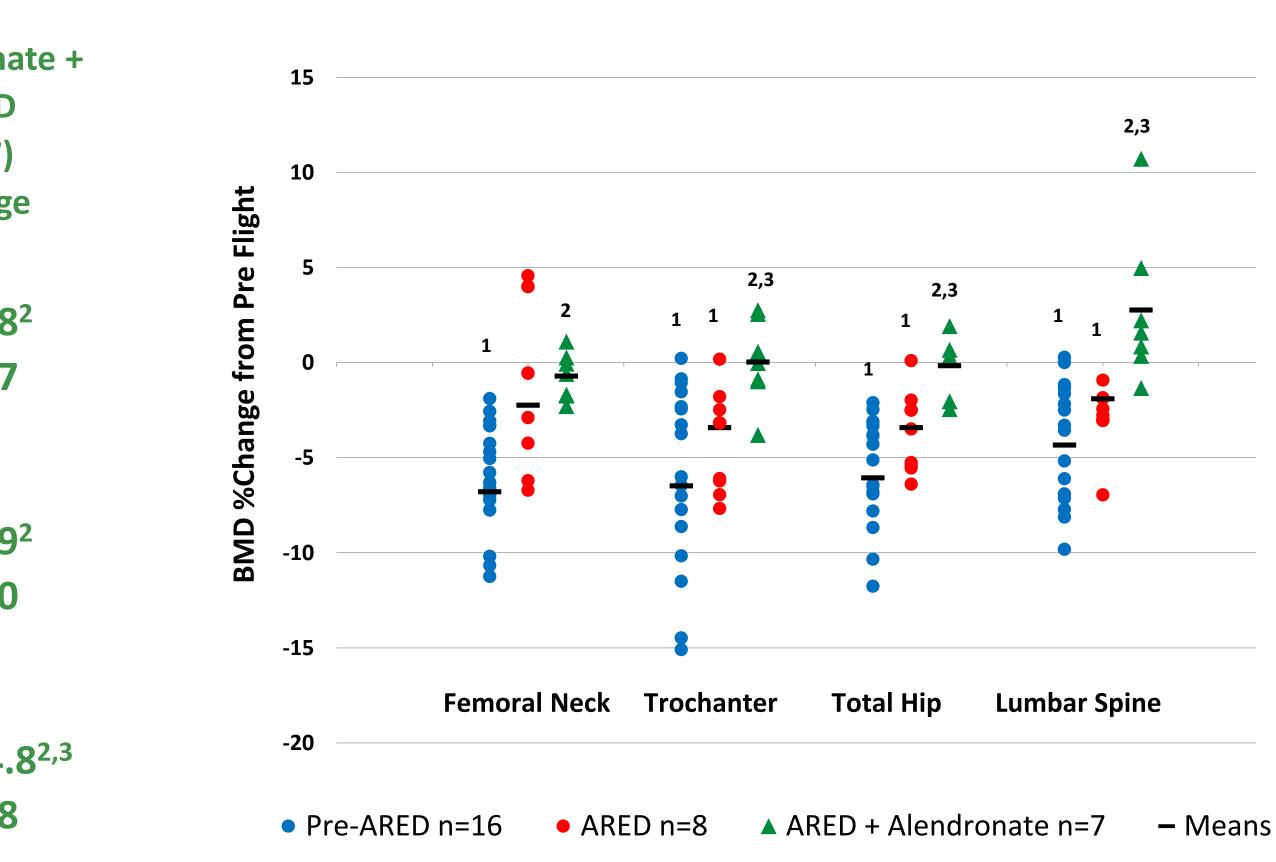
¹Universities Space Research Association, ²U of Tokushima Graduate School of Medicine, ³Baylor College of Medicine, ⁴ Kennedy Krieger Institute, ⁵UCSF, ⁶NASA Johnson Space Center, ⁷Wyle Science, Technology and Engineering Group, ⁸U of California at Irvine, ⁹U of Occupational and Environmental Health, ¹⁰Nagoya City U, ¹¹JAXA, ¹²U of N Texas Health Science Center

Statement of Problem: What do we know from the supporting data?

