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Abstract: Forests are the largest aboveground sink for atmospheric carbon (C), and 
understanding how they change through time is critical to reduce our C-cycle 
uncertainties. We investigated a strong decline in Normalized Difference Vegetation Index 
(NDVI) from 1982 to 1991 in Pacific Northwest forests, observed with the National Ocean 
and Atmospheric Administration’s (NOAA) series of Advanced Very High Resolution 
Radiometers (AVHRRs). To understand the causal factors of this decline, we evaluated an 
automated classification method developed for Landsat time series stacks (LTSS) to map 
forest change. This method included: (1) multiple disturbance index thresholds; and (2) a 
spectral trajectory-based image analysis with multiple confidence thresholds. We 
produced 48 maps and verified their accuracy with air photos, monitoring trends in burn 
severity data and insect aerial detection survey data. Area-based accuracy estimates for 
change in forest cover resulted in producer’s and user’s accuracies of 0.21 ± 0.06 to  
0.38 ± 0.05 for insect disturbance, 0.23 ± 0.07 to 1 ± 0 for burned area and 0.74 ± 0.03 to 
0.76 ± 0.03 for logging. We believe that accuracy was low for insect disturbance because 
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air photo reference data were temporally sparse, hence missing some outbreaks, and the 
annual anniversary time step is not dense enough to track defoliation and progressive 
stand mortality. Producer’s and user’s accuracy for burned area was low due to the 
temporally abrupt nature of fire and harvest with a similar response of spectral indices 
between the disturbance index and normalized burn ratio. We conclude that the spectral 
trajectory approach also captures multi-year stress that could be caused by climate, acid 
deposition, pathogens, partial harvest, thinning, etc. Our study focused on understanding 
the transferability of previously successful methods to new ecosystems and found that this 
automated method does not perform with the same accuracy in Pacific Northwest forests. 
Using a robust accuracy assessment, we demonstrate the difficulty of transferring change 
attribution methods to other ecosystems, which has implications for the development of 
automated detection/attribution approaches. Widespread disturbance was found within 
AVHRR-negative anomalies, but identifying causal factors in LTSS with adequate 
mapping accuracy for fire and insects proved to be elusive. Our results provide a 
background framework for future studies to improve methods for the accuracy assessment 
of automated LTSS classifications. 

Keywords: Pacific Northwest; Landsat; AVHRR; disturbance; time series; NDVI; logging; 
insect; fire; GIMMS 

 

1. Introduction 

Forests contain 90% of the aboveground terrestrial carbon (C) stocks [1], and quantifying forest 
disturbance history is necessary to understand forest C fluxes. Disturbance events for forests, such as 
logging, fire, insect outbreaks and storm damage, typically result in a net C release to the atmosphere. 
It is important to know when the disturbance occurred, the type, intensity, extent and rate of recovery 
to be able to improve C-cycle dynamics simulated in terrestrial C models [2–4]. North American 
forests have been found to be a large C sink that offsets global anthropogenic emissions [5–7]. Over 
the past 100+ years, North American forests have increased aboveground biomass density from 
regrowth due to changes in land use; and this increase is thought to be due primarily to agriculture 
abandonment [8]. This change in land use resulted in a large C sink [9] that could potentially comprise 
nearly half the global land C sink [6]. Disturbance duration, interval and intensity alter forest age 
structures, reducing standing C stock. Multiple complex events can alter regional budgets, such as fire, 
which converts C to emissions [10], or logging, where C can be stored in wood products (e.g, building 
materials or furniture [9]). Biotic events, such as insect outbreaks, which can be regulated by climate, 
also can result in forest C stock loss due to mortality and successive fire [11]. Remote sensing provides 
the quantitative means to assess regional forest changes relevant to the C-cycle from harvest, wildfire 
and insect outbreak by extending the assessment to areas that have poor records. 

