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The first part of this paper pertains to the estimation of sub sonic 

rotary stability derivatives of wings. The unsteady potential flow 

problem is solved by a superposition of steady flow solutions. Numerical 

results for the damping coefficients of triangular wings are presented 

as functions of aspect ratio and I'1ach number, and are conipared with 

experimental results over the I vlach number range 0 to 1. 

In the second part, experimental results are used. to point out a 

close correlation between the nonlinear variations with angle of attack 

of the static pitching-moment curve slope and the damping-in-pitch 

coefficient. The underlying basis for the correlation is found as a 

result of an analysis in which the indicial function concept and. the 

principle of super-position are adapted to apply to the nonlinear problem. 

The form of the result suggests a method of estimating nonlinear damping 

coefficients from results of static wind-tunnel measurements. 
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SYMBOLS

A aspect ratio 

lift coefficient, lift 
qS 

Cm pitching-moment coefficient, pitching moment 
qS 2 

Fourier transform, F[f(t)] =feiTtf(t)dt 

M Mach number, 

S reference area (eq.uals wing area in part 1) 

V flight speed 

speed of sound in free stream 

wing root chord 

2. reference length (equals 	 c0	 in part 1) 

le(y) value of	 x	 at wing leading edge 

m slope of triangular wing leading edge, m = 

local loading (pressure on lower surface minus pressure 
on upper surface) 

q dimensionless pitching velocity,

dynamic pressure, j pj2 

t	 time 

u	 dimensionless spanwise distance,
me0 

w	 perturbation normal velocity at plane of wing 

x,y,z	 Cartesian coordinates fixed in wing with origin at wing 
leading edge; x positive rearward, z positive downward 
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dimensionless location of center of pressure of lift due 

to angle of attack, 

angle of attack 

mean angle of attack 

oscillation amplitude 

13	 .il-M2 

8	 angle of pitch 

mass density of free stream 

cp	 perturbation velocity potential 
2 

cp 
cp , cp ,et c .	 s—,	 etc. 

correction potential 

steady-state potential due to unit pitching velocity 
about y axis 

X	 steady-state potential due to unit angle of attack 

circular frequency 

()	
do 
dt 

When , , and q are used as subscripts with a lift or moment coefficient, 

a dimensionless derivative is indicated; thus 

Cm	 - Cm	 Cm 
C1kt__a:?	 CIIlc_	 ,	 CnjI

uv. 
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ESTIMATION OF ROTARY STABILITY DERIVATIVES 

AT SUBSONIC AiD TRANSONIC SPEEDS 

By Murray Tobak* and. Henry C. Lessing* 

National Aeronautics and. Space Administration 
Ames Research Center 
Moffett Field, Calif. 

1. INTRODUCTION 

It is now generally recognized that modern aircraft, particularly 

tailless aircraft, can experience a significant loss of damping in the 

short-period pitching mode at transonic speeds. This loss has been 

traced to a reduction or even a change in sign of the damping-in-pitch 

parameter C + C. On the supersonic side of the transonic speed 

range a fairly complete understanding of the mechanism underlying the 

reduction of pitch damping has been made possible by the rapid develop-

ment of theory in this range (cf. (1) and attendant bibliography). 

It is known, however, that the phenomena actually have their origins in 

the subsonic speed range; unfortunately, the great difficulty of the 

subsonic theoretical problem for finite-span wings has prevented a 

detailed study of these origins. Moreover, in the transonic speed range 

itself, and in fact, at all speeds, when flight conditions depart from 

those implicit in the range of applicability of a linearized theory, it 

is known that the aerodynamic forces and moments can become highly non-

linear functions of angle of attack. Here again, the great difficulty 

of the theoretical problem has prevented our gaivtng an understanding 

of pitch-damping behavior under such circumstances. While it may not be 
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feasible to obtain explicit theoretical solutions in these cases, the 

possibility remains to forxmflate the problems so they relate closely to 

analogous problems in steady flow. The aerod,nainics of steady flows 

being of fundamental importance in aircraft design, there exists a far 

greater fund of knowledge, both theoretical and experimental, relating 

to this field than exists for unsteady flows. Hence, if it is possible 

to relate an unsteady flow problem to an analogous problem in steady 

flow, one has the hope of bringing this fund. of knowledge to bear. 

