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 EARLY MISSION MANEUVER OPERATIONS FOR THE DEEP 
SPACE CLIMATE OBSERVATORY SUN-EARTH L1 LIBRATION 

POINT MISSION 

Craig Roberts,* Sara Case,† John Reagoso, ‡ and Cassandra Webster§ 

The Deep Space Climate Observatory mission launched on February 11, 2015, 

and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-

Earth L1 libration point. This paper presents an overview of the baseline transfer 

orbit and early mission maneuver operations leading up to the start of nominal 

science orbit operations. In particular, the analysis and performance of the space-

craft insertion, mid-course correction maneuvers, and the deep-space Lissajous 

orbit insertion maneuvers are discussed, comparing the baseline orbit with actual 

mission results and highlighting mission and operations constraints. 

INTRODUCTION 

The Deep Space Climate Observatory (DSCOVR) was recently launched on a SpaceX Falcon 

9 v1.1 launch vehicle from the Eastern Test Range on February 11, 2015, and injected into a 115-

day transfer trajectory to the Sun-Earth collinear point L1, located 1.5 million km from the Earth 

toward the Sun. Specifically, the destination is an L1 Lissajous orbit of dimensions nearly identical 

to those of NASA’s presently operational Advanced Composition Explorer (ACE) mission.1 Fol-

lowing a period of calibration, DSCOVR is intended to relieve ACE of its current support of 

NOAA’s Real-Time Solar Wind (RTSW) solar weather monitoring program. A joint effort of 

NASA, NOAA, and the USAF, the DSCOVR mission is a resurrection of NASA’s Triana mission 

that was placed on hold in 2001.2 The DSCOVR spacecraft is in fact the re-furbished Triana space-

craft, refitted for launch on a two-stage Falcon 9 expendable launch vehicle. (Triana had been fitted 

for launch from a Space Shuttle with an attached transfer injection motor.) NOAA took over re-

sponsibility for DSCOVR flight operations in late July 2015 from a NASA Goddard Space Flight 

Center (GSFC) launch and operations team. DSCOVR is the first mission operated by NOAA to 

fly in a libration point orbit (LPO).  

DSCOVR was launched by a SpaceX Falcon 9 launch vehicle onto a short coast in low-Earth 

orbit (LEO) followed by a second-stage launch vehicle transfer-trajectory insertion (TTI) burn. 

During the transfer, mid-course correction (MCC) maneuvers were completed to ensure DSCOVR 

would arrive at the correct location in the L1 region. Upon its arrival at the L1 region on June 7, 

2015, DSCOVR performed its Lissajous Orbit Insertion (LOI) maneuver to place it on its Class-2 

Lissajous orbit. Following the LOI maneuver, an LOI-correction (LOI-c) maneuver was executed 

to correct the LOI maneuver errors and fine-tune the Lissajous orbit. Figure 1 depicts the Earth-to-
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L1 transfer trajectory and one revolution in the mission Lissajous orbit, from the perspective of the 

North Ecliptic Pole. The figure includes the lunar orbit trace and pointers to locations of the major 

maneuvers. The LOI maneuver established a 160,538 km (out of the ecliptic plane) by 281,476 km 

(projected into the ecliptic plane) Lissajous orbit about L1 in the Sun-Earth system. 

  

Figure 1. Trajectory and Maneuvers Overview as Viewed in RLP XY Plane. 

As of this writing, DSCOVR stationkeeping maneuvers are planned for every 30 to 90 days to 

maintain the Lissajous orbit, starting in late July 2015. After approximately 3.5 years in the mission 

orbit, SEZ (solar exclusion zone) avoidance maneuvers can be used to freeze the phase of the Lis-

sajous to ensure that the orbit does not violate the minimum 4° SEV (Sun-Earth-Vehicle) angle 

requirement.3 The SEV angle, with Earth as the vertex, measures the angular distance between the 

Sun and the DSCOVR spacecraft as seen from Earth. The 4° minimum angle requirement ensures 

that the spacecraft does not travel too close to the Earth-Sun line, which could impact communica-

tions with the spacecraft. 

This paper provides a comprehensive review of the DSCOVR transfer trajectory and early orbit 

maneuver operations. The nominal trajectory and the maneuver design process and operational re-

sults for the four early-mission maneuvers (MCC-1, MCC-2, LOI, and LOI-c) are presented, with 

insight into the vehicle constraints that affected maneuver planning. For DSCOVR, the propulsion, 

attitude control, thermal, power, and communications systems all had constraints and idiosyncra-

sies that affected the planning options for one or more of these early orbit maneuvers. Inter-sub-

system communication and planning allowed these constraints to be identified and accommodated, 

leading to very successful completions of these maneuvers and fuel savings that will extend the 

operational life of the mission. 

SPACECRAFT OVERVIEW 

DSCOVR is depicted with a number of its instruments in Figure 2.  This three-axis stabilized 

spacecraft has a SMEX-Lite bus about 1 meter wide and 1.8 meters tall (including the top-deck 

mounted science instruments), roughly the size of an average refrigerator.  Its deployed solar arrays 

extend two meters to each side.  DSCOVR’s mass at launch was approximately 573 kg, including 

a fuel load of 145 kg. 
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Figure 2. DSCOVR Spacecraft and Science Instruments. 

DSCOVR has a mono-propellant hydrazine blowdown propulsion system with a single 28 inch 

diameter fuel tank with a diaphragm separating the fuel and the gaseous nitrogen pressurant.   The 

mounting arrangement, locations, and orientations of the ten 4.45 N thrusters are indicated in Figure 

3. 

 

Figure 3. Schematic of Thruster Locations and Orientations. 

Thrusters 9 and 10, mounted on the –Z (bottom) deck, apply thrust in the body +Z direction, 

and are used only for imparting ΔV.  Only thrusters 1 through 8—canted to the body XY plane by 

45 degrees—are used for attitude control during orbit maneuvers.  However, there are also orbit 

maneuver modes where sub-sets of these eight thrusters can be used to impart ΔV.  The +X thruster 

set is formed by the thruster quartet 5, 6, 7, and 8. The –X thruster set is formed by thrusters 1, 2, 

3, and 4. Finally, the –Z thruster set is formed by thrusters 1, 3, 6, and 8.4 

 

LAUNCH AND TRANSFER TRAJECTORY 
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The DSCOVR spacecraft was launched on a SpaceX Falcon 9 launch vehicle on February 11, 

2015. The Falcon 9 second stage performed two separate burns. The first burn established a short 

coast low-Earth parking orbit and the second burn, known as the transfer trajectory insertion (TTI), 

inserted the DSCOVR satellite directly onto its transfer trajectory to L1.  