In this study, we focus on forests of the Pacific Northwest that experienced a sustained decline in 
productivity observed by the Global Inventory Modeling and Mapping Studies (GIMMS) version “g” 
Normalized Difference Vegetation Index (NDVI) data from the series of Advanced Very High 
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Resolution Radiometers (AVHRRs) [12]. Numerous studies have been performed in these forests to 
understand the extent and/or duration of declines in productivity on the ground and from space, from 
modeling C stock change and fluxes resulting from fires, to understanding forest age structure [13–19]. 
Our investigation seeks to map disturbance events in these forests that experienced marked GIMMS 
(Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) 
declines during the 1982 to 1991 period. We focus on this period, as it could be from large-scale 
harvest events that occurred during the late 1980s on private industrial forest lands [20,21].  
Another possible cause of the decline was a widespread insect outbreak in ponderosa pine (Pinus 
ponderosa) [22]. Insect outbreak could lead to different C pool pathways altering regional C budgets. 
Bulk forest C density can reside in different pools after disturbance, above or below ground, live or 
dead, all of which have different rates of flux to the atmosphere and produce different impacts on 
ecosystem C-cycling [23]. A well-documented study of this ecosystem, amid a dense annual Landsat 
record with limited phenological influence, lends itself to the development of automated methods to 
classify and evaluate disturbance dynamic types over space and time that have had marked impact on 
C-cycle processes. We previously developed an automated procedure to capture harvest and insect 
outbreaks in the Laurentian forests of Wisconsin and Minnesota. This automated approach had 0.72 
user’s and 0.63 producer’s accuracy for capturing insect mortality events, but had limited accuracy 
(0.56 user’s and 0.36 producer’s) in capturing insect outbreak that did not cause mortality, because of 
the temporally sparse Landsat Time Series Stacks (LTSS) [24]. In this study, we use a more robust 
time series that had limited phenology variability and a nearly complete annual anniversary record to 
evaluate the accuracy of this approach. Our method differs from prior investigations, because we 
intend to identify both stand replacement disturbance events of fire and clear cuts, which have been 
identified in the past [20,21], to more subtle and difficult to distinguish long-term regional events, such 
as insect outbreaks that cause mortality. Insect disturbance has become more widespread in western 
North American evergreen forests [25], with a recent widespread severe outbreak in British Columbia 
that has shown substantial loss of ecosystem productivity [11,26]. Developing an approach that can 
capture multiple disturbances in this region could provide a valuable land cover information tool that 
could be used in biogeochemistry models to resolve the status of C sinks and sources. 

Most remote sensing studies have focused on fire disturbance and logging, due to the ease of 
extraction of large changes in surface reflectance, producing reliable thematic change maps. However, 
few have addressed insects, pests and pathogens due to the difficulty of discriminating between 
background populations and outbreak events that can decimate keystone tree species. Widespread bark 

beetle (Coleoptera: Curculionidae) outbreaks, including mountain pine beetle (Dendroctonus 
ponderosae) [27] infestations, have occurred in the past in Pacific Northwest forests, but their scale, 
intensity and the area affected are increasing due to a warmer climate [25]. Mountain pine beetle, in 
combination with spruce beetle (Dendroctonus rufipennis) and pinyon Ips beetle (Ips confuses) have 
impacted the western U.S. forest C-cycle more than trees killed by fire [28]. The area of attack in U.S. 
forests often annually exceeds one million hectares, and the outbreak area has risen dramatically since 
2000 in the western U.S. [22]. 

Bark beetles are ecologically important to development, senescence and regrowth of western 
forests. They inhabit many types of evergreen species, including pine species of ponderosa, lodge pole 
(Pinus contorta), western white (Pinus monticola) and limber pine (Pinus flexilis), among others. 
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During outbreaks, female beetles bore into the bark of trees and may lay >100 eggs. As larvae hatch, 
they construct feeding galleries in the phloem (inner bark), that eventually girdle and kill the tree by 
cutting off the exchange of nutrients between the roots and crown [29]. Nutrient restriction results in 
needle color change from green to red to yellow to gray over a period that can be monitored with 
satellite imagery (reviewed in Goodwin et al., 2010 [30]). Other types of disturbance, including 
fungus, such as white pine blister rust (Cronartium ribicola), which impact western white and limber 
pine, and Blue stain fungus (Grosmannia clavigera), distributed by the mountain pine beetle to lodge 
pole pine. Numerous other tree and shrub infectious and non-infectious diseases exist from fungal, 
bacterial, viral pathogens, nematodes and algae for which we do not attempt to account [31]. 

Integrated measurement of forest disturbances from multi-spectral remote sensing measurements 
has become easily attainable through the free distribution of orthorectified Landsat data [32]. These 
data provide optical observations of the status of the Earth’s land cover that is unmatched in duration 
and scale. Many studies have used the GeoCover decadal epoch of Landsat data [33] to quantify forest 
disturbances throughout the North American continent [34], while others have used a dense LTSS 
focused on specific regions to evaluate change vectors to understand forest health dynamics [35–37]. A 
few studies have used time series data from AVHRRs and/or the Moderate Resolution Imaging 
Spectral radiometer (MODIS) data to identify forest disturbances, for the 1982 to 1999 and 2000 to 
2006 periods, respectively [38–41]. A more recent study has observed multiple disturbances for the 
entire 30+ year AVHRR record with trend changes in vegetation productivity [42]. The use of Landsat 
and ancillary data to identify disturbance type in conjunction with the coarse resolution AVHRR data 
have also shown promise [24,43]. Disturbance information could enable more advanced terrestrial  
C-cycle models to capture these C-cycle dynamics. 