This possibility will be examined for the two problems mentioned above; 

first, in the estimation by linear theory of pltch-d.anrping coefficients 

of wings flying at subsonic speeds; second, in the estimation of pitch-

dirping coefficients when the aerodrnamic forces and moments are non-

linear functions of angle of attack. 

2. ESTIMATION OP C AND C 	 POE WINGS AT SUBSONIC SPEEDS 

Consider the first problem, the estimation of pitch damping of 

wings flying at subsonic speeds. As is well known, to a first order in 

frequency the pitch-damping coefficient is composed. of two parameters; 

the pitching-moment coefficient proportional to constant pitching 

velocity, and C, the pitching-moment coefficient proportional to 

constant vertical acceleration.' Now the analysis of C 	 already 

corresponds to that of a steady flow, namely the flow over a wing cambered 

and twisted to have a domwash distribution linearly dependent on chord.-

wise distance, x. Hence, all attention can be focused on the remaining 

parameter, C.



2.1 Solution to Potential Equation 

	

To reduce the calculation for 	 to a steady flow problem, It is 

possible to adapt a simple device previously used extensively in calcu-

lating Cn at supersonic speed. The device was first introduced by 

Ribner and Malvestuto (2), who in turn credit It to C. S. Gardner. 

A solution is sought to the unsteady wave equation 

+	 + cp	 -	 -	 tt 

subject to the boundary conditions in the z 0 plane 

w(x,y,o) = cp(x,y,o) = -Vt , on the wing 

= ( +	
= 0 ,	 off the wing 

q0 VX	 z=o 

Gardner has shown that a solution to Eq. (i) suitable for supersonic 

speed can be built of a combination of steady flow potentials; namely the 

potential due to steady unit pitching velocity 'tV, and the potential due 

to steady unit angle of attack X, in the combination shown in Eq. (3) 

- q(x,y,z,t) -	 2 v 
rq= (x,y,z) +	 + 

+	 (x,y,z)
	

(3)

The adaptation of Eq. (3) to make it applicable to subsonic speeds consists 

only in adding a third steady flow potential, 	 The necessity of this

addition will be evident from inspection of the loading coefficient 

expression. 

2.2 Loading Coefficient 

The loading on the wing is obtained from Bernoulli 's equation 

- r [x(XY00) + j t(x,y,o,o)] 	 () 

(i) 

(2)



II-

and this leads to

+	 x	 1+(	 (7) 
q	 V L 2 \\a/q	 2 c0 Vo3J 1	 2Vcp 

aij \\qco.J 

evaluated at t = 0. Now if the flight speed is supersonic and the wing 

has supersonic trailing edges, the wake is of no concern in calculating 

loading on the wing since it cannot affect conditions on the wing. In 

these circumstances, the first three terms in Eq. (7) constitute the 

solution for loading on the wing. For subsonic speeds, however, the 

Kutta condition must be invoked; this entails that loading be zero at the 

wing trailing edge, and of course, also in the wake. This condition is 

fulfilled by the first two terms in Eq. (5) but not by X itself. 

Writing X as

x=1	 (,y)1d	
:	

( 6) 
Ze(y)o 

one sees that X is a function of y in the wake, retaining at each 

station y the value it has at the wing trailing edge. This value is 

directly proportional to the span loading due to angle of attack, which 

may be presumed to be known. Hence, the potential c is added so that 

its loading contribution will cancel a spurious but known loading in the 

wake contributed by X. In addition, since the boundary condition for 

downwash on the wing is already satisfied by r and X alone, a second 

condition to be fulfilled by 	 is that	 c/z be zero at the wing 

surface. These two conditions suffice to determine the additional loading. 