Design and Analysis for the Launch Vehicle Second Stage Maneuvers 

The launch and transfer trajectory analysis for DSCOVR was a collaboration between the Flight 

Dynamics (FD) team at Goddard Space Flight Center (GSFC) and SpaceX. Approximately sixty 

days of launch opportunities were analyzed between January 12, 2015 and March 12, 2015, with 

some blackouts due to the location of the moon. For each launch opportunity, SpaceX provided the 

GSFC FD team with Second Engine Cut-Off 1 (SECO-1) states to use as initial state vectors for 

the nominal trajectory analysis. SECO-1 is a state vector that represents the injection of the upper 

stage stack (Falcon 9 Second Stage with the DSCOVR payload) into a nominal 185 km altitude, 

37° inclination low-Earth parking orbit, nominally set to occur 517.2 seconds after launch. The 

inclination of the parking orbit went through three cycles of change to iterate on favorable coast 

times before the TTI maneuver (a coast time of greater than 10 minutes was desired by SpaceX) 

and to avoid range safety concerns. 

The GSFC FD team used the SECO-1 states to compute the impulsive TTI maneuver of approx-

imately 3.2 km/s necessary to achieve the nominal transfer trajectory and mission orbit at the Sun-

Earth L1 libration point. Using this data, SpaceX generated corresponding trajectories modeling 

finite maneuvers and provided updated SECO-1, SECO-2, and target interface point (TIP) states to 

the GSFC FD team. SECO-2 is the state vector immediately after TTI and TIP is the state vector at 

TTI+10 minutes. The GSFC FD team then propagated the new SECO-1 and TIP states to confirm 

convergence and compared the TTI, TIP, and C3 values to the expected values based on the GSFC 

impulsive maneuver models. The GSFC FD team also used the TIP states from SpaceX to calculate 

the impulsive spacecraft maneuver that would be required to correct these baseline trajectories. The 

correction maneuvers at L+24 hours were approximately 7 cm/s or less for each launch case, indi-

cating that the GSFC and SpaceX trajectories showed great consistency.  

Launch Results 

The launch vehicle insertion errors were very small, inserting the DSCOVR spacecraft on a 

transfer trajectory within 0.2 of the target orbital energy value. The required mid-course correction 

(MCC) maneuvers were therefore small as well, which provided a significant fuel savings that will 

allow the mission life to be extended past the original predictions. The sections that follow discuss 

the planning and execution of the MCC maneuvers, including the effects of spacecraft vehicle con-

straints on the implementation of the maneuvers. 

MID-COURSE CORRECTION MANEUVER (MCC-1) 

Mid-course corrections are stochastic maneuvers designed to correct for a potential range of 

statistical dispersions and place the spacecraft back on a nominal transfer trajectory toward L1. 

Overall, the goal of the mid-course correction maneuvers for DSCOVR was to provide fine-tuning 

of the transfer trajectory to ensure that the trajectory crosses the rotating libration point (RLP) 

frame5 XZ-plane at the desired coordinates for proper execution of the LOI maneuver. The RLP X-

axis points along the vector between the primary bodies of the libration point system: the Sun and 

the Earth/Moon barycenter. The RLP Z-axis points along the angular momentum vector of the 

system, toward the north ecliptic pole, and the Y-axis completes the right-handed system. The RLP 

XZ-plane is depicted as a dotted blue line in Figure 1. 
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The DSCOVR MCC-1 maneuver was executed on February 12, 2015, approximately 31 hours 

after launch (L+31), as the first of two MCC maneuvers to correct for the Falcon 9 launch vehicle 

injection error. Because of the small injection error, MCC-1 was a relatively small maneuver, ap-

proximately 0.5 m/ s (36.5 seconds of burn duration) in the out-of-plane direction (towards the RLP 

+Z axis). 

Design and Analysis for the MCC-1 Maneuver  

For trajectories to deep space or libration point orbits, it is critical that course correction maneu-

vers are executed in a timely fashion, often early in the mission, as the ΔV and fuel costs to correct 

for trajectory errors increase exponentially with elapsed time.6 The DSCOVR team prepared to 

execute the first MCC maneuver as quickly as possible after receiving the required orbit determi-

nation (OD) data to determine the outbound trajectory; the baseline plan was to execute MCC-1 at 

L+31 hours, and perhaps even earlier in the case of very large injection errors from the launch 

vehicle. 

The Falcon 9 TTI burn was designed to deliver DSCOVR directly onto the nominal transfer 

trajectory, with deviations no larger than ±4 m/s, 3σ. Because of the stochastic nature of MCC 

maneuvers, mission planners conducted analyses before launch that addressed the wide range of 

possible trajectories within a specified statistical range from the launch vehicle injection. SpaceX 

provided the DSCOVR Maneuver Team with the results of a Monte Carlo analysis that included 

514 launch vehicle dispersion cases for each possible launch date. These TIP states represented a 

range of possible, representative scenarios that the DSCOVR spacecraft had to be capable of re-

covering from using one or more MCC maneuvers in order to reach its Sun-Earth L1 Lissajous 

orbit.  

The MCC targeting algorithm consists of several differential correction schemes. The first two 

differential correctors use an impulsive maneuver model to target the nominal trajectory C3 value 

at a specified epoch and then target the desired crossing point where the spacecraft trajectory inter-

cepts the RLP XZ-plane before it enters the Lissajous orbit. The results from this impulsive ma-

neuver solution are used to compute an initial approximation for the finite maneuver. Then the 

algorithm runs another set of differential correctors to refine the finite maneuver solution to achieve 

the desired RLP XZ-plane crossing position within 0.1 km tolerance, which is below the noise level 

of the orbit determination solutions for the mission. These differential correction schemes are de-

veloped to be robust enough to converge for the full range of reasonably expected input states 

without manual tuning of the differential corrector. Automatic, rapid convergence was important 

for both hands-off pre-launch mission analyses and for real-time spacecraft operations due to the 

short timeframe for MCC-1 maneuver planning and analysis on the day of launch. 

