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To improve existing ice accretion simulation codes, more data regarding ice roughness 
and its effects on convective heat transfer are required. To build on existing research on this 
topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to 
model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the 
VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 
7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 
surfaces, each with a different representation of ice roughness: 1) a control surface with no 
ice roughness, 2) a surface with ice roughness with element height scaled by 10x and 
streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with 
ice roughness with element height scaled by 10x and streamwise rough zone width from the 
stagnation point scaled by 25x. Temperature data from the tests were recorded using an 
infrared camera and thermocouples imbedded in the test plate. From the temperature data, 
a convective heat transfer coefficient map was created for each case. Additional testing was 
also performed to validate the VIST’s flow quality.  These tests included five-hole probe and 
hot-wire probe velocity traces to provide flow visualization and to study boundary layer 
formation on the various test surfaces. The knowledge gained during the experiments will 
help improve ice accretion codes by providing heat transfer coefficient validation data and 
by providing flow visualization data helping understand current and future experiments 
performed in the VIST. 

Nomenclature 
Ac = The accumulation parameter 
Ap = Total area of heated section 
B = A systematic uncertainty 
CP =  The pressure coefficient 
E = Voltage across gold-deposited Mylar heater 
h = Local convective transfer coefficient 
I = Current through gold-deposited Mylar heater 
kmax = The maximum roughness height within the 2% chord region 
kp = Thermal conductivity of Plexiglas ( = 0.205 W/m.K) 
LWC = Liquid water content 
N = The number of repeated measurements 
ra = The radius of curvature of the airfoil 
Re = Reynolds number 
S = a standard deviation or the airfoil surface direction 
s = The distance along the surface of an airfoil 
t = The Students’s t distribution value 
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tp = Plexiglas thickness ( = 0.72 in.) 
T∞ = Free stream fluid temperature 
TSS = Subsurface Plexiglas temperature from embedded thermocouple 
TUP = Under Plexiglas plate temperature from thermocouple 
TIR = Local surface temperature from infrared camera 
u = The component of the velocity vector in the X-direction (tangent to the wall) 
Ue = The velocity at the edge of the boundary layer 
Uth = The velocity at the throat of the VIST  
U = The freestream velocity of the airfoil 
uk = The velocity at the maximum peak of the roughness elements 

rmsu   = The root-mean-square velocity  

v = The component of the velocity vector in the Y-direction (normal to the wall) 

V


 = The vector magnitude measured by a hotwire probe,   5.022 vu   

x = The distance in the chord direction of the airfoil 
 = The density of the substance 
ε = Emissivity of painted test plate surface ( = 0.95) 
σ = Stefan-Boltzmann constant ( =5.67E-8 W/m2.K4) 
 = The molecular viscosity of the air 
ts = Ice accretion event time 

I. Introduction 
ince the 1940’s NASA’s Icing Branch at Glenn Research Center has been performing valuable research and 
testing to improve the safety of aircraft flying in icing conditions [1]. Their mission is accomplished through a 

wide variety of operations including the creation of software simulation tools which predict the accretion of ice on 
aircraft surfaces during flight. One of the leading ice accretion codes, LEWICE, is developed by researchers at 
NASA Glenn [2] and is used widely throughout the aeronautics industry. 
 Ice roughness is an important factor to model in ice accretion codes because it couples the fluid flow, heat 
transfer, and droplet impingement processes [3]; however, it is difficult to characterize due to the chaotic nature of 
its formation [4].  Although several mechanisms for heat transfer exist on an airfoil, the prediction of ice growth 
rates and ice shape formation is most highly sensitive to convective heat transfer since this is the predominant mode 
of heat transfer in aircraft icing [5].  Since ice roughness is so closely coupled to convective heat transfer, a change 
in the ice roughness characteristics (element size, element spacing, etc.) will drastically impact the convective heat 
transfer from a surface and, therefore, the amount and rate of ice accretion.  