2.3 Solution for Triangular Wing 

To avoid excessive mathematical development, it is merely stated here 

that after some manipulation, the problem for the correction loading can 

be reduced to finding the loading corresponding to a known downwash
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dependent only on spanwise distance, y. Then by use of the reverse flow 

theorem, the lift and moment contributions are found relatively simply 

by spanwise integrations of this do'wnwash distribution, mrniltiplied by the 

reverse-f low span loadings due to angle of attack and pitching velocity. 

The form of the result as it applies to the triangular wing is given 

in Eq. (7).
P1 

= C1	 +	 - I g(u)L(u)1du 
0

P1 
= Cm + r2d	 'Fa=i + / 

g(u)L(u) 
J	 J q 

where

dr1 

	

g(u) =	 fd f	 (')F,=i 
J(i-) 2 + 2m2(u-)2 

	

L(u)R,l =	 (,u)R1d 
uI 

q0 

r'p 

	

L(u)R,q.=i =
	

(,u)R1d ,	 axis at apex 

and the subscript o on the stability derivatives is meant to indicate 

that the terms are to be evaluated for an axis located at the wing apex. 

The subscripts F and R distinguish between loadings in forward and 

reverse flow, respectively. 

2. Approximate Steady-State Loadings 

In the form given, Eq. () is exact. It will be noted that the 

calculations involve the steady-state loadings due to angle of attack 

and pitching velocity, and the corresponding span loadings in reverse 

flow. Hence, the stated objective has been achieved. To complete the 

calculations, it would of course be most advisable to use experimental

(7)



data for these quantities, or secondly, exact theoretical solutions. 

Since probably, neither will be available in sufficient detail, approxi-

mations imist be introduced at this stage. The calculatioiiis a sensitive 

one, especially for pitching moment, in that it involves differences 

of numbers of approximately equal size. Therefore, in introducing 

approximate loadings it is advisable to use a set of loadings that is 

at least internally consistent, that is, a set that satisfies the reverse-

flow theorem. In calculations for the triangular wing, it is possible 

to achieve this aim by a generalization of a technique introduced by 

Lomax and Sluder (3); namely, it is assumed that the loadings are those 

given by slender-wing theory, multiplied by a chordwise correction factor. 

The correction factor alters the slender-wing loadings both to account 

for conrpressibility and to comply with the Kutta condition. The loadings 

have the form given in Eq. (8). 

Wp = wp(x)	 (x,y) =	 ()- [wp(x /m2x2y2]

(8) 

wE = wR( x ) :	 (x,y)R = -	 Jrnx-y - [vRxe()] 

It will be noted that by virtue of the form of Eqs. (8), the integrand 

of the reverse-flow relation will form a perfect differential. The 

integration in X over the chord is then. identically zero since f is 

zero at the trailing edge and the square root is zero at the leading 

edge. Hence satisfaction of the reverse-flow theorem is insured in a 

very simple way. The. chordwise correction factor f(x/c 0 ) may be obtained 

from results presented in (3) . ..	 .	 0



Integrating the first of Eq,s. (8) to obtain the steady-state 

stability derivatives in forward flow yields 

c= ff() 

=_,cAJ	 f()d. 

= 
= - iAf 

Note that by virtue of Eqs. (, Cr <, are related simply by 'the 

factor	 3/2.	 It has also been found that the center of pressure of the

lift die to pitching about the apex is given very closely by 9/8 times the 

center of pressure of the lift due to angle of attack;* that is 

CI= 

Cm	
=	

Ciii.0	 (io) 

CIq	 CIc 

Inserting Eqs. (8), (9) and (io) in Eqs. (7) leads to the following 

expressions for 	 and

=	 + CL(.g)

(11) 

= - &	
+ C(g) 

where	
C(g) = _j g(u)L(u)1du 

0 

c(g) 

Curves of the parameters C/(icA/2),	 , and the correction terms 

*fl.J,j result is also obtained using Lawrence t s method ( Ii. ) of computing 
the steady-state loadings .' 

7, 

(9) 



132C(g)/(/2), 32o (g)/(icA./2) are presented on Figs. 1 and 2. 

From these results, all the stability derivatives can be obtained for 

triangular wings within the reduced aspect ratio range 0 < f3A < Ii. 