The Monte Carlo TIP states received from SpaceX were used as input states for an MCC-1 

targeting study to characterize the expected attributes of a potential MCC-1 maneuver conducted 

at L+31 hours. Figure 4 displays the computed MCC-1 ΔV magnitude for each of the 514 TIP states 

for a given launch day, as a function of the TIP C3 energy. The left and right “branches” of the V-

shape in this plot correspond to TTI underburns and overburns, respectively. That is, a perfect TTI 

from launch requires no MCC (0 V), whereas a TTI underburn requires additional energy to 

achieve a transfer to the Lissajous orbit and a TTI overburn requires energy to be removed via the 

MCC-1 V. The median MCC-1 ΔV estimate was 5.62 m/s (i.e., based on the data set, a 50% 

probability existed that the necessary MCC-1 ΔV would be less than 5.62 m/s and an equal proba-

bility existed that it would be greater). The maximum MCC-1 ΔV from the sample states was 26.05 

m/s to correct for an underburn.  
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Figure 4. MCC-1 Computed ΔV Magnitude based on SpaceX TIP States. 

Figure 5 shows the range of fuel usage and maneuver durations corresponding to the MCC-1 

ΔV values in Figure 4. These values were used to set the fuel budget allocation for MCC-1, which 

informed the predictions for the total mission lifetime. This data was also available on the day of 

launch as an early indicator for a launch anomaly. If the solution computed for MCC-1 required 

more fuel than the expected range shown here, that would indicate that the launch vehicle error was 

outside the 3σ range. The DSCOVR maneuver planning team would then compute alternative ma-

neuver plans, executing MCC-1 earlier than the nominal L+31 hour mark to save fuel. 

 

Figure 5. MCC-1 Fuel Usage and Burn Duration. 

Various DSCOVR spacecraft constraints were taken into account in the MCC-1 analysis, most 

importantly to ensure that the maneuver would not place the spacecraft into a power-negative atti-

tude for too long. In many of the MCC-1 Monte Carlo cases, the maneuver requires a significant 

slew away from the spacecraft’s nominal pointing attitude in order to align the thrust direction of 

the spacecraft’s +Z thrusters with the required ΔV direction, bringing the solar panels nearly normal 

to the Sun. The MCC-1 burn durations as a function of the Sun-to-solar-array-normal angle during 

the maneuver, together with the 40% DoD (depth of discharge) limit for the spacecraft appear in 

Figure 6. Fortunately, these results show that the MCC-1 maneuver could be implemented in a 

single segment without exceeding this power constraint. If the power constraint were violated, then 

the MCC-1 maneuver would have been segmented into a series of burns separated by a recharge 

time. 
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Figure 6. MCC-1 Power Limit. 

Since the MCC-1 maneuver was the first maneuver executed, it was necessary to properly study 

the potential errors in the DSCOVR attitude control and propulsion systems and assess their impact 

on the MCC-1 maneuver effectiveness; that is, determine the effect of MCC-1 maneuver execution 

on the design of the subsequent MCC-2 maneuver. Before flight, the propulsion and attitude control 

teams provided a range of probable deviations which were employed to model execution errors in 

the MCC-1 maneuver. These results were used to characterize the properties of the MCC-2 burn. 

This analysis assumed that MCC-2 would be executed at L+17 days in order to allow a full OD arc 

of at least 14 days between MCC-1 and MCC-2. The MCC-1 maneuver analysis focused on launch 

vehicle TTI 3σ overburn (+3.2 m/s) and 3σ underburn (–4.1 m/s) cases. The MCC-1 maneuver was 

modeled at L+31 hours, with the following ranges of MCC-1 errors applied in all possible combi-

nations: 

• MCC-1 pointing angle error: 0 to 5° in 1° increments 

• MCC-1 error direction (“clock angle” of the pointing error): 0 to 315° in 45° increments 

• MCC-1 magnitude error: 0%, –3%, and 3% (applied as a total burn duration error) 

The pointing angle error and the clock angle of the pointing error are equal to the elevation and 

azimuth of the achieved thrust vector with respect to the planned thrust vector. Combining the 

above effects, a total of 144 combinations were examined to assess the effects of errors in the MCC-

1 execution for a given launch scenario. The effects of MCC-1 execution errors on MCC-2 appear 

in Figure 7. The left half of Figure 7 displays the results when no MCC-1 magnitude error is ap-

plied. The different series in this plot represent the range of clock angles at which the pointing angle 

error was applied, as well as the TTI underburn and overburn data sets. On the right, Figure 7 shows 

the results when the ±3% MCC-1 magnitude errors as well the pointing angle errors are applied. 

Given the large uncertainty in the maneuver pointing accuracy in the attitude control system before 

it was used for the first time on-orbit, as well as the uncertainty in the propulsion system efficiency, 

these results allowed DSCOVR mission planners to set a bound on the expected ΔV budget for the 

MCC-2 maneuver that would follow MCC-1. 
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Figure 7. MCC-2 Cost Based on MCC-1 Error Analysis. 

Figure 8 presents results from the same analysis as Figure 7, but uses a polar plot to depict the 

clock angle of the error in a more intuitive way. Another investigation in the MCC-1 maneuver 

error study focuses on the combinatorial effects of two or more error sources. It is apparent in 

Figure 8 that MCC-1 clock-angle error and magnitude error are coupled in their ramifications for 

the subsequent MCC-2 ΔV necessary to target the vehicle to LOI. In the absence of MCC-1 mag-

nitude error, the resulting MCC-2 ΔV depends primarily on the pointing error of the MCC-1 ma-

neuver; a small dependency exists on the MCC-1 clock error in that, if the clock angle of the point-

ing error is near 90° or 270°, a larger MCC-2 ΔV is required. This characteristic is depicted in the 

left plot in Figure 8. However, when a 3% MCC-1 underburn is applied, as shown in the right of 

Figure 8, it is clear that MCC-1 pointing error direction and magnitude are coupled in their effects 

on the subsequent MCC-2 ΔV. Costs for MCC-2 are much higher when the MCC-1 pointing error 

has a clock angle between 45° and 90° as compared to 225° and 270°. As expected, magnitude 

errors in MCC-1 will result in a larger MCC-2 with a larger requisite ΔV, which is represented by 

the differing radii between the left and right plots. Because of the bias from clock angle error, a 

slight pointing angle error corresponding to a clock angle near 270° has negligible effect on the 

MCC-2 ΔV for an MCC-1 underburn, but a significant effect when the pointing error has a clock 

angle near 90°. The opposite effect occurs for an MCC-1 overburn. 