Many different disturbance agents reduce and change forest C stock, including climate-induced 
impacts from drought, storm damage and fire, to more direct biophysical impacts from human 
deforestation, to insect pests and pathogens, which have a wide variety of implications,  
from defoliation to mortality [4,44]. Assessment is critical to the C state knowledge of forested 
ecosystems [9]. Many existing remote sensing studies of forest disturbance using LTSS lack causal 
information that is critical for C-cycle models to quantify C-cycle dynamics [35,45,46]. For example, 
Huang et al., 2010 [35], developed an algorithm, vegetation change tracker (VCT), and implemented it 
wall-to-wall for the continental U.S. It has been shown to be very effective at mapping clear cut 
harvest, but has also been noted to have difficulty in complex heterogeneous landscapes [47]. This 
algorithm uses the concept of normalized values for pixels based on the mean and standard deviation 
of known forest pixels from the same scene and uses multiple images to improve the forest/non-forest 
classification. Another algorithm, LandTrendr, by Kennedy et al., 2010 [46], used an automated 
trajectory-based image analysis that allows users to automatically identify and segment different pixel 
trends in land cover change through time. However, both of these algorithms do not define the 
disturbance type. Meigs et al., 2011 [48], used the normalized burn ratio (NBR) with LandTrendr to 
characterize Landsat spectral trajectories associated with defoliators and bark beetle disturbances, and 
related measurements to airborne surveys and ground-based measurements of insect-caused tree 
mortality in the same region as this study. They documented a number of different spectral trajectories 
that are associated with insect disturbance. However, they did not map the distribution nor report the 
detection accuracy with independent reference data using good practices [49]. 
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To investigate productivity declines in Pacific Northwest forests observed by GIMMS “g” AVHRR 
NDVI, we developed a series of questions. The overall goal was to advance the application of 
automated approaches to extract causal factors from LTSS and resolve the capabilities of detecting, 
monitoring and reporting with uncertainties the forest disturbances that have C-stock consequences. 
Our specific objectives were to answer the following questions: 

1. Are long-term productivity declines in Pacific Northwest forests observed with GIMMS “g” 
AVHRR NDVI an error or real? 

2. Can an image classification algorithm be used on annual anniversary LTSS with common 
spectral indices to extract forest disturbance type? If so, what is the change map accuracy  
with uncertainty? 

3. What were the dominant agents of disturbance at the coarse scale of AVHRR observations? 

Here, we intend to understand and identify dominant drivers of large-scale declines in GIMMS 
NDVI in Pacific Northwest forests. Many of diagnostic models that use AVHRR NDVI to estimate 
Net Primary Productivity (NPP) do not have Land-Cover Land-Use Change (LCLUC) incorporated in 
them. Disturbances, both natural and anthropogenic, are implicitly included through variability 
observed by AVHRR. Changes in forest cover area can have large impacts on modeled carbon  
fluxes [50], and integrating cover type dynamics could result in the greater accuracy of  
post-disturbance aboveground biomass density. Our objective was to evaluate if a simple and  
efficient algorithm developed for another U.S. forested ecosystem [24] is sufficient for providing 
disturbance type information for Pacific Northwest forests. We also highlight the importance of a good 
practice accuracy assessment to inform mapping uncertainty. 

2. Data and Methods 

2.1. Study Area 

Our study region, the Cascade Range of upland evergreen forests of Oregon and California, 
contains dense forest stands with some of the most productive vegetation within the United States [51], 
which are actively managed for timber production. Productivity declines during the 1980s have been 
assumed to be driven by anthropogenic and natural disturbance events, as they are stochastic in time 
and space throughout this region. Numerous events have been reported over the past 25 years, mostly 
due to increased post outbreak salvage logging rates, resulting in larger cut sizes and increased 
openness of the landscape [20]. Wide-scale disturbances have been reported by forest inventory 
assessments and other Landsat-based studies evaluating forest harvest and fire disturbance [21]. We 
believe these events were observed by historical NDVI declines in coarse-resolution AVHRR. Due to 
the complex nature of multiple disturbance events that have been observed at the coarse scale, we have 
attempted to understand and quantify these dynamics at the human Landsat plot-scale by defining the 
type of event. We extract the nature and trend of spectra upon specific forest cover types. We provide a 
map of our study region with data coverage in Figure 1. 
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Figure 1. Global Inventory Modeling and Mapping Studies (GIMMS) Normalized 
Difference Vegetation Index (NDVI) anomalies with a negative trend less than −0.05, for 
1982 to 1991 (black boxes), overlaid upon Landsat images displayed in a 4,3,2 RGB band 
combination for 1992. An aerial insect disturbance survey from 1980 to 1994 (purple and 
orange) and aerial photo accuracy assessment sites (yellow boxes) are shown. The lower 
right inset displays the 1992 National Land Cover Data (NLCD) for the region with a 
legend of cover types. 