2.5 Enipirical Corrections 

Observe that by virtue of Eqs. (io) the expressions for the stability 

derivatives have been put almost completely in terms of C and ir. It 

is to be expected that an improvement in accuracy and, for example, at 

least a partial account of wing-body interference effects could be 

realized by replacing .0 and	 with values determined from experi-

ments. The given results can be corrected in the following way. Let 

CIe)cp

(12) 

atii 

Then

OI = . tVXhC 

0fl1q0 = -	 / th0th 

= [ 
Vx hC	 + CL()th]

	
('3) 

= v [
	
VC1	 + 

These are the results which will be compared with results of experiments. 

2.6 Comparison with Experiments 

The theory as computed and corrected from Eqs. (13) is compared with 

experimental data for triangular wings of aspect ratio 1 l.5, 2, and on 

Figs. 3 to 5 . Experimental results for the A = 1. Ii.5 wing were obtained
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at the Swedish Aeronautical Research Institute (5); those for the A 2 

and 1l wings, at the Ames Research Center(6), (7) . On each figure, the 

damping coefficient as defined here is shoin multiplied by a factor which 

converts it to comply with the defining units used in the experiment. It 

will be observed that in all three cases the accuracy of the theory is 

adequate. Note that the theory is capable of showing the reversal in 

trend of the damping coefficient that occurs at high subsonic Mach numbers; 

however, the reversal occurs sooner and more abniptly than predicted. 

3 . DAMPING IN PITCH IN TEE PRESCE OF NONLINEAR STEADY-STATE FORCES 
AND MOMM'TTS 

The second problem mentioned previously will now be considered; 

namely, the estimation of pitch-damping coefficients when the aerodynamic 

forces and moments are nonlinear functions of angle of attack. - The 

procedure will again be to formulate the problem to relate as closely as 

possible to conditions in steady flow. Evidence of the existence of such 

a relationship between steady and unsteady flow can be found in the liter-

ature; several experimental investigators (e.g., (8), (9)) have noted that 

when the static stability derivative Cna is a nonlinear function of 

angle of attack, the pitch-damping derivative C + 	 is also nonlinear. 

More specifically, as indicated in Fig. 6, an increase (decrease) in 

static stability is accompanied by a decrease (increase) in pitch damping. 

Experimental results for several radically different configurations have 

confirmed the general nature of this relationship and the results, when 

cross plotted, in most cases have exhibited the linear correlation also 

shown in Fig. 6 and expressed as Eq. (111-): 

CD1q + Cm , = A + BOnj	 (l1i)



10 

However, this information by itself is insufficient for the purpose of 

developing a rational estimation procedure, and the physical basis for 

such a relationship must be established. 

3.1 The Indicial Response 

In the analysis to follow, the physical basis for the relationship 

between pitch-damping and static stability will be illustrated through 

use of the concept of the indicial response. The indicial response of 

a system, by definition, is the response of the system to a disturbance 

in the form of a step function. As an illustration, Eig. 7 shows a 

step change in angle of attack &t. The indicial response which will 

be considered, also shown, is the resulting moment coefficient variation 

divided by the increment in angle of attack. It will be noted that the 

indicial response is not zero at time zero, but has a starting value 

which may be computed rather simply (e.g., (10)) from considerations of 

the initial momentum change imparted to the air immediately adjacent to 

the surface of the aerodynamic body. The response then proceeds to 

change with time, eventually reaching its steady-state value which has 

been indicated to be a function of angle of attack. 

The following assumptions will be made concerning the indicial 

response: First, that the total response can be divided logically into 

two individual responses as indicated in the last sketch of Fig. 7. 