- Bone loss: ISS (Table 1, Fig. 1); Skylab (single photon absorptiometry, Ca balance); Mir (DXA)
- Elevated bone resorption markers: ISS (Fig. 2); Skylab; multiple bed rest studies
- Elevated urinary Ca: ISS (Fig. 4); Skylab; multiple bed rest studies
- Uncoupled remodeling: ISS (Figs. 2,3); multiple bed rest studies

Table 1. QCT vBMD and FE Strength Changes

Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED + Alendronate, R + < 2 weeks

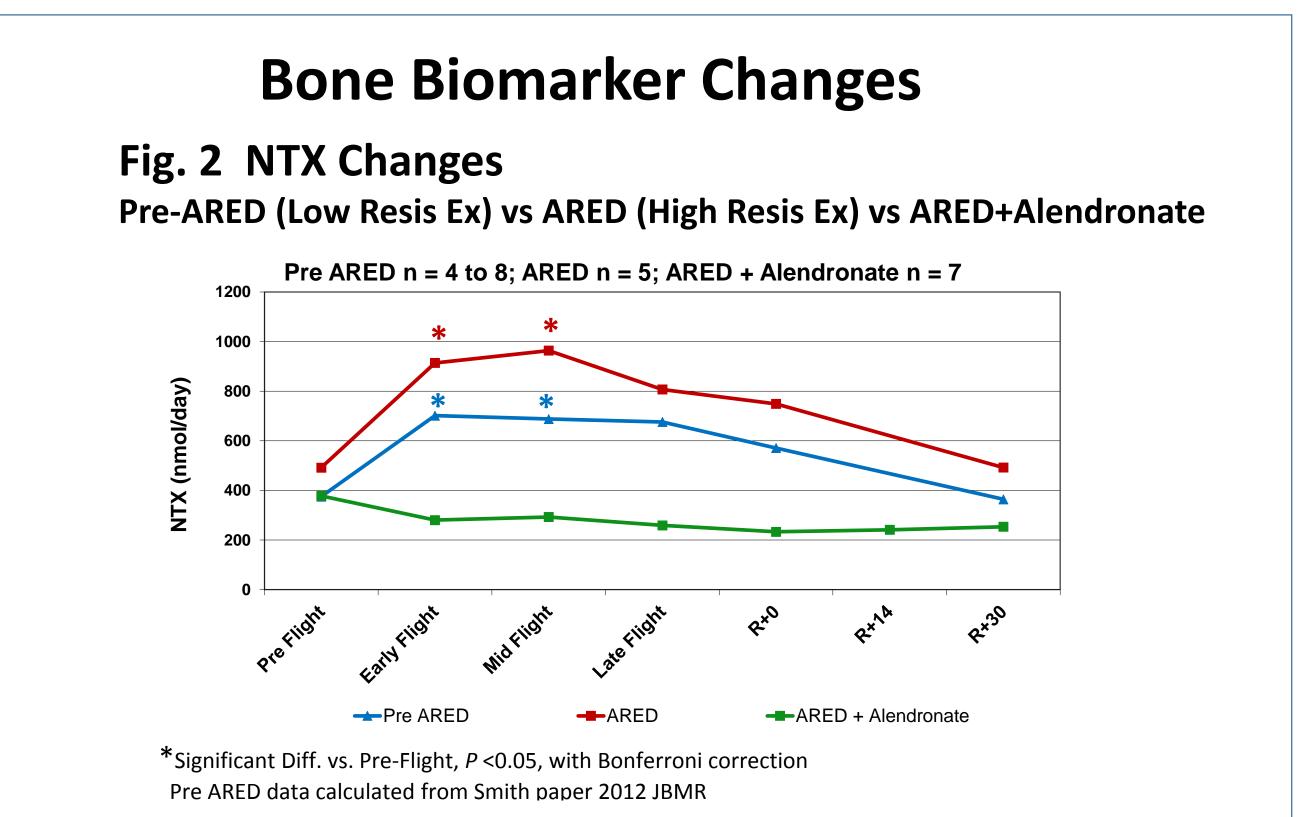

QCT BMD (g/cm3)	Pre-ARED Control (n=18) % Change	ARED Control (n=8) %Change	Alendrona ARED (n=7) %Change
Total Hip		1	
Trabecular	-13.6 ± 6.4^{1}	-7.6 ± 6.0^{1}	-1.1 ± 9.8^{-1}
Cortical	-3.2 ± 3.5	-2.6 ± 1.8	-0.6 ± 4.7
Trochanter			
Trabecular	-13.5 ± 6.5^{1}	- 7.2 ± 6.6 ¹	-1.9 ± 9.9 ²
Cortical	-3.2 ± 3.3 ¹	-3.3 ± 2.7 ¹	-0.5 ± 5.0
Femoral Neck			
Trabecular	-15.0 ± 9.8^{1}	-15.7 ± 17.8 ¹	6.5 ± 14.8