Ice accretion codes are currently limited in their capabilities to accurately predict ice accretion due, in part, to the 
use of simplified ice roughness models. In LEWICE, an estimate of ice roughness height is made based on the sand-
grain equivalent model [2]. Convective heat transfer coefficients are then determined from an integral boundary 
layer calculation, which uses the predicted ice roughness height. The equivalent sand-grain roughness height is 
determined by an empirical correlation as a function of the freezing fraction at the stagnation point. The current 
approach used by LEWICE is conceptually unsatisfactory since sand-grain roughness is very different from realistic 
ice roughness in both size and distribution density [6]. The LEWICE correlation is very simplistic in its use of only 
one variable (stagnation point freezing fraction) to estimate the roughness height for the entire range of icing 
conditions. 
 Real ice roughness created on aircraft surfaces differs from the surfaces used for the classical correlations in 
many important ways.  Those differences being: 
 

1)  Ice roughness occurs with random distributions of roughness elements of different size and location along 
the surface, 

2)  Ice roughness properties vary along the flow direction including exhibiting an abrupt smooth-to-rough 
surface transition, 

3)  Because of the varying ice growth rates, surfaces with ice roughness exhibit changing thermal boundary 
conditions along the flow direction, 

4)  Surfaces with ice roughness experience mildly to highly accelerating flow because of the shape of the 
airfoil, 

S
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5)  Atmospheric flows and flows inside the Icing Research Tunnel may experience elevated levels of 
freestream turbulence, 

6)  Ice roughness exhibits many different roughness element shapes, and 
7) Because of the local freezing of the liquid water (Stefan condition), the surface of the ice roughness 

exhibits essentially a constant temperature acting as a surface with near infinite thermal conductivity even 
though ice in isolation has a relatively low thermal conductivity. 

  
Different studies in this series have isolated different aspects of realistic ice roughness in an attempt to explain the 
differences between the predicted values from the traditional correlations and the convection values required to 
accurately predict ice shapes in LEWICE.  Tecson and McClain [7] investigated the enhancement of surfaces with 
random distributions similar to those found on airfoils with ice roughness in flows with minimal freestream 
acceleration. The surfaces studied by Tecson and McClain [7] were created using a Lagrangian droplet simulation of 
the beading and coalescence process [8]. The resulting bead pattern was modified to match the characteristics of 
surfaces measured from historical roughness studies in the IRT [6, 9].  

Walker et al. [10] expanded on the study of Tecson and McClain [8] by imposing different flux boundary 
conditions.  Walker et al. [10] found that although the different boundary conditions produced slight variations in the 
measured convection coefficients, the relative enhancement above the smooth turbulent case was not significant for 
a given roughness pattern.  In any case, the varying thermal boundary conditions did not replicate the significant 
differences between LEWICE predictions and experimental measurements of convection coefficients. 
 Shannon and McClain [11] further expanded on the investigations of Tecson and McClain [8] and Walker et al. 
[10] by 1) including realistic ice roughness variations as measured in the IRT using laser scanning and 2) including a 
flow acceleration profile along the flow direction that matches the profile exhibited by the airfoils tested in the IRT.  
The measurements of Shannon and McClain [11] focused on replicating the flow acceleration exhibited on leading 
17.1%-chord region of a NACA 0012.  However, because they chose to perform the tests by heating a flat plate and 
employ a ceiling insert to provide flow acceleration, the stagnation region or 2%-chord of the leading edge of the 
NACA 0012 was not replicated or heated as would be found on a real airfoil.  Fortunately, the ice accretion cases 
replicated by Shannon and McClain [11] were short icing events with accretion times on the order of 1.5 minutes, 
and substantial ice roughness is not exhibited in the 2%-chord region of the airfoil [11].   
 As noted by Shin [6], at short icing event times, three distinct regions of ice roughness will appear: 1) a smooth 
zone near the stagnation, 2) a region of roughness downstream of the stagnation region, and 3) a region of feather 
roughness which decays in height as the distance from stagnation point increases. The purpose of this study was to 
investigate the enhancement caused by ice roughness in the leading 2%-chord region of a NACA 0012 airfoil that 
had been exposed to a supercooled cloud long enough so that the roughness propagates into the 2%-chord region of 
the airfoil but just before the stagnation region of the airfoil completely closes.  That is, the study investigated the 
convective enhancement of the roughness in the stagnation region just before the smooth zone is closed by the ice 
shape development.  Roughness in the 2%-chord region is critical because it drastically increases the convective 
surface area and depending on the size of the roughness may cause the flow to become turbulent drastically 
increasing convective heat transfer rates in the stagnation region.   
 To achieve the objective of the study, a heated test plate was installed in the Vertical Icing Studies Tunnel 
(VIST) at the NASA Glenn Research Center. The VIST is a stagnation flow wind tunnel designed for the simulation 
and examination of ice accretion physics in the stagnation region of large aircraft wings [12].  Roughness panels 
were created for the heated test plate that exhibited roughness characteristics and variations matching those of a 
53.3-cm (21-in.) NACA 0012 which had been exposed to a supercooled icing event.  The plates were then heated 
while exposed to three flow situations.  The surface temperatures were measured using an infrared camera and then 
used to determine the local convection coefficients along the rough surfaces.  The resulting measurements will serve 
as an important convective heat transfer benchmark for ice accretion codes and will serve as an important reference 
for future investigations of stagnation region roughness enhancement performed in the VIST.  

