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The Curiosity rover has recently found evidence for 

small amounts of jarosite, a ferric sulfate, in the 

Pahrump Hills region at the base of Aeolis Mons 

(Mount Sharp), Gale crater.  While jarosite has been 

described previously at other locations on Mars, in-

cluding several sites at Meridiani Planum (explored by 

the Opportunity rover; [1, 2]) and Mawrth Vallis (by 

remote MRO-CRISM observations; [3]), this is the first 

identification in Gale. Jarosite is interpreted to be a 

mineral indicator of acidic conditions (pH < 4; [4]); on 

Earth, it is most commonly found in acid rock-drainage 

or acid sulfate soil environments [e.g., 5].  However, 

jarosite has also been described from a number of ter-

restrial environments where widespread acidic condi-

tions are not prevalent [e.g., 6].  As a case study, we 

describe here an occurrence of sedimentary pyrite nod-

ules that have been variably oxidized in situ to gypsum, 

schwertmannite, K-/Na-jarosite and iron oxides in a 

polar desert environment on Devon Island, Nunavut, 

Canada.  Remarkably, these nodules occur in loosely 

consolidated carbonate sediments, which would have 

required a higher pH environment at their time of for-

mation and deposition.  Thus, acidic conditions may 

only exist at a small (sub-cm) scale or in a restricted 

temporal window in an otherwise well-buffered envi-

ronment.  On Devon Island, the jarosite occurs in the 

most oxidized nodules and is never associated directly 

with pyrite.  Schwertmannite, a metastable iron oxyhy-

droxysulfate that can form at pH higher than that re-

quired for jarosite, occurs in association with partially 

oxidized pyrite.  The paragenetic sequence observed 

here suggests initial formation of schwertmannite and 

late-stage precipitation of jarosite in restricted micro-

environments, possibly forming via transformation of 

an amorphous schwertmannite-like phase (Figure 1).   

While the carbonate environment on Devon Island dif-

fers significantly from that of Gale crater, i.e., where 

we find predominantly basaltic sedimentary rocks [7, 

8], this terrestrial analog provides insight into the sig-

nificance of jarosite with respect to habitability.  For 

example, the variable abundance of jarosite on Mars 

and possibly in Gale crater points to potentially local-

ized conditions favorable for jarosite formation.  Inter-

estingly, small amounts of sulfide minerals have also 

been detected by Curiosity at Yellowknife Bay [9, 10]; 

oxidation of sulfide minerals at Pahrump could explain 

the presence of small amounts of jarosite [10]. The 

iron-rich rocks at Pahrump may also represent relative-

ly altered basaltic sediments [11], or they could be sed-

iments that were altered further by a fluid with a dis-

tinct, possibly more acidic, composition.  In addition, 

the abundance of iron-rich amorphous material in Gale 

rocks [9, 12] allows for the possibility that pre-cursor, 

iron-bearing phases transform to jarosite post-

depositionally.  Thus, the occurrence of jarosite at 

Pahrump could reflect changing paleoenvironmental 

conditions, though continuing study of its context and 

textural relationships should provide a fuller under-

standing of the significance of this mineral to past fluid 

compositions and past habitability at Gale crater.    
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Figure 1. Thin-section photograph of completely oxidized 

pyrite nodule in Devon Island sample showing void-filling 

and late-stage jarosite (yellow) coating schwertmannite (or-

ange).  Scale bar is 100 micrometers. 
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