The first response is associated with the starting value, and falls to 

zero as the finite ectent of the body alleviates the momentum initially 

imparted to the air. The second response is associated with the develop-

ment of the flow pattern leading to the steady-state value. The starting 

value will be assumed independent of angle of attack. This assumption
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is consistent with the results of linearized (10) and second-order 

aerodnainic theory f or planar bodies (wings) and. will be assumed to 

hold. in general. Finally, the form of the response associated witi the 

nonlinear steady-state value will be assumed to be independent of the 

nonlinearity. This assumption is based on the intuitive reasoning that 

the propagation of flow disturbances, that is, the mechanism by means of 

whi.ch the steady-state loading is attained, is independent of the form of 

the loading. The importance of the assumption lies in the fact that it 

retains the characteristic of the response of a linear system which permits 

the principle of superposition to be applied (ii). With these assumptions 

the indicial response may be written as 

c:t	 =	 (o)f1 (t) +	 (oo,a,)f2(t)	 (i) 

where the limits of the functions f 1 and f2 are zero and unity. 

3.2 The Superposition Integral 

In Fig. 8 an arbitrary angle-of-attack variation is shown, beginning 

with an initial value ctj which has existed for an infinite period prior 

to time 'zero." If the continuous variation is approximated by a series 

of step functions, then associated with each step is an indicial response 

such as previously discussed. The resulting moment variation is then 

given by the sum of the indicial responses, 

;(t) = Cm( 0 ) +	 (tt1,a1)[ti] +	 (t-t2,a)[aI + . 

= Cm( 0 )	 (ttn,a)&tn
	 (i6) 

where each response is evaluated at the appropriate instant of time (t-t) 

relative to its inception. Passing to the limit of an infinitesimal step
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size then leads to Eq. (17): 

	

Cm(t) = Cm(0) + I Cni , (ti-,c ¶	 di-	 (17)di-

Again one should note that the use of the superposition integral Is possible 

only as a result of assuming an indicial response of unique form, containing 

the nonlinearity associated with	 only as a multiplicative factor 

determining the magnitude of the response. 

3 .3 Determination of	 and 

As a result of the preceding development, it Is possible to consider 

separately the two parameters	 and	 which make up the total pitch 

daiirping. Attention will be focused here on 	 the pitching-moment 

coefficient proportional to vertical acceleration. The motion which leads 

to a moment proportional to c. but not to q is shown in Fig. 9 - harmonic 

plunging oscillations of an aerodynamic body at constant inclination to 

the mean flight path. The angle-of-attack variation is then given by 

a(t) =	 + ct0sin wt	 (18)

a harmonic variation of angle of attack of amplitude a0 about a mean 

value am. If now the steady-state value of the inclicial response is 

expanded in a Taylor series about the mean angle of attack c, 

dC	 1 d2 C	 2 
, a,) = c( am) + da	 +	 da.2 (an) { a-an] + . . .	 (19) 

all the necessary equations have been developed for conrpiting the total 

moment response to this motion. Substitution of Eqs. (15) and (19) in 

Eq. (17) and a little manipulation yields
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pt	 da(i) 
m( t ) = Cm( t ) - c,(o) = c(o) I f1(t-T)	 dT 

J0	 d.T 

t 
+ a I f2 (t-T)	 dT + b	 f2(t-T) di-

J0	 dT	 dT 

rt 
+ d. / f2 (t-T)

	

	 dT + . .	 (20) 
dT 

where
dC1	 d(a) + a=C(am) -a	 (am) 

1 dCn	 am d2Cmz, / 
b = 2 

d	
(am) -	 m) + 

1d2C 
-g-	 2 

and LCm(t) is the time-varying moment caused only by a time variation 

of angle of attack . Any mean value of the moment has been subtracted 

as shown. If now the angle-of-attack variation given by Eq. (18) is 

introdnced, Lc(t) can be determined by a straightforward. integration of 

Eq. (20). It is evident that because of the nonlinearityof the steady-

state response, the response Cm(t) to the harmonic angle of attack will 

not Itself be harmonic, but will be instead a periodic function made up 

of coniponents exhibiting some range of frequencies. E:owever, only those 

components are of interest which are characterized by the frequency w, 

since only those components are capable of doing work, or of being 

Interpreted as an aerodynamic spring or aerodynamic mass. Application of 

the Fourier transform to Cm(t) yields the desired conrponents. A some-

what simpler and more direct approach is the application of the Laplace 

transform (11) to Eq. (2O) reduction to the Fourier variable, w, then 

yields the desired components directly. Either approach is straightforward 

and. need not be detailed here. The final result is
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F[(t)m] =	
+ i)[Cfl (o)Fl(w) - CF3 (w))	 (21) 

where
2 d2C 

= Cmrj(ctm) + -	 cram) + . . .	 (22) 