II. Methodology 
All testing was performed at NASA Glenn Research Center using the Vertical Icing Studies Tunnel. The next 

sections detail the experimental apparatus, the methods used to create the test plates, the approach used to create the 
roughness panels, the testing sequence, and the approach employed to reduce the experimental measurements. 
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A. Testing Apparatus 
 The VIST is a relatively new wind tunnel and the first research project was outlined in 2005 by White and Oliver 
[3] who explored the accretion of ice due to supercooled liquid water droplets. The VIST was designed specifically 
for the simulation and examination of ice accretion on large aircraft, and its design allows examination of the 
stagnation region and leading edge of an airfoil. However, unlike conventional wind tunnels, the VIST uses a flat 
test plate in the test section and accelerates the flow over the plate using side walls which model the flow of the 
desired airfoil as shown in Figure 1. Thermocouples and pressure taps are located throughout the tunnel to provide 
real time flow data which is accessed through the LabVIEW program used in tunnel operation.  
 The VIST is a closed loop tunnel with a 7.2:1 contraction ratio, a 4 in. wide throat, and a 3 HP DC motor with a 
max of 1750 rpm. A centrifugal fan enables throat velocities, measured using a pitot-static probe at the minimum  
entrance area (at the very top of Figure 1) ranging from 2 m/s (6.5 ft/s) to 25 m/s (82 ft/s).   
 For this study, new sidewalls were designed and constructed to allow infrared camera access to the heated test 
plate.  Port holes were designed into the sidewalls and special mounts were constructed to hold the infrared 
windows.  To obtain infrared images of the test plate surfaces, a FLIR SC4000 ThermoVision IR camera with a 25 
mm lens was attached to a Velmex positioning system located above the tunnel. The two-axis positioning system 
allowed the camera to move laterally and rotate to view the test plate. The windows and positioning system allowed 
the camera to view the test plate at 7 positions allowing near full-coverage of the heated section of the test plate. 
Figure 2 shows the sidewalls, the portholes and mounts, the infrared windows, the infrared camera, and the two-axis 
positioning system used to view the test plate. 
 
B. The Heated Test Plate 

The test plate was constructed using the same thin-film gold Mylar heating approach of Tecson and McClain [7].  
The test plate consisted of a Plexiglas base plate and employed a sheet of gold-deposited Mylar film as an area 
heater. The Plexiglas base of the plate measured 60 in. x 30 in. and had a thickness of 0.72 in. In the center of the 
test plate between the Plexiglas base and the surface, a gold-deposited Mylar film, which measured 7 in. x 20.5625 
in., was used to provide a constant heat flux to the test plate during testing. Figure 3 presents the plate construction 
layers and demonstrates the heat flow occurring during testing. 

Panels were attached to the base plate to effectively simulate ice roughness conditions in the VIST.  The panels 
representing different icing surface conditions were manufactured using an Objet 30 3D printer. To gain real time 
temperature data from the test plate for heat loss calculations, several thermocouples were placed throughout the 
plate just beneath the surface and under the Plexiglas base and used to measure conduction losses through the plate 
to be used during the analysis. The various thermocouple locations can be seen in Figure 4.  

 
 

 

 
Figure 1. VIST Schematic Showing Side Wall and 

Test Plate Position [Reprinted from White and Oliver 
[3] with permission] 

 
Figure 2. VIST Side Wall Showing Camera Mount 

Location and IR Viewports 
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Figure 3. Cross-section of test plate displaying 
different layers and thermocouple positions. 

[Reprinted from Walker, McClain, and Shannon 
[1] with permission] 

Figure 4. Streamwise Thermocouple Locations on Test 
Plate (Dimensions shown in inches. Thermocouple 1 is at 

the Stagnation Point.) 
 

 
 
C.  Roughness Configurations  

The three test surfaces were designed to represent icing conditions on a 53.3-cm (21-in.) NACA 0012 airfoil. 
The first surface, acting as the control, was a smooth plate, devoid of roughness elements. This simulated an airfoil 
without any ice accretion.  