 

Figure 8. Polar Plot of MCC-2 Cost based on MCC-1 Error Analysis. 
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MCC-1 Results 

The transfer trajectory insertion by the SpaceX Falcon 9 was excellent, placing the vehicle 

within 0.2 of the intended target orbital energy value. The insertion error from the launch vehicle 

was in the out-of-plane direction (towards the +Z RLP direction), requiring an MCC-1 ΔV vector 

nearly perpendicular to the ecliptic plane. The MCC-1 maneuver, executed at 13 February 2015, 

0700 UTC, was relatively small, with a planned ΔV of 0.503 m/s and a total burn time of 36.4 

seconds, consuming 0.150 kg of hydrazine. The ΔV mode efficiency (the ratio of time firing the 

ΔV thrusters versus the total time to complete the maneuver, including time spent performing atti-

tude control thruster firing) was 87.39%, which was close to the expected 87.63%. As a result of 

the excellent launch vehicle performance, it would have been possible for mission planners to post-

pone the MCC-1 maneuver for several weeks without violating the available fuel budget. However, 

the MCC-1 maneuver was executed as planned at L+31 hours to exercise the spacecraft propulsion 

system and to avoid changing the staffing and ground tracking plans. Actual results for MCC-1 are 

summarized in Table 1. 

Reconstruction of the spacecraft telemetry showed that pointing errors during the MCC-1 ma-

neuver were under 0.2°, well below the 5° pointing requirement. Calibration of the maneuver based 

on ground-based Doppler tracking data during the maneuver (using the NASA GSFC Delta-V 

Along Line Of Sight, or DVALOS, tool) revealed that the maneuver was approximately 2.2% cold, 

achieving 0.490 m/ s ΔV, compared to the planned 0.503 m/ s ΔV. This variation in spacecraft 

propulsion performance was within expectations, as MCC-1 was the first DSCOVR maneuver and 

employed an un-calibrated propulsion system. Because the pointing error was small, the scale fac-

tor error was the primary source of error for MCC-1. The maneuver error and orbit state uncertainty 

errors necessitated a second mid-course correction maneuver, MCC-2. Without incorporating 

MCC-2 into the transfer trajectory, DSCOVR would have missed its intended target on the RLP 

XZ-plane by 7675 km. The MCC-1 cold performance was accounted for in the thrust and Isp scale 

factor modeling for MCC-2.  

Table 1. MCC-1 Maneuver Operational Results. 

Burn Start / End on Feb 13, 2015 07:00:00.000 to 07:00:36.429 UTC 

Thruster Configuration +Z axis thrusters (9, 10) 

Maneuver Attributes Planned Observed 

∆V (m/s) 0.503 0.490 

Total Burn Time ( s) 36.4 36.5 

ΔV Mode Efficiency 87.63% 87.39% 

Fuel Use Estimation (kg) 0.149 0.150 

Thrust Scale Factor 1.000 0.978 
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MID COURSE CORRECTON MANEUVER #2 (MCC-2)  

The DSCOVR MCC-2 maneuver was executed on April 27, 2015, as the second of two MCC 

maneuvers to correct for the Falcon 9 launch vehicle injection errors and maneuver errors from the 

MCC-1 maneuver executed on February 13. 

Design and Analysis for the MCC-2 Maneuver 

The goal of the second mid-course correction maneuver (MCC-2) for DSCOVR was to continue 

to fine-tune the transfer trajectory and correct for MCC-1 maneuver execution errors. The MCC-2 

maneuver further ensures that the transfer trajectory crosses the XZ-plane of the RLP frame at the 

desired coordinates, so that the spacecraft would be at the nominal position prior to executing the 

LOI maneuver. Mission planners expected to conduct MCC-2 approximately L+17 days after 

MCC-1 to allow a full OD arc of 14 days between the two maneuvers. However, since the SpaceX 

Falcon-9 launch vehicle injection error was small and the resulting MCC-1 maneuver was also 

small as a consequence, mission planners decided to postpone the MCC-2 maneuver until approx-

imately L+10 weeks to allow the deviation from the nominal trajectory to continue to grow until 

the MCC-2 burn would require at least 2 m/s and 2 to 3 minutes of burn duration. The motivation 

for this decision was to gather substantially more maneuver propulsion system calibration data with 

the goal of providing a better thrust and Isp calibrated scale factor in preparation for the large LOI 

maneuver in early June 2015. 

Maneuver targeting for the MCC-2 maneuver was initially conducted in a similar fashion as the 

MCC-1 maneuver, allowing the targeter to vary all three components of the thrust vector to deter-

mine a solution. However, while the burn plan analysis indicated no issues with spacecraft power 

or thermal constraints, another constraint affected the viability of the maneuver plan. The MCC-2 

solution placed the spacecraft into a ΔV attitude that violated communications constraints by plac-

ing the Low-Gain Antenna (LGA) into a null region, where the communication link with the ground 

antenna would not be closed. As a result, the maneuver targeting for MCC-2 was customized by 

constraining the cross-track component of the maneuver to be zero, forcing the targeter to calculate 

a solution that did not violate the communication constraint. The final MCC-2 plan was for a 3-

minute long maneuver of 2.5 m/s ΔV. 

Similar to the MCC-1 execution error analysis, an MCC-2 error analysis was performed. While 

the MCC-1 error analysis focused on the effect of MCC-1 errors on the fuel budget for MCC-2, the 

focus of the MCC-2 error analysis was to characterize the probable coordinates of the RLP XZ-

plane crossing with respect to the target location. Figure 9 shows the nominal target for the RLP 

XZ-plane crossing along with results of the MCC-2 error study and the pre- and post-MCC-2 actual 

results. As noted previously, if no MCC-2 maneuver had been performed, then the XZ-plane cross-

ing would have been approximately 7675 km away from the target. This error would have been 

primarily in the X-component of the intercept, with the miss distance constituting about 9% of the 

amplitude of the Lissajous orbit oscillation in the RLP X-axis direction and therefore would have 

affected the shape of the Lissajous orbit significantly. Analyzing a range of potential MCC-2 ma-

neuver errors, with thrust model variations from 0% to 5% (positive or negative) in 1% increments, 

pointing angle errors from 0° to 5° in 1° increments, and pointing clock angle values from 0° to 

315° in 45° increments, a distribution of possible XZ-plane crossing coordinates was computed. 

This selection of 528 cases creates the pattern of blue dots seen in Figure 9. The cases with the 

largest error in the XZ-plane crossing coordinates with respect to the nominal target correspond to 

cases with the largest values of pointing angle error; the thrust model variations had relatively little 

effect. The results of this study showed that all probable MCC-2 results were acceptable and the 
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likelihood of requiring an MCC-3 maneuver was therefore low. Any result within the observed 

range of MCC-2 errors would have a negligible impact on the LOI maneuver and the subsequent 

shape of the Lissajous orbit. The actual post-MCC-2 result is also indicated in the figure; the actual 

XZ-plane crossing was about 80 km away from the target.  