Cortical	-4.0 ± 5.5	-1.8 ± 2.8	-1.0 ± 4.8
Finite Element Strength (N)			
Non-Linear Stance	-9.5 ± 5.6 ¹	1.7 ± 7.9	1.9 ± 9.7
Non-Linear Fall	-14.1 ± 8.1 ¹	-2.7 ± 5.8	0.8 ± 10.
$1 \mathbf{D}_{\mathbf{r} \mathbf{o}}$, $\mathbf{D}_{\mathbf{o} \mathbf{o}} \mathbf{c} \mathbf{t} = \mathbf{D}_{\mathbf{o} \mathbf{o}} \mathbf{c} \mathbf{t}$			

¹Pre vs. Post, P < 0.05
 ²ARED + Alendronate vs. Pre-ARED, P < 0.05
 ³ARED + Alendronate vs. ARED, P < 0.05

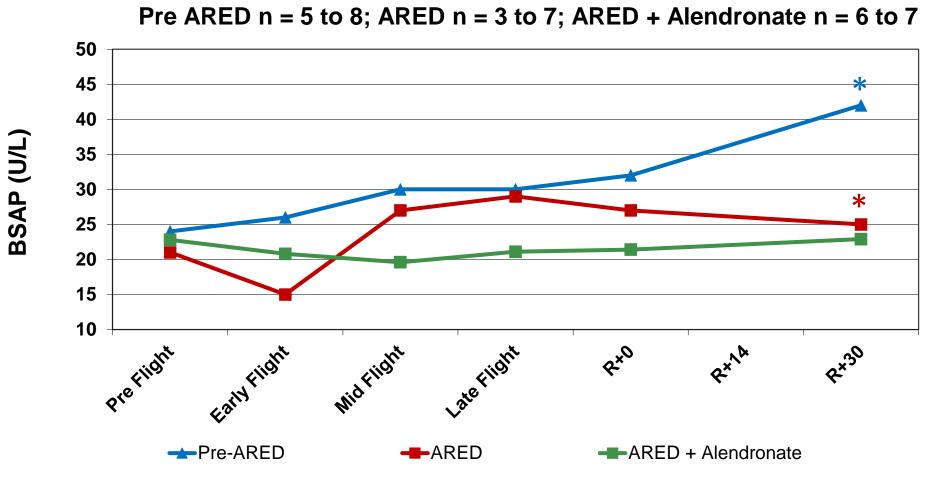
Spaceflight Bone Atrophy: Problem Solved?

Adrian LeBlanc¹, Toshio Matsumoto², Jeffrey Jones³, Jay Shapiro⁴, Thomas Lang⁵, Linda Shackelford⁶, Scott M. Smith⁶, Harlan Evans⁷, Elisabeth Spector⁷, Robert Ploutz-Snyder¹, Jean Sibonga⁶, Joyce Keyak⁸, Toshitaka Nakamura⁹, Kenjiro Kohri¹⁰, Hiroshi Ohshima^{11,} Gilbert Moralez ¹²

on absorptiometry, Ca balance); Mir (DXA) ylab; multiple bed rest studies bed rest studies ed rest studies