For second and third surfaces, the desire was to match the local Reynolds number variation as demonstrated in 
Eq. (1) as well as maintaining the roughness Reynolds number as defined in Eq. (2). 
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Eq. (1) indicates that as the flow moves down the test section in the X-direction from the stagnation point of the test 
plate, the geometry and velocity should be scaled to match the local Reynolds number of the NACA 0012 as 
calculated based on the distance from the stagnation point along the surface direction (S) of the airfoil.  Eq. (2) 
indicates that as the boundary layer develops, the velocity at the maximum peaks of the roughness elements should 
also scale between the model and the test airfoil.  Given that the boundary layers should develop similarly based on 
matching Rex values, if the same geometric scaling is applied to the x-distance from the stagnation point and to the 
roughness heights, then both Reynolds number scaling requirements should be matched. 
 The ice roughness case that the two rough surfaces were intended to match was a 53.3-cm (21-in.) NACA 0012 
airfoil exposed to a 66.7 m/s flow containing a supercooled cloud with MVD = 29.7 m, LWC = 0.6 gm/m3, a 
freezing fraction of 0.217, and an accretion time of 200 seconds resulting in an accumulation parameter (Ac) of 0.521 
where  
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The case matched is the 032714.06 case studied by McClain et al. [13].  Following the test, the ice shape was 
scanned using the ROMER Absolute Arm laser scanning system used by the Icing Research Branch at the NASA 
Glenn Research Center [14].  The resulting point cloud is shown in Figure 5.  The method of McClain and Kreeger 
[15] was then used to evaluate the roughness variations along the surface of the iced airfoil along the flow direction.  
Figure 6 presents the variation in the roughness maximum height (RMH), defined as 3.09 times the root-mean-
square height (Rq), along the surface of the airfoil.  Figure 6 demonstrates that the roughness varies significantly in 
along the surface of the 032714.06 case, and in the 2%-chord region the maximum RMH is around 1-mm. 
 

 
Figure 5. Laser Scan of Ice Roughness on a 21 in. NACA 0012 for the 032714.06 Case of McClain et al. [15] 

 

 
Figure 6. Variation in 99.9% Roughness Maximum Height along the Surface of the 032714.06 Ice Shape 

 
 
 To match the roughness variation in the 2%-chord region of the 032714.06 case, the hemispherical element 
distribution of Tecson and McClain [8] was used as the reference distribution. In Tecson and McClain [8], a  
Lagrangian simulator which simulated random droplet placement and bead coalescence was developed to generate a 
distribution of randomly-located hemispheres with the x10 scaled statistical description as the 052996.04 surface 
described by Anderson et al. [9]. The resulting distribution presented by Tecson and McClain [8] exhibited a mean 
element diameter of 1.037 mm with a standard deviation of 0.381 mm.   For the simulated 052996.04 distribution, 
the maximum hemisphere diameter was determined to be 1.9-mm resulting in a maximum roughness element height 
of 0.95-mm.  Inspecting Figure 6, the maximum height of 0.95-mm is essentially the same size as the maximum 
RMH value found in the 2%-chord region of the 032714.06 ice shape.  Thus, a diameter scaling function was 
employed to match the roughness variations along the 032714.06 ice shape based on the simulated 052996.04 
roughness distribution by Tecson and McClain [8].  The diameter scaling function is a function of the X-distance 
from the stagnation point and is multiplied by the local element diameters to create a new distribution with 
properties varying in the X-direction. 
 To generate the scaling function, a series of transition functions, represented in Eq. (4), based on the hyperbolic 
tangent function was implemented to replicate the RMH variation along the surface of the 032714.06 case.   
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The transition function expressed in Eq. (4) is zero for x values much less than xt and is one for x values much 
greater than xt.  The parameter lt governs the width of the transition zone as the function progresses from zero to one.  
The transitions can be multiplied by constants or functions to seamlessly transition between constant values and 
functions.  A linear combination of three transition functions was implemented to create a scaling function to 
capture the variation in the RMH values of the 032714.06 surface in and near the 2%-chord region of the airfoil.  
The resulting scaling function is shown in Figure 7. 
 