 

Figure 9. RLP XZ-Plane Crossing Coordinates. 

MCC-2 Results 

The MCC-2 maneuver, executed on 27 April 2015, 1500 UTC, was small, even after postponing 

the maneuver until L+10 weeks. The planned ΔV was 2.495 m/ s with a total burn time using the 

+Z thruster set of 3.09 minutes, consuming 0.779 kg of hydrazine. The ΔV mode efficiency was 

84.83%, which was close to the expected 84.45%.  

Once again, reconstruction using downlinked spacecraft telemetry showed that the pointing an-

gle error was below 0.2°. Calibration of MCC-2 revealed that the maneuver was approximately 

4.9% hotter than expected, achieving 2.619 m/ s ΔV, compared to the planned 2.495 m/ s ΔV. It is 

expected for thrust scale factor to increase as a function of burn duration, and MCC-2 was about 

five times longer than MCC-1. However, a variation of almost 5% in spacecraft propulsion perfor-

mance was somewhat unexpected, as MCC-2 was the second DSCOVR maneuver, employing a 

previous calibration data point, albeit based on a very short duration MCC-1 maneuver. Post-MCC-

2 maneuver analysis revealed that the resulting XZ-plane crossing on June 7 was only approxi-

mately 80 km away from the targeted position. Actual results for MCC-2 are summarized in Table 

2. 

Table 2. MCC-2 Maneuver Operational Results. 

Burn Start / End on Apr 27, 2015 15:00:00.000 to 15:03:06.451 UTC 

Thruster Configuration +Z axis thrusters (9, 10) 

Maneuver Attributes Planned Observed 

∆V (m/s) 2.495 2.619 

Total Burn Time (min) 3.11 3.09 
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ΔV Mode Efficiency 84.45% 84.83% 

Fuel Use Estimation (kg) 0.782 0.779 

Thrust Scale Factor 0.978 1.026 

LIBRATION ORBIT INSERTION (LOI) 

The Libration Orbit Insertion (LOI) maneuvers were two deterministic maneuvers executed on 

June 7, 2015, to place the DSCOVR spacecraft onto its mission design Lissajous. The LOI maneu-

vers established a 160,538 km by 281,476 km Lissajous orbit about L1 in the Sun-Earth system. 

The combined DSCOVR LOI maneuver was large, imparting approximately 167 m/ s in ΔV and 

consuming 49.7 kg of fuel, over one third of the total mission fuel mass. However, unlike the MCC-

1 and MCC-2 maneuvers, the LOI maneuver was deterministic and not statistical; a large ΔV was 

expected. 

Design and Analysis for the LOI Maneuver 

The purpose of a LOI maneuver is to place a libration point orbiter onto its intended Lissajous 

or halo orbit in the vicinity of L1 or L2 by modifying the spacecraft’s orbital energy, in this case 

reducing the orbital energy to achieve the required Lissajous orbit velocity. Subsequent station-

keeping maneuvers follow LOI to continue to balance the orbital energy to prevent it from falling 

back to the vicinity of the Earth or escaping into a heliocentric orbit around the Sun. 

Approximately 40 days after the completion of the MCC-2 burn, the DSCOVR spacecraft was 

en route to intercept the L1 XZ-plane at 7 June 2015 15:19 UTC after its 115 day transfer trajectory. 

Analysis indicated that the optimal time (based on ΔV and fuel considerations) to perform the LOI 

maneuver was within 24 hours of crossing the XZ plane.  

The LOI maneuver targeting algorithm is based on targeting three components of the RLP po-

sition and velocity state on the first RLP XZ-plane crossing following LOI, after about three 

months. These coordinates, targeted on the far side of the Lissajous orbit (the Sun side), are the X 

and Z components of the position (–70,401 km and –134,253 km with tolerances of 0.1 km) and 

the X component of the velocity (0 mm/s with a tolerance of 5 mm/s). The zero value for the X 

component of the velocity ensures a perpendicular XZ-plane crossing, so that the spacecraft is not 

tending toward the Earth or toward the Sun as it crosses the plane. For a Lissajous orbit, unlike a 

halo orbit, the out-of-plane oscillation (in the RLP Z direction) is at a different frequency than the 

in-plane oscillation (in the RLP XY plane), and so the Z component of the velocity will not neces-

sarily be zero at the XZ-plane crossings. For simplicity for the DSCOVR mission, this is still re-

ferred to as a perpendicular plane crossing.  

The LOI maneuver targeting algorithm first conducts an impulsive maneuver differential cor-

rection scheme, varying the three components of the velocity vector in the RLP frame. These im-

pulsive results are then used to seed a finite burn differential corrector, which varies the burn dura-

tion, azimuth, and elevation to achieve the Sun-side perpendicular XZ-plane crossing discussed 

previously. Upon convergence, an additional differential corrector re-targets the burn duration by 

propagating to additional future XZ-plane crossings and adjusting the burn duration to achieve 

perpendicular plane crossings (RLP Vx = 0 mm/s with a tolerance of 5 mm/s). 

Originally, the LOI maneuver was planned as a single maneuver, with one burn dedicated to 

achieving the required ΔV necessary to place the spacecraft onto the nominal Lissajous. Initial 

analysis, based on the latest OD data available from NASA GSFC Flight Dynamics Facility (FDF) 
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at the time, showed that a LOI maneuver beginning at 7 Jun 2015, 1340 UTC would have the 

characteristics listed in Table 3. 

Table 3. Nominal Single-Segment LOI. 

LOI Burn Start 

Epoch (UTCG) 

LOI Burn End 

Epoch (UTCG) 

LOI ΔV Cost 

(m/s) 

LOI Fuel 

Cost (kg) 

LOI Burn 

Duration (hr) 

7 Jun 2015 

13:40:00.000 

7 Jun 2015 

18:10:27.180 
166.36 49.74 4.51 

 

Due to the realities of spacecraft operations, it was necessary to investigate the potential costs 

associated with a delay in the LOI maneuver execution. Initial analysis modeled a single LOI ma-

neuver was conducted at one day increments after 7 June 2015, 1340 UTC. For maneuvers occur-

ring within 4 to 5 days, it was observed that there is relatively little impact to the post-LOI maneuver 

Lissajous geometry. However, for maneuvers postponed 7 days after June 7 or later, considerable 

distortion of the Lissajous orbit occurs. As a result, a sizable LOI correction burn would be required 

to re-align the spacecraft velocity at the first XZ-plane crossing on the Sun-side of the Lissajous 

orbit, adding significant cost to the LOI maneuver. The trend for fuel costs as a function of LOI 

delay appears in Figure 10. 