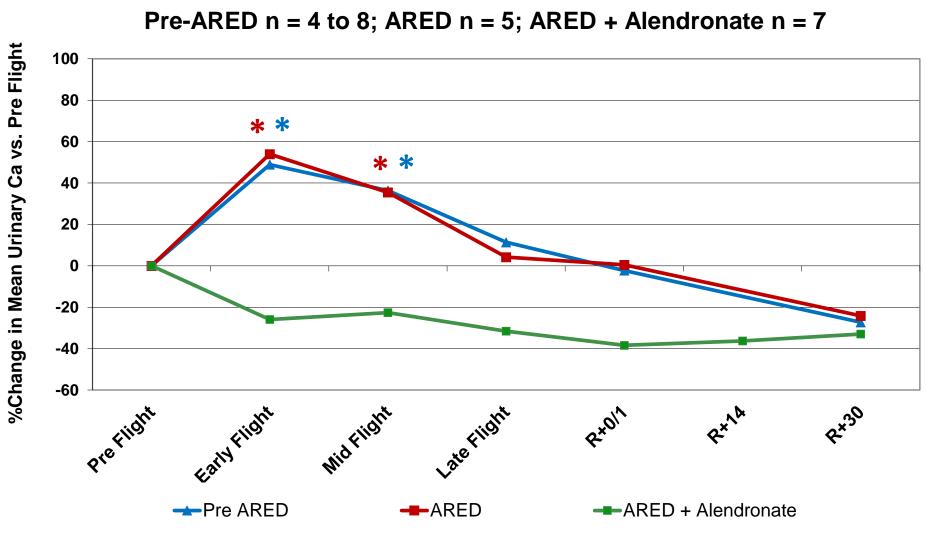


Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED+Alendronate, R<2 Weeks

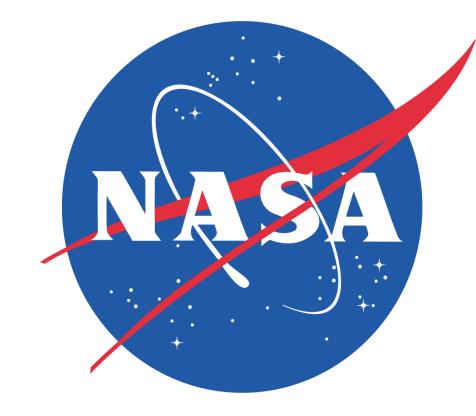

Fig. 1 DXA BMD Changes

7²).1²

1Pre vs. Post, P < 0.05 2ARED + Alendronate vs. Pre-ARED, P < 0.05 3ARED + Alendronate vs. ARED, P < 0.05</pre>


Fig. 3 BSAP Changes Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED+Alendronate

*Significant Diff. vs. Pre-Flight, P < 0.05, with Bonferroni correction (based on absolute data) Pre ARED and ARED data calculated from Smith paper 2012 JBMR


Fig. 4 Urinary Ca Changes

Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED+Alendronate

*Significant Diff. vs. Pre-Flight, P < 0.05, with Bonferroni correction Pre ARED data calculated from Smith Paper 2012 JBMR

National Aeronautics and Space Administration

Conclusions

- 1) From a flight risk standpoint, the problem is considered manageable
- Data show that exercise plus an anti-resorptive will be effective, reducing bone loss, bone resorption and urinary Ca excretion (lowering renal stone risk)
- 3) Targeted high resistive exercise alone can significantly attenuate bone loss but not necessarily completely

Potential Research Areas

General

- 1) What are the molecular biology details for bone loss in space?
- 2) Related to the above, what is the explanation for the large variability in response between individuals and bone sites?

Topics Related to Resistive Exercise Use in Space

Why do resorption markers remain elevated while improving bone homeostasis?

- 1) Why do formation and resorption markers appear to remain essentially uncoupled? Do bone markers represent regional metabolic conditions?
- 2) Is there a compartmental redistribution of bone with targeted high resistive exercise?
- 3) How can in-flight resistive exercise be made more efficient/efficacious?
- 4) Does resistive exercise impact frequency and severity of inflight injuries and ways to prevent?

Topics Related to Pharmaceutical Use in Space

- 1) Drug stability for long missions
- 2) Operational plan needed, e.g., in cases of equipment failure or crew injury where exercise may not be possible
- 3) Suitability of other anti-resorptives (e.g., cathepsin K, Rank-L inhibitors)
- 4) Suitability of anabolic drugs