 
Figure 7. Roughness Variation in the Stagnation Region for the 032714.06 Case and the Roughness Scaling 

Function Created 
 
 While the surface variations were captured by the diameter scaling function, the system geometry must also be 
scaled for implementation in the VIST.  In the leading 2%-chord region of a NACA series airfoil, as shown in 
Figure 8. the pressure coefficient variation may be approximated as decreasing linearly with increasing surface 
distance to a value of 0.08. The VIST was designed to replicate this acceleration along the 30-inches (one side) of 
the test plate.  However, the VIST was designed to replicate the leading 2%-chord of the mid-span of a commercial 
airliner [12].  Consequently, when matching the flow over a 53.3-cm (21-in.) NACA 0012 airfoil, the wind tunnel 
must be run at a very low speed to use the entire test section. Observing Eq. (1), scaling the 2%-chord of the 21-in. 
NACA 0012 airfoil (0.42 in.) to the full 30 in. (single-sided) of the test section would result in having to reduce the 
local velocities by a factor of 72 if the density and viscosity are held constant.  In replicating a 67 m/s flow over the 
21-in. NACA 0012, the throat velocity of the VIST would need to be 0.93 m/s (3 ft/s).  This throat velocity is 
outside of the steady operational region of the centrifugal fan used on the VIST.  Thus, employing the full test 
section to replicate the NACA 0012 is not practical. Further scaling a 1-mm tall roughness element similar to what 
would be found in ice shapes with smooth-zone closure by this geometric ratio would result in elements that were 72 
mm (2.84 in.) tall and 144 mm (5.67 in) in diameter if modeled using hemispheres.  Consequently, only the center 
522 mm (20.55 in.) section of the test plate, or ±261 mm (±10.27 in.) from the stagnation point, was heated for this 
study as demonstrated in Figure 4. 
 

 
Figure 8. Inviscid Pressure Coefficient Variation along the Surface of a Low-Speed NACA 0012 Airfoil: (a) 

Entire Airfoil, (b) Leading 2% Surface Distance of Chord 
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 Reducing geometric scaling by heating just the center section creates issues matching both Rex and Rek.  Scaling 
the 2%-chord of the 21-in. NACA 0012 airfoil (±0.42 in.) to the ±10.27 in. center heated section results in a 
geometric scaling of 25. When applied to the roughness elements, this scaling would require roughness elements 25 
mm (1 in.) tall and 50 mm (2 in.) in diameter for a surface with 1-mm maximum roughness heights. Since the 
infrared camera used to measure surface temperatures has a 25-mm lens, is placed approximately 380 mm (15 in.) 
from the surface, and must view the surface through (75-mm) 3-in. infrared viewing windows, roughness elements 
of this size would cover most of the infrared viewing area of one image.  This scaling would result in localized 
convection measurements on the roughness elements in the image and would not represent a spatially averaged 
measurement of heat transfer. 
 Reducing the scaling creates a different problem.  If the roughness heights and locations are both scaled by a 
factor of 10x, the width of the scaled 2% region becomes 107 mm (4.2 in.).  To match the 2%-chord Reynolds 
number, the throat velocity would need to be 21 m/s (67 ft/s), near the maximum velocity of the VIST.  Operating at 
speeds this high increases the heat transfer rates from the plates and reduces the temperature difference between the 
surface that can be measured. 
 Consequently, a compromise was made regarding the diameter and distance scaling of the surface and roughness 
geometries.  For the second surface, the element features and roughness extents were scaled by a factor of 10x.  The 
second surface is referred to as the “x10x10” case.  The “x10x10” surface maintains geometric scaling and allows 
sufficient roughness elements in the infrared images for obtaining spatial averaged values, but the scaling cannot 
match the Reynolds numbers original NACA 0012 iced airfoil case without operating in a very high velocity which 
limits the temperature resolution of the convection measurement approach.  For the third surface, the element 
features were scaled by a factor of 10x, while the roughness region extents were scaled by a factor of 25x.  The 
second surface is referred to as the “x10x25” case.  The “x10x25” case can match the Rex values of the NACA 0012 
test case at the end of the 2%-chord region, but because the roughness elements are not scaled by 25x, the Rek values 
at the 2%-chord location are not matched.  A depiction of the two surfaces based on floor blockage area is presented 
in Figure 9.  The boxed areas in Figure 9 represent the heated section of the test plate depicted in Figure 4. 
 

 
Figure 9. Depiction of the x10x10 and x10x25 Surfaces based on Floor Blockage Area [The X-limits of the two 

surface depictions is ±261 mm (±10.27 in.).] 
 