F1(w) =fri(t)etdt 

F3(w) =f[1_f2(t)]etdt 

The first term in Eq. (21) is a moment in phase with oscillatory angle of 

attack, and is therefore equivalent to an effective aerodynmic sprizg; 

hence the similarity. in the notation to the usual designation of aero-

d.yna.inic spring, C. The second term •is complex through the Fourier trans-

forms F1 () and. F3 (w). The imaginary part is in. phase, with the rate of 

change of angle of attack, and is therefore proportional to Cn. The real 

part is in phase with acceleration and can thus.be  identified as an aero-

dynamic mass. To the first order in frequency the aerodynamic mass 

contribution to the moment is zero. Also to the first order in 

frequency, C	 can be expressed as 

C=C+DC	 (23)' 

where	 - 

	

a =	 c(o) 

D =,.f [-1 - f2(t)]dt. 

The derivative C	 is thus seen to have the linear correlation form 

originally given by Eq. (iii-), but the correlation relates to the effective 

value	 rather than the static value O. ' it will be seen later
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that this form is the correct one. The constants C and. D are functions 

of the starting value of the indicial response and. integrals of the 

functions f1(t) and. f2 (t) which determine the form of the Indicial 

response. The integrals are equal to the areas shown in Fig. 10. 

The 'reader will note that the effective static stability Cnlae given 

by Eq. (22) is the value which would be obtained by means of an ecperimental 

apparatus wherein the motion' is inexorably forced and the aerodynamic 

moment component in phase with the angle of attack is measured. It can 

also be shown by the Kryloff-ogo1iuboff method. (12) of nonlinear mechanics 

to be the value which would be 'obtained from frequency measurements of a 

tuned apparatus, that is, an apparatus which is forced. to oscillate at 

its resonant frequency. It was by the latter method that the data to be 

presented subsequently were obtained. 

A similar analysis for the derivative Cm< leads to the result 

=	
(24)

which states that, to first order in frequency, Cmq is equal to the 

effective steady-state value Cfl]% existing at the mean angle of attack am. 

3.4 Discussion 

From the previous . d.evelopment It Is evident that the total pitch 

damping, as given by the sum of Eqs. (23) and. (24), 

Cfllq + Cnk = Cmq + C +	 (25) 

should exhibit a linear correlation only If Cm	 Is independent of angle 

of attack, varies with angle of attack in the same manner as 	 or Is

negligibly small. It Is noted that those configurations investIgated, to 

date which have failed to exhibit a linear correlation have all been winged
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configurations which would be expected to have, a sizable value of 

relative to. C. Bodies of revolution, which would be expected to have 

a much smaller value of C, have all correlated rather well. A typical 

example is shawn in Fig. llwhere the pitch damping and. the effective value 

of static stability are shown as functions of mean angle of attack for 

three oscillation arirplitudes. These are data recently obtained at Ames 

Research Center for a body of revolution at a subsonic Mach number. The 

value of C	 for this configuration is estimated to be quite small and, 

as can be seen, the data correlate very well. Iote that, particularly in 

the region of greatest nonlinearity, the pitch damping yaries with oscil-

lation amplitude and would not, therefore, correlate with the single static 

stability curve given by C. It is the simultaneous variation of the 

effective static stability C 	 which leads to the correlation shown. 

It appears, therefore, that a fairly sound understanding of the 

physical processes underlying a correlation between the dynamic stability 

derivative C	 and the static stability derivative C 	 has been 

attained. The constants in Eq. (23) . indicate the quantities which must be 

determined in order to utilize these results in a rational estimation 

procedure - the starting value of the indicial response, and the charac-

teristics of the response as determined by integrals of the functions f1(t) 

and r2 (t). Work in this direction is now in progress.
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of step functions.
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Fig. 9.- Motion which produces harmonic angle-of-attack variation. 
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