 

2.2. AVHRR Data 

Bi-monthly AVHRR NDVI data were used from the GIMMS version “g” [12], because a consistent 
inter-calibrated record is needed to calculate reliable anomalies containing changes in the 
photosynthetic capacity of vegetation that impact the C-cycle. NDVI was calculated as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑁𝑁𝑁𝑁𝐴𝐴𝑁𝑁 =  �
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2 −  𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 +  𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1�

 (1) 

These data, mapped to an 8-km spatial resolution, have been processed to account for orbital drift, 
minimize cloud cover, compensate for sensor degradation, be consistent among many AVHRR 
instruments and correct for the effects of stratospheric volcanic aerosols [12,52,53]. Two steps of 
analysis were performed using these data, including: (1) calculation of anomalies; and (2) 
identification of similar bi-monthly NDVI trends with Landsat data. Anomalies were calculated in a 
similar manner to other studies, as the average growing season (May to September) value with a least 
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squares linear fit per-pixel from 1982 to 1991, with values excluded from analysis that do not meet the 
98% confidence interval fit [54,55]. The Pacific Northwest area was selected for study because: (1) it 
comprised a large contiguous forest region that had greater than 2000 km2 of forests with a negative 
NDVI trend less than −0.05; and (2) near annual Landsat 5 data exist, as well as aerial photo accuracy 
assessment data and aerial insect detection survey data (ADS) are available. 

2.3. Landsat Data 

Landsat 5 data were acquired from the United States Geological Survey (USGS) [56] for a six-
scene block, where a large concentration of AVHRR 8-km NDVI-negative 1982 to 1991 trends were 
present (Table 1). Selection focused on minimal cloud cover and peak growing season months. Data 
were orthorectified for time series land cover change analysis. We selected data from July, August or 
September from 1984 to 1995, resulting in 10 to 13 images per path row for analysis. Each image was 
processed in the following way: (1) Landsat Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) time series surface reflectance calculation [34,57]; (2) cloud and shadow screening 
building upon automatic cloud-cover assessment masks [58] output from LEDAPS; (3) spectral index 
generation of NDVI, tasseled cap (brightness, greenness and wetness), normalized burn ratio and a 
disturbance index; and (4) disturbance index dynamic characterization based upon its trajectory 
through time. 

Table 1. Landsat 5 images used in classification. 

Path Row 044029 044030 044031 045029 045030 045031 

Date 

5 July 1984 5 July 1984 5 July 1984 ∙∙∙ ∙∙∙ ∙∙∙ 
∙∙∙ 9 Aug. 1985 25 Aug. 1985 16 Aug. 1985 16 Aug. 1985 16 Aug. 1985 

12 Aug. 1986 12 Aug. 1986 12 Aug. 1986 19 Aug. 1986 19 Aug. 1986 16 Aug. 1986 
16 Sep. 1987 31 Aug. 1987 15 Aug. 1987 7 Sep. 1987 7 Sep. 1987 6 Aug. 1987 
2 Sep. 1988 1 Aug. 1988 1 Aug. 1988 9 Sep. 1988 24 Aug. 1988 24 Aug. 1988 
21 Sep. 1989 4 Aug. 1989 4 Aug. 1989 12 Sep. 1989 12 Sep. 1989 11 Aug. 1989 
8 Sep. 1990 8 Sep. 1990 8 Sep. 1990 14 Aug. 1990 30 Aug. 1990 30 Aug. 1990 

26 Aug. 1991 10 Aug. 1991 10 Aug. 1991 17 Aug. 1991 2 Sep. 1991 2 Sep. 1991 
28 Aug. 1992 28 Aug. 1992 ∙∙∙ 3 Aug. 1992 3 Aug. 1992 19 Aug. 1992 
31 Aug. 1993 31 Aug. 1993 31 Aug. 1993 ∙∙∙ 7 Sep. 1993 ∙∙∙ 
19 Sep. 1994 18 Aug. 1994 18 Aug. 1994 9 Aug. 1994 9 Aug. 1994 9 Aug. 1994 
21 Aug. 1995 5 Aug. 1995 5 Aug. 1995 13 Sep. 1995 13 Sep. 1995 12 Aug. 1995 

2.3.1. Landsat Index Generation 

We generated indices to evaluate the optical properties of disturbance, including: NDVI, tasseled 
cap (TC) (brightness 𝑇𝑇𝐶𝐶𝑏𝑏 , greenness 𝑇𝑇𝐶𝐶𝑔𝑔 , wetness 𝑇𝑇𝐶𝐶𝑤𝑤 ), normalized burn ratio (NBR) and a  
normalized disturbance index (DI'). These indices have been used to identify forest disturbances in  
other regions [59]. NDVI from Landsat was calculated as: 

𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑎𝑎𝐿𝐿 𝑁𝑁𝑁𝑁𝐴𝐴𝑁𝑁 =  �
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 4 −  𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎4 +  𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3�

 (2) 
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TC used coefficients from Crist and Cicone, 1984 [60], and were implemented for Landsat 5 
surface reflectance data. Transforming images to the TC principal components space aided image 
normalization, because weighted components are sensor specific and not scene dependent [61]. In our 
analysis, the third component, 𝑇𝑇𝐶𝐶𝑤𝑤, is considered the equivalent of shadow in a linear mixing model 
analysis and is orthogonal to 𝑇𝑇𝐶𝐶𝑏𝑏 . We use these orthogonal components to identify the forest 
disturbances that we are interested in, specifically insect outbreaks, logging and fire. 