 
 Because a compromise was made on matching both Rek and Rex, the convection from the surfaces was quantified 
using three different velocities: 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s).  Table 1 presents a 
summary of the test cases and the Rek and Rex achieved compared to the iced NACA 0012 airfoil case that was the 
initial objective for modelling.  Since the roughness elements used in this effort are much taller than the unperturbed 
boundary layer heights for either of the cases, which are expected to be less than 3-mm for all of the cases used 
based on Twaites-based predictions for laminar flow, uk was assumed to be equal the Ue in Eq. (2) for the results of 
Table 1.  
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Table 1. Summary of Test Case Design Parameters Compared to the Modelling Objective 

Surface Uth or U 
(m/s) 

x2% or s2% 
(mm) 

Ue,2% kmax,2%  
(kg/m3) 

  106 
(Ns/m2) 

Rex2% Rek2% 

x10x10 7.62 107 2.74 10.6 1.219 18.4 19,415 1,923 
x10x25 7.62 261 4.28 10.6 1.219 18.4 73,964 3,004 
x10x10 12.19 107 4.38 10.6 1.219 18.4 31,059 3,077 
x10x25 12.19 261 6.84 10.6 1.219 18.4 118,322 4,805 
x10x10 16.76 107 6.02 10.6 1.219 18.4 42,702 4,230 
x10x25 16.76 261 9.41 10.6 1.219 18.4 162,681 6,607 

NACA 0012 66.7 10.7 63.8 1.15 1.306 17.2 51,978 5,586 
  

D. Test Procedure  
 During each day of testing, calibrations were performed to reduce uncertainty and improve the quality of the data 
collected. The tunnel was left cold overnight to ensure an equilibrium temperature throughout the testing apparatus. 
The morning of testing, a LabVIEW software program that was used to run and monitor the VIST was activated and 
used to record baseline temperature and pressure data. Then, infrared images were recorded at each of the 7 
positions for 10 seconds at 10 frames per second. The unheated infrared images provided a baseline surface 
temperature map, to which the test runs performed following the calibration could be compared. Taking the 
difference between the test data and the calibration data minimized total uncertainty by substantially reducing the 
systematic uncertainty of the FLIR camera and the thermocouples placed throughout the test section. 
 Following calibration, the LabVIEW program was used to select the desired upstream flow velocity and start the 
tunnel. For each test, the VIST’s cooling system was activated and set to 65°F. The thin-film heater power supply 
was then activated and set to the desired input current and voltage. Two multimeters were used to verify the voltage 
leaving the power supply and the voltage across the thin-film heater throughout the duration of the test. 
Temperatures throughout the test section were then monitored using the LabVIEW software to determine when the 
tunnel had achieved stable temperatures.  The process of reaching steady state typically required two hours. Once 
the tunnel had achieved stable temperatures, denoting steady state, the infrared camera was used to record images 
for 10 seconds at 10 frames per second at each of the 7 positions. These recorded images provided a detailed 
temperature distribution of the test plate surface. The LabVIEW program used to operate the tunnel also recorded 
thermocouple data throughout the duration of the test which was used to determine the conduction and radiation 
losses. 

 
E. Convection Coefficient Calculations 

Following acquisition of the raw data, the convective heat transfer coefficient at each point was calculated using 
Eq. (5). 
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Eq. (5) can be divided into several parts. The first term in the numerator represents the heat flux being supplied to 
the test plate. The second term represents the heat loss per unit area due to conduction through the Plexiglas base, 
with  and  being the plate thermocouple temperatures acquired from the tunnel recording software during 
each data set. The third term represents the heat loss per unit area due to radiation, where 

,
 is the infrared camera 

measurement at each i,j pixel, and  is the freestream temperature.  
To extract the needed variables listed above, the raw data was processed using several MATLAB scripts. The 

infrared images taken from both the calibration and the tests were averaged over the 10 seconds that they were 
recorded. Then, the difference between the tests and the calibration data was taken. The most significant processing 
was mapping the individual images to a single, continuous, pixel map. Because the images were taken through the 
infrared windows at various streamwise locations and camera angles, the correlation of pixels per inch was not 
constant between the images. In order to rectify this and scale the images to match each other, reference images 
were taken with the thermocouple locations marked on the test surface. Because the distances between the 
thermocouples were known, the ratio of pixels per inch for each image could be measured. Once this was calculated, 
the images were scaled to a common reference and mapped to a continuous pixel map. To keep the resolution of the 
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continuous pixel map, linear interpolation of the individual pixels was performed to achieve a ratio of 100 pixels per 
inch. The finalized continuous pixel map was then used to calculate the convective heat transfer coefficient from Eq. 
(5). 
 
