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Introduction:

• The NASA Glenn Icing Research Tunnel (IRT) is a facility that 
is heavily utilized for development/certification of aircraft 
ice protection systems and icing research. 
• Data from the IRT has been accepted by the FAA, EASA, CAA, and 

JAA in support of manufacturers’ icing certification programs.

• The IRT had been using an Icing Blade technique to measure 
cloud liquid water content since 1980.

• The IRT conducted testing with Multi-Element sensors from 
2009 to 2011 to assess performance.  These tests revealed 
that the Multi-Element sensors showed some significant 
advantages over the Icing Blade.

• Results of these and other tests are presented here.
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Outline:

• Facility Description (IRT)

• Description of the Multi-
Element Sensor
• Components

• Physics (theory of operation)

• Processing Multi-Element data

• Description of the Blade
• Measurement Principles

• Ludlam Limit

• Comparisons of Multi-
Element Sensor to Blade
• Varying water content

• Varying speed

• Varying drop size (Large 
drops, SLD)

• Conclusions:
• Strengths of Blade

• Limitations of Blade

• Strengths of Multi-Element

• Limitations of Multi-Element

3



Test Facility

• Test section size:  6 ft. x 9 ft. (1.8 m x 2.7 m)

• All LWC & MVD calibration measurements are 

made in the center of the test section

• LWC uniformity is ±10% for the central 4 ft x 6ft

• Calibrated test section airspeed range:  50 – 325 kts

• Air temperature: -40 degC static to +20 degC total 

• Calibrated MVD range:  14 – 270 µm

• Calibrated LWC range:  0.15 – 4.0 g/m3

(function of airspeed)

• Two types of spray nozzles:

• Standards = higher flow rate

• Mod1 = lower flow rate 4



The Multi-Element Sensor
From Science Engineering Associates, Inc.

• Commonly known as “the Multi-Wire”

• Typical Multi-Wire shrouds contain 3 
sensing elements of various sizes

• Different element types are designed for 
better response to different conditions

• Elements vary in diameter and in shape

• IRT typically uses just the TWC element 
for LWC calibration

• A compensation wire is located behind 
central element

• Shielded from impinging liquid/ice water

• measures changes coming only from 
airspeed, air temperature, air pressure, 
and relative humidity
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Multi-Element Sensor
Theory of Operation

• A voltage is applied across each of the elements to maintain them at a temperature of 140 degC

• Elements are cooled by convection and impinging water

• Data system records the power required to maintain each element at constant temperature.

• The compensation wire is shielded to stay dry

• Changes in the comp wire during a spray are reflected in the calculated water content

• The recorded powers are used to calculate liquid water content: 
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Source: the SEA User’s Manual

𝑳𝑾𝑪 =
𝑷𝒆𝒍𝒆𝒎,𝒘𝒆𝒕(𝒘𝒂𝒕𝒕𝒔) ∗ 𝟐. 𝟑𝟖𝟗 × 𝟏𝟎𝟓

𝑳𝒆𝒗𝒂𝒑
𝒄𝒂𝒍
𝒈

+ 𝟏. 𝟎
𝒄𝒂𝒍

𝒈 ∗ 𝑶𝑪
𝑻𝒆𝒗𝒂𝒑 − 𝑻𝒂𝒎𝒃𝒊𝒆𝒏𝒕 ∗ 𝑻𝑨𝑺

𝒎
𝒔
∗ 𝒍𝒆𝒍𝒆𝒎𝒎𝒎 ∗ 𝒘𝒆𝒍𝒆𝒎𝒎𝒎

Sample volume of 
sensing element (m3/s)

Amount of energy required to raise the drop temp to 
evaporative temperature and then evaporate it (cal/g)

Pelem,wet = Pelem,tot – (offset + slope*Pcomp,dry)

Subtract off cooling from dry 
air, correlated to comp wire

Conversion factor



Multi-Wire Data Processing

Multi-Wire Data processing:

• IRT uses only the water 
content values from the TWC 
element
• A comparison of the different 

elements is beyond the scope of 
this presentation

• In-house MATLAB code 
averages and tares the 
recorded values
• Code also flags data 

irregularities

• Measured TWC is corrected 
for collection efficiency*
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The Icing Blade

• Simple piece of stainless steel: 
1/8” x 6” x 3/4”

• 3.175 mm x 154.2 mm x 19.05 mm

• Was the standard measurement for 
all LWC calibrations in the IRT from 
1980 to 2011

• Ice Accretion: Requires Rime Ice

• Tunnel total air temp of -18 to -20  degC

• Adjust spray time to collect approx. 
0.15 in. (3.8 mm) of ice.  
(12 ≤ t ≤ 200 sec)