 

Figure 10. LOI Fuel Costs vs. Delays. 

As noted previously, DSCOVR mission planners ultimately decided to divide the LOI maneuver 

into two segments. The first segment, starting at 7 June 2015, 1340 UTC, was designed to impart 

the first 90% of the total burn duration required for the LOI maneuver, with the second segment 

executed approximately 6 hours later to achieve the remaining 10% of the maneuver. The initial 

impetus for LOI segmentation analysis was potential spacecraft thermal constraints. However, sub-

stantial analysis by the DSCOVR thermal team revealed that a single, 4.5-hour long LOI burn 

would not present any thermal hazards to the spacecraft. Ultimately the LOI segmentation approach 

was pursued for a different reason: the large fluctuations in the maneuver calibration results from 

MCC-1 to MCC-2 presented a concern that executing a single-segment LOI maneuver would result 

in errors that would necessitate a large LOI correction maneuver. The thrust and Isp scale factor 

computed after MCC-1 was 0.978 and the scale factor computed after MCC-2 was 1.026, a 4.9% 

difference. Based on past mission experience, thrust scale factor is expected to be a function of 

burn duration. The relatively short durations of MCC-1 and MCC-2 did not provide sufficient char-

acterization of the thrust scale factor trend to indicate what the thrust scale factor would be for LOI, 

which is two orders of magnitude longer than either MCC maneuver. If an error of 5% were applied 

to the thrust and Isp scale factor for LOI, the consequent ΔV error would be about 8 m/s. 
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Initially, mission planners assessed the operational feasibility and costs associated with a wide-

range of potential segmentation options, ranging from 50/50 to 92/08, and with various intra-seg-

ment durations ranging from 4 to 48 hours. It was observed through both impulsive and finite burn 

analysis that the various segmenting options and intra-segment burn durations caused relatively 

limited differences in terms of ΔV and fuel costs as long as the intra-segment duration was kept 

below 12 hours, as noted in Figure 11. 

 

Figure 11. LOI Segmentation Cost vs. Time Between Segments. 

Ultimately, it was decided to use the 90/10 LOI segmentation option, not for the minimal fuel 

savings associated with it compared to other segmentation options, but because the 90/10 split pro-

vided one of the longest Segment 1 burn durations, providing for better recoverability in case the 

Segment 2 burn could not be executed on time due to any sort of spacecraft anomaly. At the same 

time, the second segment needed to be long enough so that it would be appropriate to use the Isp 

and thrust scale factor computed from LOI Segment 1 in the planning of Segment 2. A six hour 

break between the two segments was chosen because it was the shortest reasonable amount of time 

that the spacecraft operations team could complete all required activities for Segment 2 replanning. 

While this complicated the maneuver operations, it was deemed necessary and appropriate to pro-

vide an effective LOI maneuver, drive maneuver errors down below 1%, reduce the LOI-c maneu-

ver that would follow approximately 3 weeks later, and reduce the early stationkeeping maneuver 

costs as well. Overall, the LOI segmented approach would assist with a more accurate maneuver 
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insertion into the nominal DSCOVR Lissajous orbit, ensuring a more stable Lissajous orbit and 

aiding in the subsequent orbit determination. 

LOI maneuver error studies illustrate the rationale for the LOI segmentation. The baseline cost 

of executing LOI as a single segment, with no accounting for errors in the maneuver scale factor, 

is 166.4 m/s, as shown in Figure 12. If that single segment has a 5% cold or 5% hot error, the 

required LOI-c maneuver executed 3 weeks after LOI costs 17.9 m/s or 18.0 m/s, respectively. The 

total ΔV costs in these scenarios go up to 175.9 m/s and 192.6 m/s, a significant impact to the 

DSCOVR fuel budget and mission lifetime. The total baseline cost of the 90/10 segmentation strat-

egy is not appreciably different from the single segment cost, remaining at 166.4 m/s. The ad-

vantage of implementing a 90/10 segmented LOI maneuver option is apparent when modeling a 

5% hot or cold burn for the first segment and compensating for that error in the modeling and re-

planning for the second segment. To compensate for the underburn or overburn of the first segment, 

the maneuver model is updated with the most accurate estimate of the spacecraft state and maneuver 

scale factors. For a first segment underburn of 5%, the second segment is re-planned to be longer, 

so that the total ΔV for the two maneuver segments is barely changed from the baseline. Likewise 

if there is a first-segment overburn of 5%, the second segment is replanned and becomes shorter, 

and the overall ΔV cost is not affected. For the 90/10 segmentation cases shown in Figure 12, the 

second segment of the LOI maneuver is executed 6 hours after the first segment. This analysis 

assumes that there is no error in the thrust and Isp scale factor modeling in the second segment 

maneuver as a result of the maneuver calibration of the first segment. 

 

Figure 12. LOI Segmentation Costs. 

Figure 13 shows the same analysis as Figure 12, but presents the fuel cost of each maneuver 

instead of the ΔV cost. Again, in the single-segment cases, the LOI-c burn is executed 3 weeks after 

LOI, and in the 90/10 segmentation cases, the first segment is 90% of the nominal LOI maneuver 

and the second segment is re-planned and executed within 6 hours after Segment 1. The LOI-c fuel 

costs when there are 5% errors in a single segment LOI approach add about 5 kg to the total inser-

tion cost, while the 90/10 segmentation is more robust and allows maneuver planners to recover 

from errors quickly and at low cost. 
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Figure 13. LOI Segmentation Fuel Costs. 

The total costs of each approach, in terms of ΔV and fuel, are shown in Table 4. Overall, com-

paring the costs of the 90/10 segmented LOI maneuver with the costs of a single-segment LOI 

maneuvers, considering the possible outcomes with a 5% hot or cold error in the first maneuver, 

the segmentation provides a significant potential fuel savings of up to 3 kg for a cold maneuver and 

up to 7 kg in fuel savings for a hot maneuver. 

Table 4. Single-Segment vs. Segmented LOI Costs. 

