Spatial Disparities in Dengue Risk along the US-Mexico Border

Cory Morin¹ Andrew Monaghan² Kacey Ernst³ William Crosson⁴ Dale Quattrochi¹

¹NASA – Marshall Space Flight Center, Huntsville, AL ²National Center for Atmospheric Research, Boulder, CO ³University of Arizona, Tucson, AZ ⁴Universities Space Research Association/Science and Technology Institute, Huntsville, AL

Mosquito-borne Disease Ecology

Dengue Virus

- Annually ~96 million cases of disease world wide
- Endogenous transmission in Florida + Texas
- Symptoms: muscle and bone ache, fever, and hemorrhagic manifestations in rare cases
- 4 serotypes of virus

Environment - Vector - Virus Connections

Modeling Dengue Fever in Sonora, Mexico

Dengue ecology

- Mosquito population dynamics
- Virus transmission dynamics
- Aedes aegypti mosquitoes
 - Urban, container breeding
 - Live in tropical habitats
 - Anthropophilic
- Sonora Mexico
 - Arid climate
 - Monsoon precipitation
 - Seasonal cycles of dengue transmission
 - Large annual variations in epidemics

Data and Methods

- Study area
 - 4 sites in Sonora, Mexico
- Meteorological/Dengue case data
 - Daily maximum and minimum temperatures (NLDAS)
 - Daily precipitation (TRMM, NLDAS)
 - Weekly suspected dengue cases by city 2006-2011
- Model
 - Parameterized for *Aedes aegypti* mosquitoes, daily time step
 - Run from 2005-2011 under varying parameters (500)
 - Best 3% of runs chosen by comparison with suspected case data (R^2)

Model Parameter Estimation

Containers

- Based on household surveys (Hermosillo)
- Human managed and open containers
- Used mean values and +/- 25% and 50%

- Minimum infectious rate
 - Minimum amount of infectious humans
 - Maintains virus within the population
 - Based on case data and previous study in San Juan, PR

Maximum larval density

- Used to calculate density-dependent mortality
- Based on observations, literature, and previous study in San Juan, PR

Modeling Aedes aegypti and Dengue Virus Ecology

Dengue and Climate Comparisons

Climate, Dengue, Simulations: Hermosillo

- 2008 and 2010 are largest dengue years
- Epidemics follow monsoon rains
- Precipitation magnitude not correlated with dengue case incidence
 - Introduction rate is likely
 important

Climate, Dengue, Simulations: Guaymas

Hermosillo

Guaymas

Ciudad Obregon Navojoa

Climate, Dengue, Simulations: C. Obregon

Climate, Dengue, Simulations: Navojoa

Ciudad Obregon Navojoa

Dengue Transmission in Nogales

- Why is there little/no dengue transmission in nearby Nogales?
- Hypothesis: Climate conditions are cooler
 - Suppression of mosquito population
 - Extension of extrinsic incubation period (EIP)
- Experiments:
 - 1: Rerun Hermosillo simulations with Nogales meteorological data
 - 2: Perform experiment 1 with 1°C warming
 - Performed during large epidemic years (2008 and 2010)

Hermosillo/Nogales Comparison: Mosquitoes

- Little/no dengue is simulated under Nogales meteorological conditions
- With warming, there is a modest mosquito
 population increase in 2008
 No dengue
- With warming, the mosquito population is higher under Nogales conditions in 2010
 - Results in increased virus
 transmission

Hermosillo/Nogales Comparison: EIP

- EIP is considerably longer under Nogales conditions
- Under Nogales conditions, the EIP is longer during the transmission season in 2008
 - Prevents completion of EIP during mosquito lifetime
- EIP shortened under 1°C warming conditions
 - Especially during transmission season

Challenges in Climate and Health Research

Reporting problems

- Misdiagnosis
- Subclinical cases
- Reporting errors/bias
- Availability of data

• Knowledge gaps

- Incubation periods
- Transmission probabilities
- Evolution and adaption of virus and human immunity

- Human vs. climate influences
 - Socioeconomic status
 - Microclimatic influences
 - Human adaptions to climate

Conclusions

- Nearby locations can exhibit very different patterns of dengue transmission
 - Differences in virus introduction
 - Small climatic differences can make large differences
- Dengue epidemics follows monsoon rains
 - Timing is consistent, however, the magnitude is not well correlated
- Climate is an important regulator of dengue transmission in Nogales
 - Affects mosquito population dynamics and the virus incubation period
 - Year to year variability is important
- Dengue transmission dynamics in northern Mexico may affect dengue risk in the United States
 - Travel, climate change
 - Recent dengue epidemic in Nogales

Next Steps

- Run model for additional locations along US/Mexico border
 - Does transmission vary?
 - Why?
- Perform fine scaled model runs
 - How does risk vary within a city?
- Consider socioeconomic conditions in model

Thank You for Your Attention!

Questions?