• Width of ice is measured (< 0.200 in., or 
5mm) to make sure changes in 
collection efficiency are minimal

• 3 measurements (1 in. apart)—use  
the median value
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𝐿𝑊𝐶 =
1710 ∗ 𝑑

𝑉 ∗ 𝑡 ∗ 𝐸𝑏

d = ice thickness (mm)
V = tunnel airspeed (kts)
t = spray time (sec)
Eb = Collection efficiency 

(calculated, function of 
airspeed, air density, 
& drop size)

1710 = constant—contains 
unit conversions and 
an assumed ice density 
of 0.88



The Ludlam Limit (for the blade)
• Ludlam Limit: the supercooled water impingement rate 

above which not all impinging water will freeze for a 

given air temperature and airspeed (impingement rate 

above which the measured LWC is reduced)

• Water impingement rate is a function of the airspeed, LWC, 

& Collection Efficiency

• Stallabrass applied Ludlam’s work to derive the Ludlam

limit for a 1/10th inch diam. rotating cylinder.  We used his 

data to calculate the limit at -20 degC

Consider: We have a 1/8th in. Blade, 

not a 1/10th in. rotating cylinder.

• Collection Efficiency:

• We have data that shows the collection efficiency of the 

1/8th inch blade is within 2% of that of the 1/10th inch 

cylinder

• Temperature: Stallabrass used static air temperature.

• In the IRT, icing blade tests are conducted at a total 

temperature between -18 and -20 degC.

• The blade temp is somewhere between static and total
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Figure: Ludlam limit as a function of airspeed for 
a 1/10th inch (2.49 mm) diam. cylinder and two 
temperature constraints [data from Stallabrass]

Stallabrass, J. R., “An Appraisal of the Single Rotating Cylinder Method of Liquid Water Content Measurement,” 
National Research Council Canada Internal Report, LTR-LT-92, 1978.
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Comparing Multi-Wire vs. Blade

• Thorough comparison had to be done before we could 
switch LWC calibration instruments.

• The Multi-Wire has obvious advantages over the Blade in 
terms of: 
• Temperature  the Blade requires hard rime conditions

• Test efficiency  can collect 30 conditions/day with Blade, 
vs. 50 conditions/day with Multi-Wire

• Spray time  not restricted, can capture real-time trends

• We want to see how the two instruments compare, varying:
• Liquid water content (LWC)

• Airspeed

• Drop size (MVD)
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• For these points:

• Airspeed = 150 kts

• MVD = 20 µm

• Ttot = -20 degC (blade)

• Ttot = -10 degC (multi-wire)

• For these conditions, the 

Ludlam limit is 1.8 g/m3 if we 

use the total temp, and 2.2 if 

we use the static temp.

• This plot shows the water 

contents match until the LWC 

approaches or surpasses the 

Ludlam Limit

11



Multi-Wire vs. Blade,
with respect to Airspeed

• Airspeed sweeps for two nozzle sets, 
MVD=20µm

• Standard nozzles are higher water 
flow, Blade testing requires shorter 
spray time.

• Plotted alongside Ludlam limit curve fit 
shown on previous slide

• Limit for a temperature of -20 degC

• The Mod1 nozzles show good 
agreement between the MW and the 
blade, even at high airspeeds

• But at higher impingement rates (LWC x 
airspeed x Collection Efficiency), the 
blade measures lower than the MW
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Multi-Wire vs. Blade,
with respect to Drop Size (MVD)

• As drop size increases, Blade measures lower than Multi-Wire.  
But is this an effect of increasing drop size or of increasing LWC?

• We will try plotting this a different way…
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Multi-Wire vs. Blade,
with respect to Drop Size (MVD) (part 2)

• For smaller drop sizes at all velocities, there is an LWC limit at which the Blade 

measures lower than the Multi-Wire, even for MVD’s below 50 µm.

• For larger drop sizes, the Ludlam limit can no longer account for the roll-off we see 

from the Blade.  We suspect that we have an added problem due to mass-loss 

(splashing?) at larger drop sizes.
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Conclusions:
Strengths of Blade

• Simplicity

• Reliability

• Researcher can see the physical ice 
characteristics

Limitations of Blade

• Does not respond well at higher 
impingement rates (Ludlam limit)

• Does not respond well at larger 
drop sizes (suspect mass-loss)

Strengths of Multi-Wire

• Compares well to Blade for most 
Appendix C conditions

• MVD ≤ 30 µm

• Moderate impingement rates

• Some MW results validated by icing 
scaling tests in the IRT

• Temperature independent

• Test efficiency

• Spray time independent

• Ability to measure ice crystals (not 
addressed in this presentation)

Limitations of the Multi-Wire

• No limitations of the multi-wire were 
found from these tests
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Questions?

16