LOI Maneuver Type 
Total ΔV Cost 

(m/s) 

Total Fuel 

Cost (kg) 

Single segment LOI 166.4 49.7 

Single segment LOI maneuver 5% cold 

plus LOI-c Cost 
175.9 53.7 

Single segment LOI maneuver 5% hot 

plus LOI-c Cost 
192.6 53.7 

Baseline 90/10 Segmentation 166.4 48.6 

90/10 Segmentation 

(First segment 5% Cold) 
166.3 50.8 

90/10 Segmentation 

(First segment 5% Hot) 
166.3 46.4 

 

As noted previously, there are significant operational constraints and considerations that have 

be taken into account to effectively execute all DSCOVR maneuvers. Fortunately, the nominal 

maneuver attitude for LOI satisfied all spacecraft constraints for power, thermal, and communica-

tions. 

LOI Results 

The DSCOVR LOI maneuver was executed on 7 June 2015, with the first segment beginning 

at 1340 UTC. Segment 1 was completed at 1733 UTC, for a burn duration of 3 hours and 55 

minutes, achieving a 148.6 m/s of ΔV and consuming 44.41 kg of hydrazine. Segment 2 began at 

2330 UTC and ended 8 June 2015, 0005 UTC, for a maneuver duration of 35.6 minutes and achiev-

ing 18.3 m/s ΔV while consuming 5.3 kg of hydrazine. Total ΔV for both maneuver segments was 
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166.9 m/s, which represents a successful LOI maneuver sequence achieving the required ΔV to 

place the DSCOVR spacecraft onto its Lissajous orbit.  

The LOI segmentation operations concept is shown in Figure 14. During the 6 hour intra-ma-

neuver period, the maneuver team reconstructed the first segment maneuver using telemetry re-

ceived from the spacecraft (temperature, pressure, and thruster on-times), received Doppler residual 

O-C data (observed residuals minus the residuals computed based on a nominal, no-burn ephem-

eris) from the GSFC FDF, and used NASA’s DVALOS software to conduct maneuver calibration 

on the first segment to re-compute the thrust and Isp scale factor. This updated scale factor was then 

used to re-plan the second maneuver segment to impart the total ΔV required for the LOI maneuver. 

After the final replanning of the second segment burn, updated slew planning and standard space-

craft maneuvering operation sequences were conducted to execute the second segment burn.  

 

Figure 14. LOI Segmentation Operations Concept. 

The Segment 1 reconstruction and calibration using the DVALOS utility revealed an approxi-

mate 2.5% Segment 1 underburn. The maneuver team re-planned the Segment 2 maneuver account-

ing for the Segment 1 underburn and incorporating the newly computed thrust scale factor derived 

from the DVALOS calculations. The resulting maneuver plan called for a longer Segment 2 burn 

duration than the baseline prediction to provide the additional ΔV necessary to recover from the 

first segment underburn.  

The Segment 2 maneuver plan was computed by adjusting only the burn duration, and not the 

maneuver attitude. The same maneuver attitude was used for Segment 1 and Segment 2 to simplify 

the maneuver planning process and reduce the number of verification steps completed by other 

spacecraft subsystem elements. Using the same maneuver attitude for both maneuvers minimizes 

the workload during the intra-segment timeframe for the slew planning team as well as the thermal, 

power, and communications teams who must approve the maneuver plan. Analysis completed prior 

to LOI showed that using the same attitude for both maneuver segments had negligible impact on 

the effectiveness of the LOI maneuver.  

Upon completion of the Segment 2 burn at 8 June 2015, 0005 UTC, maneuver reconstruction 

and calibration was conducted once again by the maneuver planning team. Segment 2 reconstruc-

tion and calibration revealed a 0.7% overburn on the 18.2 m/s maneuver, for a total computed LOI 

error of 0.13 m/s. If the full 2.5% error had been imparted to a single-segment LOI maneuver of 

166 m/s (with no correction planned for 3 weeks), the error would have been 4.2 m/s. Breaking the 

LOI maneuver into two segments and re-planning the second segment within 6 hours of the first 

segment reduced the total insertion maneuver error from 4.2 m/s to 0.13 m/s for a 97% reduction. 

Table 5 summarizes the planned and achieved results from the two LOI maneuver segments. 

Table 5. LOI Maneuver Operational Results. 

 Segment 1 Segment 2 
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Burn Start / End on 7 June 2015 
13:40:00.000 to 

17:33:43.907 UTC 

23:30:00 to 8 June 

00:05:37.875 UTC 

Thruster Configuration +Z axis thrusters (9, 10) +Z axis thrusters (9, 10) 

Maneuver Attributes Planned Observed Planned Observed 

∆V (m/s) 152.442 148.579 18.175 18.301 

Total Burn Time (mins) 235.10 233.73 35.48 35.63 

ΔV Mode Efficiency 84.24% 84.74% 84.52% 84.17% 

Fuel Use Estimation (kg) 44.658 44.410 5.306 5.313 

Thrust Scale Factor  1.026 0.9997 0.9997 1.0066 

LOI CORRECTION (LOI-C) 

LOI-c is a stochastic correction maneuver to correct for the LOI maneuver error. This stochastic 

correction burn provides a final fine-tuning of the Lissajous trajectory per the desired baseline de-

sign before commencing regular orbit maintenance maneuvers. The LOI-c maneuver was executed 

on 30 June 2015, 0100 UTC, to correct the small trajectory errors after the LOI maneuvers con-

ducted on 7 June. These errors arise from the inherent spacecraft ΔV pointing inaccuracies, maneu-

ver calibration inaccuracies, and OD state errors. The magnitude of the LOI-c maneuver was ap-

proximately 0.9 m/s. 

Design and Analysis for the LOI-c Maneuver 

The cost to correct the LOI maneuver errors increases with elapsed time, so it is necessary to 

complete the LOI-c maneuver as soon as possible. However, GSFC FDF personnel determined that 

at least three weeks of tracking data is required to provide an accurate estimate of the spacecraft 

state after breaking the OD arc for LOI. Taking into account operational considerations as well as 

DSN support availability, the LOI-c date was set for 30 June. 

There are several LOI-c maneuver targeting options available to the maneuver planners to execute 

an effective LOI-c maneuver. These options are analogous to the various stationkeeping strategies 

available for DSCOVR, as discussed in Reference 3. The purpose of each of these options is to add 

or remove energy from the orbit, with thrust generally aligned with the X or Y axis of the RLP 

frame. The goal of the differential corrector is to compute a perpendicular XZ-plane crossing two 

to four XZ-plane crossings into the future (with RLP Vx = 0 mm/s with a tolerance of 5 mm/s). A 

maneuver that provides a perpendicular plane crossing after four plane crossings (or two orbits, 

because the vehicle crosses in both the +Y and –Y directions for each orbit) will be more stable 

about the libration point than a maneuver that is computed by propagating only two plane crossings 

(or one orbit) into the future. The differences in the maneuver magnitude are very small when 

computing different numbers of plane crossings, but the precision gained by targeting farther along 

the trajectory ultimately reduces long-term fuel costs. 