F. Uncertainty Analysis 
     Uncertainty calculations for the convective heat transfer values were determined using the large sample size 
approach of Coleman and Steele [16], which is an extension of the approach of Kline and McClintock [17]. The 
uncertainties for each experimentally measured quantity used in Eq. (5) are presented in Table 2. 
    The main benefit of the in situ calibration performed before testing each day was the reduction of the instrument 
error of the infrared temperature measurements. By taking the difference in between the calibration and test 
temperature values, the systematic uncertainties in the temperature measurements were all correlated.  Thus, 
systematic uncertainty propagating into the resulting convection coefficients contributed by the temperature 
measurements was negligible. 
 

 Table 2. Uncertainty Values for Convective Heat Transfer Coefficient Measurements 
Variable Systematic Uncertainty Total Uncertainty 
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III. Results and Discussion 
The following sections discuss the convective heat transfer coefficient data obtained and further validation 

testing performed in the VIST. This additional testing was performed to validate the VIST flow qualities, and to 
quantify the flow qualities expected prior to testing. 

A. Convective Heat Transfer Coefficient Data 
Figures 10-12 present the convective heat transfer coefficient results calculated from the experimental data. 

Figures 10-12 show the data for the 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s),  and 16.76 m/s (55 ft/s) cases, 
respectively. Each figure contains results for each of the 3 sections: the smooth plate, the 10x10x surface, and the 
10x25x surface. Artifacts from the infrared viewing windows were mostly removed from the final figures by the 
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mapping approach employed.  However, because of the lack of overlap in the infrared images near the 121-mm 
(4.75 in) mark, some of the artifacts remained in the convection coefficient maps. 
 In Figures 10-12, the values of the convection coefficient are typically in the 30 W/(m2K) on the floors of the 
roughness panels.  The typical uncertainty of convection coefficients on the floor region is 2 W/(m2K).  For the 
rough surfaces in Figures 9-11, the individual roughness elements stand out in the maps.  As one observes the 
convection coefficients moving up the roughness elements (especially on the forward facing side of the roughness 
elements) the convection coefficients increase drastically.  As the elements protrude through the boundary layer, the 
elements interact with much colder and much faster fluid.  As a consequence, the surface temperature of the largest 
roughness elements is very close to the temperature of the freestream fluid.  Figure 11 shows that at the highest 
velocity investigated, 16.76 m/s (55 ft/s), the local apparent convection coefficients approach 250W/(m2K).  
Because the roughness element surface temperatures are so close to the freestream temperatures (TIR - T  1K), the 
uncertainties in the areas with the highest convection coefficients approach 75 W/(m2K). 
 Comparing Figures 10-12 for a given surface, the higher velocities produce significantly higher convection 
coefficients.  In Figure 10 shows that the maximum local heat transfer coefficients approach 200 W/(m2K) for the 
7.62 (25 ft/s) case, while Figure 12 shows that the maximum local convection coefficients are above 250 W/(m2K) 
for the 16.76 m/s (55 ft/s) case.  
 
B. VIST Flow Validation 

In addition to the convective heat transfer coefficient experiments performed, several flow validation tests were 
performed, the first test being vertical and horizontal 5-hole probe traces. The horizontal trace was done 
approximately 10 in. above the surface of the test plate. Because access to the test section was limited to areas 
directly under the infrared access windows, the vertical traces were taken at 7 in., 8 in., and 9 in. from the stagnation 
point. The 5-hole probe data was acquired in an attempt to visualize the freestream flow as validation of the VIST 
and to characterize the boundary layer.  However, the boundary was too small to be resolved using only the 5-hole 
probe data.  The flow visualization of the 12.19 m/s (40 ft/s) can be seen in Figure 13, which also shows that the 
boundary layer on the sidewalls were more than 50 mm (2 in) at each of the stations investigated.  

The second test was a series of flow quality measurements using hot-wire traces taken along a vertical path 8 in. 
from the stagnation point.  The hotwire tests were performed in order to further validate the flow acceleration in the 
VIST, to visualize the boundary layer, and to quantify the freestream turbulence in the tunnel. The hotwire traces 
were taken at 40 ft/s, 55 ft/s, and 25 ft/s on all three test surfaces. Figure 14 presents the hotwire traces for all the 
surfaces and test cases and presents the design velocities at the 8-in. mark based on a linearly decreasing pressure 
coefficient variation assumed during the design of the roughness test surfaces.  Figure 14 demonstrates that the 
design velocities match well with the experimental hot-wire velocities.  While one of the objectives was to visualize 
the boundary layer for each case, Figure 14 demonstrates that even at 2.5-mm (0.1-in.) from the wall, the boundary 
layer for the smooth surface could not be detected.  The boundary layer is noticeable for the x10x10 surface; 
however, because of roughness interference with the hot-wire probe, the boundary layer is not detectable for the 
x10x25 surface. 