Our DI' is based on the concept that a different spectral response of a regrowing forest stand following 
disturbance will have higher reflectance or 𝑇𝑇𝐶𝐶𝑏𝑏 and a lower reflectance of 𝑇𝑇𝐶𝐶𝑤𝑤 or shadows [62,63]. 
We first normalized 𝑇𝑇𝐶𝐶𝑏𝑏  and 𝑇𝑇𝐶𝐶𝑤𝑤  indexes by subtracting the mean and dividing by the standard 
deviation of the 75% most stable NDVI forest pixels per image date. Then, similarly to Hais et al., 
2009 [59], we calculated DI' as follows:  

𝑁𝑁𝑁𝑁′ =  𝑇𝑇𝐶𝐶𝑤𝑤 − 𝑇𝑇𝐶𝐶𝑏𝑏 (3) 

It has been noted that forest stands impacted by bark beetles are better detected using indices that 
enhance the SWIR wetness, as it emphasizes shortwave infrared reflectance and has been identified as 
a reliable indicator of both forest structure and forest structure change [64–66], and using DI' can 
enhance the spectral response of insect forest disturbances. Forest stands impacted by bark beetles 
have been detected using indices that employ reflectance information from the 1.55–1.75-µm and  
2.1–2.3-µm Landsat Thematic Mapper bands, and using DI' can better differentiate insect forest 
disturbances from logging [59]. 

To capture burn events, as frequently used in the literature [67], we use NBR, which has proven 
useful for identifying burn severity in a number of different biomes when a time series of Landsat is  
used [68,69]. NBR is derived as the difference between the near-infrared and shortwave infrared to 
capture leaf chlorophyll and soil moisture changes after a burn [70] and calculated from Landsat as:  

𝑁𝑁𝑁𝑁𝐴𝐴 =  
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 4 − 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 7
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 4 + 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 7

 (4) 

NBR has been used to identify insect outbreak by Meigs et al., 2011 [48], and the contrast in 
between NIR and SWIR bands is similar to the DI' used in other studies [30,71,72]. We note that NBR 
and DI' can have similar spectral trajectories and attempt to apply another approach to distinguish 
between burned area and insect outbreak. 

2.3.2. Landsat Forest Mask 

We delineated forest from agriculture through the simple mean of the time series threshold values 
on 𝑇𝑇𝐶𝐶𝑏𝑏 and NDVI, located in 1992 National Land Cover Database (NLCD) forest cover classes, by 
applying a similar approach as Vieira et al., 2003 [73]. A 𝑇𝑇𝐶𝐶𝑏𝑏 threshold value of greater than 3500 was 
derived from the mean forest 𝑇𝑇𝐶𝐶𝑏𝑏 from NLCD and removed young bright stands of forest less than  
3 years old as well as fallow agriculture. A NDVI threshold of less than 0.45 removed  
sparsely-vegetated areas and was derived from mean NLCD forest cover classes, as well. We applied 
these thresholds, because the 1992 NLCD does not account for changes in forest cover over our 1982 
to 1991 GIMMS NDVI anomaly study period. In addition, we used agriculture and wetlands classes 
from NLCD to exclude these areas from our analysis. 
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2.3.3. Cloud Masking 

We employed an automated cloud and cloud-shadow detection method for Landsat data that was 
successfully used in our previous study [24]. This approach largely avoided post-classification manual 
corrections for cloud and cloud-shadow artifacts and builds upon concepts developed in the prior 
automatic cloud cover assessment (ACCA) algorithm [57] to improve the discrimination of cloud and 
shadow on a per-pixel basis [58]. This method relies on information from multi-date imagery, and 
clouds were identified as deviations from the mean TC brightness and thermal band values through 
time for each Landsat pixel. Pixels where the brightness values were more than two standard 
deviations above the long-term mean and the temperature more than one standard deviation below 
were identified as cloud tops. The solar zenith angle was then used to determine the direction to cloud 
shadows. Pixels in the direction of cloud shadows that experienced brightness declines of more than 
one standard deviation relative to the long-term mean were identified as cloud shadow. A final filter 
was applied to each 3 × 3 moving pixel window, where the center pixel would only be classified as 
cloud or cloud shadow if more than half of the nine pixels in the sample window were also classified 
as cloud or shadow. This filter reduced spurious per-pixel errors. We also buffered defined cloud and 
shadow with a 5 × 5 moving pixel window to account for edge artifacts. This approach of using the 
standard deviation through LTSS works best if the data are as near to the anniversary date as possible to 
limit phenology and changes in solar azimuth. 

