sp}} \cdot g_{0}}\right)\right) \cdot I_{\mathrm{sp}} \cdot g_{0}}{4\Delta t \cdot \eta_{\mathrm{jet}} \cdot \varepsilon_{T} - k_{P_{0}} \cdot \Delta V \cdot I_{\mathrm{sp}} \cdot g_{0} \left(1 + \exp\left(\frac{\Delta V}{I_{\mathrm{sp}} \cdot g_{0}}\right)\right)}$$

• Chemical

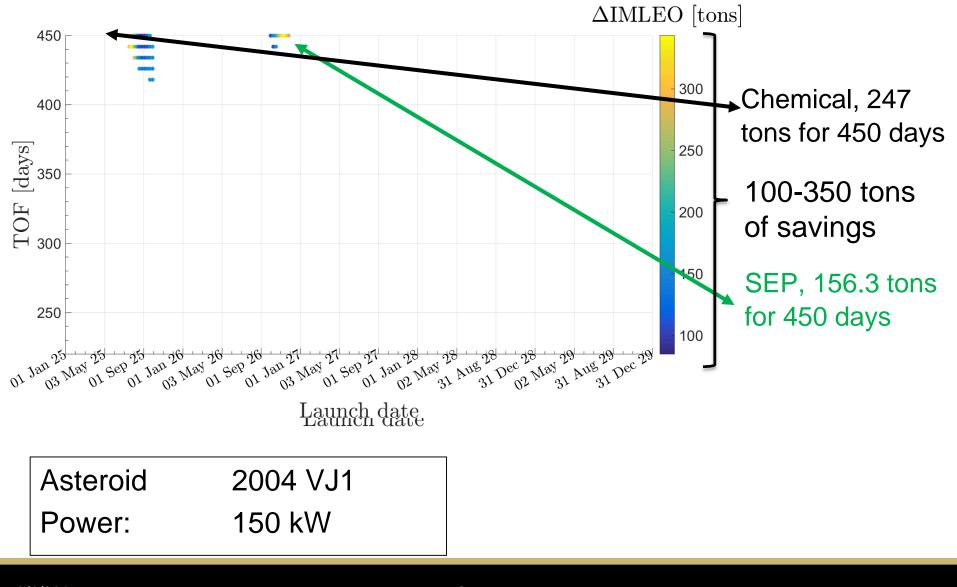
CCAR


$$IMLEO = M_{PL} + M_{chem prop} + M_{chem prop, esc} + M_{kick stage}$$

= $M_{PL} + M_{chem prop} + (1 + k_{KS}) \cdot M_{chem prop, esc}$
= $M_{PL} \cdot \exp\left(\frac{\Delta V_{tot} - \Delta V_{esc}}{I_{sp,2} \cdot g_0}\right) \cdot \left((1 + k_{KS}) \cdot \exp\left(\frac{\Delta V_{esc}}{I_{sp,1} \cdot g_0}\right) - k_{KS}\right)$

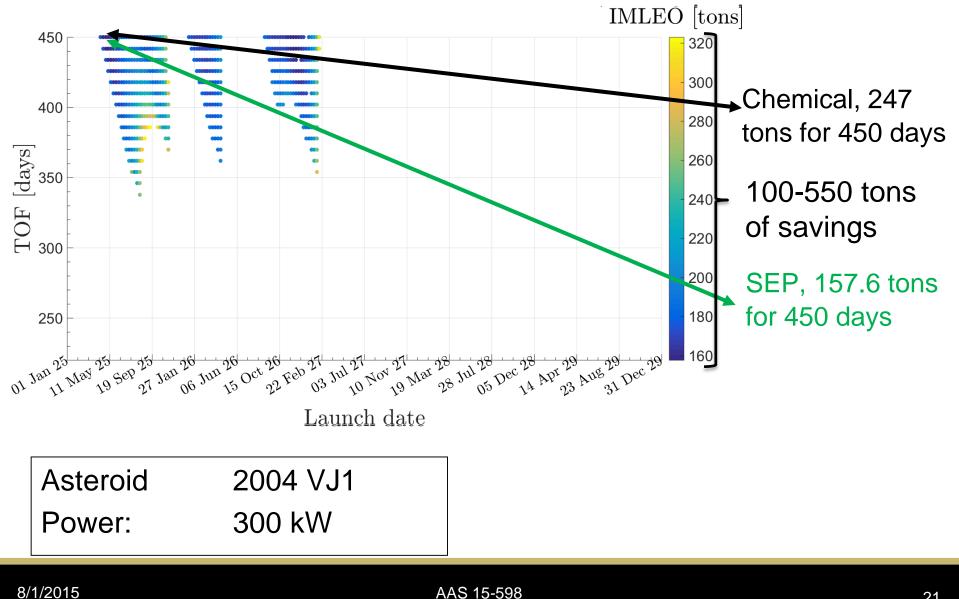
IMLEO formulation

• SEP


$$IMLEO = M_{Earth ret} + M_{SEP prop} + M_{chem prop, esc} + M_{kick stage}$$

= $M_{Earth ret} + M_{SEP prop} + (1 + k_{KS}) \cdot M_{chem prop, esc}$
= $\left(M_{Earth ret} + M_{SEP prop}\right) \cdot \left((1 + k_{KS}) \cdot \exp\left(\frac{\Delta V_{esc}}{I_{sp,1} \cdot g_0}\right) - k_{KS}\right)$

Results


University of Colorado Boulder, Colorado

Results

CAR

University of Colorado Boulder, Colorado

Results

CCAR

Summary results

University of Colorado Boulder, Colorado

Table 3: Minimal IMLEO for the different scenarios

Asteroid	Case	Minimal IMLEO [tons]	Launch date [mm-dd-yyyy]	TOF [days]
2000 SG344	50 kW	115.1	03-29-2028	370
	chemical	120	10-10-2029	370
	150 kW	151.1	12-18-2025	450
2015 BM510	300 kW	152.1	06-25-2025	402
	chemical	236	09-05-2025	386
	150 kW	156.3	11-19-2026	450
2004 VJ1	300 kW	157.6	04-30-2025	450
	chemical	247	05-16-2025	450

Summary results

University of Colorado Boulder, Colorado

Table 4: Launcher analysis

Launchers required	Asteroid	Case	Launch season [days]	Minimal TOF [days]
	2000 SG344	50 kW	568	306
2 SLS 1xRL		chemical	488	298
(140 tons)	2015 BM510	N.A.	N.A.	N.A.
_	2004 VJ1	N.A.	N.A.	N.A.

Summary results

University of Colorado Boulder, Colorado

Table 4: Launcher analysis

Launchers required	Asteroid	Case	Launch season [days]	Minimal TOF [days]
	2000 SG344	50 kW	568	306
		chemical	994	146
		150 kW	136	418
2 SLS 4xRL	2015 BM510	300 kW	448	290
(186.2 tons)		chemical	N.A.	N.A.
		150 kW	136	434
	2004 VJ1	300 kW	408	378
		chemical	N.A.	N.A.

Summary results

University of Colorado Boulder, Colorado

Table 4: Launcher analysis

Launchers required	Asteroid	Case	Launch season [days]	Minimal TOF [days]
	2000 SG344	50 kW	568	306
		chemical	1232	106
		150 kW	136	418
3 SLS 4xRL	2015 BM510	300 kW	496	274
(279.3 tons)		chemical	200	306
		150 kW	152	418
	2004 VJ1	300 kW	488	338
		chemical	120	402