Figure 15 presents the turbulence intensities measured using the hotwire probe.  Figure 15 demonstrates that the 
freestream turbulence values in the VIST are between 1% and 1.5%.  As shown in Figure 14 as well, only the traces 
made using the x10x10 surface demonstrate the presence of the boundary layer.  In Figure 15, the x10x10 traces 
show a significant increase in turbulence intensity below the peaks of the tallest roughness elements which occur 
almost 100 mm (4 in.) upstream of the velocity profile trace. 
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Figure 10. Measured Convection Coefficients with 7.62 m/s (25 ft/s) Throat Velocity (Top: Smooth surface, 

Middle: x10x10 surface, Bottom: x10x25 surface.) 
 

 

 
Figure 11. Measured Convection Coefficients with 12.19 m/s (40 ft/s) Throat Velocity (Top: Smooth surface, 

Middle: x10x10 surface, Bottom: x10x25 surface.) 
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Figure 12. Measured Convection Coefficients with 16.76 m/s (55 ft/s) Throat Velocity (Top: Smooth surface, 

Middle: x10x10 surface, Bottom: x10x25 surface.) 
 

 
C. Future Work 

The convection measurements presented in this manuscript were left in terms of the convection coefficients.  The 
measurements were not placed in terms of dimensionless groups such as Frossling, Nusselt, or Stanton numbers. 
Placing the results in terms of dimensionless groups will be required to improve the generality of the measurements 
for validating computational tools.  In future investigations, the proper spatial averaging approaches and better 
measurement of the local flow velocities will be used to determine the dimensionless convection parameters. 

Beyond the scope of the current measurements, two design parameters will be varied in future investigations of 
stagnation region ice convection using the VIST.  First, the shape of the roughness elements will be changed from 
hemispherical to cones.  While real ice roughness is neither cones nor hemispheres, comparing the results for both 
types of roughness should provide enclosure limits for what would be expected of real ice roughness.  Second, 
roughness plates for the VIST will be machined from aluminum instead of printed using a rapid-prototyping 
polymer.  While not a perfect conducting material, the aluminum plates will act more like a real ice surface which is 
forced to be near-isothermal because of the freezing of the liquid water (Stefan condition).  Each of the two new sets 
of surfaces will provide insight into the differences between the convective enhancement surfaces with modelled and 
real ice roughness. 
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Figure 13. Visualization of Five-Hole Probe Traces for the 12.19 m/s (40 ft/s) Case for the 10x10x surface.  

 
 

 
Figure 14. Hotwire Traces Acquired at 203 mm (8 in.) from the VIST Stagnation Point 
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Figure 15. Turbulence Intensity Measurements from Traces Acquired at 203 mm (8 in.) from the VIST 

Stagnation Point 
 

IV. Conclusion 
As part of a larger effort to understand the enhancement of ice roughness on convective heat transfer, this effort 

investigated the enhancement of ice roughness in the stagnation zone or 2%-chord region of an iced NACA 0012 
airfoil. The investigation was completed in the Vertical Icing Studies Tunnel (VIST) at NASA Glenn and attempted 
to replicate a moderate-time icing event where the smooth stagnation region was about to close because of the 
advancing roughness fronts.  Because of the construction of the VIST, because of the limitations of the camera 
views of the plate, and because of the need for significant temperature differences between the surface and the 
freestream, the Reynolds numbers of the original NACA 0012 airfoil based on flow distance and based on roughness 
element size could not be matched simultaneously using the VIST tests.  Flow measurements were also performed 
using a five-hole probe and a hotwire probe to investigate the flow quality inside the VIST. 

The convection measurements demonstrated the substantial enhancement caused the roughness elements in the 
stagnation region.  The convection measurements also demonstrated the expected behavior of increasing flux with 
increasing flow velocities.  While limited by access to the test section through the infrared window access ports, the 
flow measurements demonstrated that the design assumption of a linearly decreasing pressure coefficient along the 
VIST test surface was reflected in the measured acceleration of the flow.   

Finally, future efforts using the measurements presented here will focus on casting the measured convection 
coefficients in terms of the traditional dimensionless heat transfer parameters.  Future experimental investigations of 
roughness enhanced convection in the VIST will focus on roughness element shapes other than hemispheres and 
will focus on capturing the effects of the Stefan condition by using roughness element materials with very high 
thermal conductivities.   
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