2.4. Landsat Disturbance Classification 

To understand disturbance dynamic type, which is relevant to the ecosystem long-term C pathway, 
we employed two primary spectral indices in forested regions. DI' was first used to define anomalous 
change in forest cover that could be induced by logging, fire or insect outbreak. The spectral trajectory 
derived from the Landsat stack of DI' we believe contains important information on disturbance type. 
Rapid declines in DI' from one year to the next we believe are typically logging or fire events; 
analogously sustained declines could be a result of forest thinning, insect outbreak or stress. We used 
this simple spectral vector approach to extract the disturbance dynamic type in an automated manner 
and to check its accuracy. We provide a simplified schematic of the process (Figure 2) and the 
hierarchical thresholds of our decision tree at each junction in the classification. 

∆𝑁𝑁𝑁𝑁′ = 𝑁𝑁𝑁𝑁′𝑦𝑦+1−𝑁𝑁𝑁𝑁′𝑦𝑦 (5) 

where (∆𝑁𝑁𝑁𝑁′) is equal to change in annual normalized disturbance index subtracted from one year 
�𝑁𝑁𝑁𝑁′𝑦𝑦� to the next (𝑁𝑁𝑁𝑁′𝑦𝑦+1). 

∆𝐿𝐿𝑑𝑑 =  ∆𝑁𝑁𝑁𝑁′ >  𝐿𝐿𝑡𝑡ℎ (6) 

where logging disturbance (∆𝐿𝐿𝑑𝑑) is equal to a change in annual normalized disturbance index (∆𝑁𝑁𝑁𝑁′) 
greater than an adjusted logging DI' threshold value (𝐿𝐿𝑡𝑡ℎ) determined from training data and ensemble 
iterations. Within the remaining Ld pixels, ∆NBR is used to determine if the event was a result of fire 
disturbance and represented by the following equation:  

∆𝑁𝑁𝑁𝑁𝐴𝐴 = 𝑁𝑁𝑁𝑁𝐴𝐴𝑦𝑦+1−𝑁𝑁𝑁𝑁𝐴𝐴𝑦𝑦 (7) 
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where (∆𝑁𝑁𝑁𝑁𝐴𝐴)  is equal to change in the annual normalized burn ratio subtracted from one year 
�𝑁𝑁𝑁𝑁𝐴𝐴𝑦𝑦� to the next (𝑁𝑁𝑁𝑁𝐴𝐴𝑦𝑦+1). 

∆𝐹𝐹𝑑𝑑 = (∆𝑁𝑁𝑁𝑁′ − ∆𝑁𝑁𝑁𝑁𝐴𝐴) >  𝑁𝑁𝑁𝑁𝐴𝐴𝑡𝑡ℎ (8) 

where fire disturbance (∆𝐹𝐹𝑑𝑑 ) is determined by ∆ DI' locations that have had a substantial ∆NBR 
beyond an estimated threshold (𝑁𝑁𝑁𝑁𝐴𝐴𝑡𝑡ℎ). ∆ DI' and the ∆NBR have similar values in logged and 
burned locations due to similar shortwave infrared reflectance. To reduce the amount of logging and 
fire disturbance agreement between indices that increased classification error, we applied a size 
threshold to NBR to capture large fire events greater than 10 hectares, which are relevant to modeling 
forest C emissions. We found that, due to the small patches of forest clear cuts in our study region and 
the lack of large fire events during our study period, as confirmed with Monitoring Trends in Burn 
Severity (MTBS), applying a threshold for patch size could be used as a tool for fire and harvest 
discrimination. MTBS mapping methods require analyst interpretation of burn perimeters and do not 
attempt to include small fires, less than ~200 hectares, as ~95% of burned area is captured when 
excluding those events [67]. Our threshold approach is specific to this region for this time period, as 
the disturbance regime in both size and frequency could render this simple filter ineffective. MTBS 
data also report that a minimal amount of burned area occurred in our study region over the 1984 to 
1995 period, and because of this, we focused our efforts on improving the detection and discrimination 
of insect outbreak and logging. 

Forest insect outbreak detection was applied with linear regression on a per-pixel basis in 
locations with declining over time. Prior studies have found ∆ DI' to be sensitive to insect  
outbreaks [71]. A DI' decline through time over a maximum interval of five years we designated  
as an insect outbreak. Our assumption is that this approach will efficiently distinguish insect outbreaks 
from fire and logging, which often have a strong decline within one or two years, followed by an 
extended recovery. This approach is limited to events that occur within multiple years and is dependent 
upon at least three successive years of DI' change; shorter duration events could be missed as the 
average mortality time from bark beetles in Colorado was three years [74]. To reduce computational 
time, regressions on the DI' were only run on pixels that had a decline of less than −750 and a slope 
(𝑆𝑆) of less than −150. Producing separate regressions based upon this metric allowed independent 
alteration of decision tree splits to optimize classification accuracy. 