Four options are examined as control techniques for the LOI-c maneuver: 
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1. RLP L1 X-Axis Control – The thrust vector is along the RLP X axis and the ΔV is executed 

using the –X thruster set. This option requires only a small slew to place the spacecraft into the 

required ΔV attitude, using the LGA for communications. Costs: 0.93 m/s, 0.45 kg fuel. 

2. RLP L1 Y-Axis Control – The thrust vector is along the RLP Y axis and the ΔV is executed 

using the +Z thruster set. This option requires using the LGA for communication. Costs: 1.39 

m/s, 0.40 kg fuel. 

3. RLP L1 Y-Axis Control Variant – The thrust vector is similar to the RLP Y axis direction, but 

rotated within the ecliptic plane such that the spacecraft X axis points directly toward Earth 

and the ΔV is executed using the +Z thruster set. This option allows use of the high gain antenna 

(HGA) which provides higher data rates during the maneuver, however, it is the most expen-

sive. Costs: 1.77 m/s, 0.51 kg fuel.  

4. RLP X-Axis Control Variant – The thrust vector is similar to the RLP X axis direction, but 

rotated within the ecliptic plane such that the spacecraft X axis points directly toward Earth 

and the ΔV is executed using the –X thruster set. This aligns with the spacecraft’s nominal 

science attitude and therefore does not require the spacecraft to slew. This option allows use of 

the HGA and is among the cheapest. Costs: 0.86 m/s, 0.42 kg fuel.  

Option 4 was selected for the LOI-c maneuver due to its operational simplicity in not requiring 

a slew, along with being inexpensive in terms of fuel usage. In addition, this option allows mission 

operators to conduct a small maneuver using the –X-axis thrusters for the first time; the +Z thruster 

set was used for all previous maneuvers. 

LOI-c Results 

The LOI-c maneuver was conducted on 30 June 2015, 0100 UTC, using the –X thruster set 

(thrusters 1, 2, 3, 4) – the first time these thrusters were used in ΔV mode during DSCOVR opera-

tions. The total burn duration was 1 minute, 36 seconds, consuming 0.428 kg of hydrazine and 

achieving 0.856 m/s ΔV, compared to the planned 0.861 m/s ΔV. The LOI-c maneuver was suc-

cessful in correcting the Lissajous orbit back to the nominal design parameters by applying thrust 

in the sunward direction, adding energy to the orbit. After completion of the LOI-c maneuver, 

reconstruction and calibration revealed a very small underburn of approximately 0.48%. 

Since the spacecraft was kept in the Earth-pointing science attitude during LOI-c, no slew was 

required and HGA communication was maintained throughout the maneuver. Because the thrust 

was along the spacecraft X axis, which points directly toward the Earth in the nominal science 

attitude, the entire planned ΔV was along the line of sight from the spacecraft to Earth. Reconstruc-

tion of the onboard telemetry revealed an off-pointing angle during the maneuver of approximately 

3.6° due to expected limitations of the attitude control system when executing a ΔV using the ±X 

thruster sets. This off-pointing resulted in an unplanned ΔV component perpendicular to the line of 

sight from the spacecraft to the Earth of approximately 5.4 cm/s. The maneuver costs for the first 

DSCOVR stationkeeping maneuver, scheduled for late July as of this writing, are still under anal-

ysis, but initial results show that this maneuver will be quite small. Actual results for LOI-c are 

summarized in Table 6. 

Table 6. LOI-c Maneuver Operational Results. 

Burn Start / End on 30 June, 2015 01:00:00.000 to 01:01:36.233 UTC 

Thruster Configuration -X axis thrusters (1, 2, 3, 4) 
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Maneuver Attributes Planned Observed 

∆V (m/s) 0.861 0.856 

Total Burn Time (min) 1.57 1.60 

ΔV Mode Efficiency 66.63% 65.61% 

Fuel Use Estimation (kg) 0.415 0.428 

Thrust Scale Factor 1.000 0.995 

 

EARLY OPERATIONS SUMMARY AND CONCLUSIONS 

A major driver for the success of DSCOVR early operations was the excellent Falcon-9 launch 

vehicle performance with the resulting 0.2σ injection error. As a result, both stochastic MCC-1 and 

MCC-2 maneuvers were relatively small, requiring only 0.93 kg of hydrazine. The low fuel costs 

of the MCC maneuvers ensures that these fuel savings will be available for extended mission op-

erations for additional years of Lissajous orbit maintenance.  

Detailed communication and planning between the maneuver planning team and other space-

craft subsystems was a necessity for this mission to ensure that the maneuvers did not violate any 

of the overlapping constraints imposed by the power, thermal, and communications systems. Ma-

neuver error analyses ensured the entire mission operations team was prepared for a wide variety 

of possible maneuver scenarios. The maneuver planning software that was developed for DSCOVR 

was used for both analysis and operations, resulting in a well-designed ground system that was 

automated where appropriate to allow a relaxed operations tempo. 

The LOI 90/10 segmentation approach was extremely successful in placing the spacecraft onto 

its planned Lissajous orbit. The value of the segmentation strategy was proven when the second 

segment was able to compensate for the first segment underburn, reducing total insertion errors by 

97%. The 2.5% underburn error in the first segment could have affected the entire LOI maneuver, 

with no opportunity to correct the error until the LOI-c maneuver three weeks later, if not for the 

segmentation strategy. Reconstruction, calibration, and re-planning of the second segment to cor-

rect for the first segment underburn allowed the majority of the error to be removed within 6 hours, 

reducing the cost of the LOI-c maneuver significantly.  

The LOI-c maneuver allowed the NASA operations team to exercise the –X thruster set for the 

first time and characterize the expected pointing error when using this thruster set before the hand-

over to NOAA. Going forward, NOAA stationkeeping maneuver planners will have the same four 

maneuver options presented in the discussion of the LOI-c maneuver. The four early-orbit maneu-

vers (MCC-1, MCC-2, LOI, and LOI-c) tested thruster sets aligned with the X and Z spacecraft 

body axes, removing uncertainty about the propulsion and attitude control system performance, 

and establishing DSCOVR in a safe Lissajous orbit about L1 that can be maintained for many years 

to come. 
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