We defined insect disturbance with a trajectory approach applying the following equation:  

∆𝑁𝑁𝐿𝐿 =  �∆𝑁𝑁𝑁𝑁′5 𝑦𝑦𝑦𝑦𝑦𝑦 < −750�  ∗  (𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎5 𝑦𝑦𝑦𝑦𝑦𝑦 < −150) ∗  (𝑆𝑆5 𝑦𝑦𝑦𝑦𝑦𝑦 < 𝑆𝑆𝑡𝑡ℎ) (9) 

where (∆Id) is a change in insect disturbance for a maximum five-year period. First, to reduce 
computation time, the change in DI' over time (∆DI'5 yrs) was defined as <−750. A linear regression 
was then fit to each pixel meeting this criterion. Pixels were classified as insect disturbed if the slope 
over time (𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎5 𝑦𝑦𝑦𝑦𝑦𝑦) was less than −150 with a significance (𝑆𝑆5 𝑦𝑦𝑦𝑦𝑦𝑦) below an ensemble threshold 
(𝑆𝑆𝑡𝑡ℎ) ranging from 0.01 and 0.05 increments. The date of disturbance is labeled as the last year in the 
decline sequence. Note that a limitation exists with this method, as pixels with less than three values 
per five-year interval are not computed. These pixels could be contaminated by clouds or cloud 
shadow. This method was applied incrementally for each Landsat stack (i.e., 1984 to 1988 and 1985 to 
1989). We established the change in slope values by using ancillary insect air survey data for training. 
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Figure 2. Chart illustrating the image classification procedure adapted from our previous 
study [24].  

 

We also found through initial accuracy assessment of preliminary outputs that determining salvage 
logging from natural disturbance was a critical component to enhancing accuracy assessment, because 
many locations had an initial disturbance signature followed by a rapid decline. Without a salvage 
logging class, many cleared sites were defined as insect outbreak. To account for this, we defined those 
events with the following equation: 

∆𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝐿𝐿𝐿𝐿 = (�𝐿𝐿𝑎𝑎 𝑁𝑁𝑁𝑁′ <
𝐿𝐿𝑡𝑡ℎ
2

) < 𝑆𝑆𝑡𝑡ℎ (10) 

where �∆𝐿𝐿𝑑𝑑𝑦𝑦𝑑𝑑𝑑𝑑𝑔𝑔�, salvage logged, has a decline half as great as the logging threshold. All salvage 
logging classed pixels were then later reclassified as logging disturbance for accuracy assessment purposes. 

Running Landsat Classifications 

We applied a threshold to determine an initial value to identify burn events in our decision tree 
classification and compared it to independent data for a few select regions. We first identified any 
obvious errors through a basic visual assessment to ensure that there was value in proceeding in more 
detail with an ensemble of calculations. We ran our classification with an ensemble mode, producing 
eight iterations by varying thresholds of ∆DI' (−3000 = moderate intensity, −2000 = low intensity) for 
observed spectral logging signatures, ∆NBR (−200 = low severity, −350 = moderate-low severity) for 
fire and p (0.01, 0.05) for systematic forest insect decline, in effect adjusting tree splits of change and 
no-change, and then compared the resultant classifications to our reference dataset to provide 
optimized accuracy assessment. This produced 48 classifications, from eight iterations over six 
path/rows, for error assessment with all classification ensembles sieved to 90 × 90 m to reduce speckle 
in classified outputs. We believe this approach justified decision tree splits statistically with reference 
data as opposed to introducing analyst biases in the generation of training data. This approach also 
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provides error bounds of classification accuracy. We then compared all six maps to our high-resolution 
(<2 m) air photo dataset. 

2.5. Independent Classification Evaluation Data 

2.5.1. Multi-Temporal High Resolution Air Photos 

LTSS studies are often restricted in their ability to have a comprehensive independent reference 
dataset, and many studies use the Landsat data itself with analyst interpretation to validate their 
classification [20,34,35]. This limitation is imposed because of the lack of a dense annual time series in 
other higher resolution remote sensing products. To alleviate this, we used a combination of historical 
aerial interpreted photographs with disturbance maps from land management agencies. Change or 
disturbance-based classifications require time series reference data from which change areas are 
automatically segmented or manually digitized by experienced image analysts [34,35,39]. We 
collected aerial photography from the National Historical Air Photo Archive (NHAP) for the early 
1980s and the National Agriculture Imagery Program (NAIP) for the early 1990s to validate the 
logging and fire disturbances that we detected. A subset of one NHAP/NAIP image stack was used for 
threshold training. We provide dates and image center coordinates in Table 2. Eight sites were selected 
with air photo stacks ranging from two to three images per site. Air photos were less than 2 m in 
resolution and were panchromatic and false color infrared. The air photo stack locations were limited 
by the availability of growing season imagery where multiple overlapping images existed. Partial 
disturbance found within a Landsat pixel was considered disturbed; if a mixture of disturbances was 
found within the Landsat pixel, the analyst determined the dominant agent. In mountainous regions 
with topographic variation >500 m, which is common in the Cascades, these data were orthorectified 
using Geomatica’s Orthoengine, with camera calibration information derived from the USGS to 
remove terrain spatial error artifacts that could be introduced in automated per-pixel reference cross 
comparisons [75]. 

2.5.2. Monitoring Trends in Burn Severity Data 

Additional datasets were also used when assessing time series-related classification products. 
Monitoring trends in burn severity data [76] were used as an independent source to confirm the 
accuracy of our fire disturbance classification. Monitoring trends in burn severity is a multi-year 
project designed to consistently map burn severity perimeters at 30 × 30 m for fires larger than 400 ha 
across the U.S. from 1984 through 2012. These data are based on Landsat Thematic Mapper data and 
use NBR in a similar manner as this study. The NBR index has been found to be a useful indicator to 
define the spatial distribution of burn severity and has been actively used in a number of long-term 
studies [69]. 

2.5.3. Aerial Detection Survey Data 

Due to the limited time record of aerial photography and the reduced ability to detect subtle  
multi-year insect disturbance, we used the Oregon Insect Disturbance Aerial Detection Survey Data 
(ADS) derived from the Forest Health Protection Pacific Northwest Region, United States Department 
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of Agriculture (USDA) Forest Service [77], which has mapped annual insect outbreak from 1980 in 
Oregon. These data are derived from aerial surveys in which interpreters hand-delineate outbreak areas 
in conjunction with site visits on the ground to confirm accuracy. The primary disadvantage of these 
data is that they are subjective with accuracy depending on the competence of the sketch mapper and 
the conditions under which the data were obtained [78,79]. These uncertainties limit the ability of  
these data to be useful in quantitative simulations of ecosystem productivity with insect disturbance.  
The assumption that the reference image used in photo interpretation is 100% correct is rarely  
valid [80–82]. It is critical that the accuracy of the reference information be considered together with 
the overall accuracy of the classification. 

Table 2. Aerial photo evaluation data. 

Landsat  
Path Row 

Lat. Lon. Air Photo ID Date 
Spatial 

Resolution 
Spectral 

Resolution 
Ortho* 

044029 
45.1 −119.3 NC1NHAP810117221 15 Aug. 1981 2 m CIR Y 

  NP0NAPP001224139 9 Sep. 1989 1 m B/W Pan Y 
  N10NAPPW07098135 29 June 1994 1 m B/W Pan Y 

044030 
43.6 −121.2 NC1NHAP820065108 29 July 1982 2 m CIR N 

  N10NAPPW07115152 20 July 1994 1 m B/W Pan N 
  N10NAPPW07115152 20 July 1994 1 m B/W Pan N 

044031 
42.3 −121.3 NC1NHAP820065153 29 July 1982 2 m CIR Y 

  N10NAPPW07109231 14 July 1994 1 m B/W Pan Y 

045029 
44.2 −121.6 NC1NHAP820093044 27 Aug. 1982 2 m CIR N 

  N10NAPPW07099156 29 June 1994 1 m B/W Pan N 
45.2 −121.9 NC1NHAP810113089 9 Aug/ 1981 2 m CIR N 

045030 

42.6 −122.6 NC1NHAP820079166 17 Aug. 1982 2 m CIR Y 
  N10NAPPW07180105 29 June 1994 1 m B/W Pan Y 

43.7 −122.7 NC1NHAP820055148 23 July 1982 2 m CIR Y 
  N10NAPPW07180241 29 June 1994 1 m B/W Pan Y 

045031 
41.2 −123.1 NC1NHAP830465142 9 Sep. 1983 2 m CIR Y 

  N10NAPPW06257137 24 Aug 1994 1 m B/W Pan Y 
* Orthorectified aerial photo; Lat. = Latitude; Lon. = Longitude; Yes (Y) and No (N). 

2.5.4. Good Practice Classification Accuracy Assessment 

We applied “good practice” recommendations for designing and implementing an accuracy 
assessment of our change maps and estimating area based on reference sample data. We applied three 
main considerations when we developed our classification reference routine sampling strategy, 
including: (1) sampling design; (2) response design; and (3) analysis. The primary components of the 
good practice classification evaluation that we undertook included: (i) implementing a sampling design 
that could achieve accuracy and area estimation while considering practical constraints on available 
ADS and air photo reference data; (ii) implementing a response design that provides sufficient spatial 
and temporal representation to accurately label each unit in the sample; (iii) implementing an analysis 
that is consistent with sampling and response design protocols; (iv) summarizing the accuracy 
assessment by reporting the estimated error matrix in terms of proportion of area, estimates of overall 
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accuracy, user’s accuracy (or commission error) and producer’s accuracy (or omission error); (v) 
estimating the area of classes based on the reference classification of sample units; (vi) quantifying 
uncertainty by reporting confidence intervals for accuracy area parameters; (vii) evaluating variability 
and potential error in the reference classification; and (viii) documenting the deviations from good 
practice that could affect the results. We attempted to account for all of these components in our 
accuracy assessment. More details on how to construct a good practice accuracy assessment can be 
found in Olofsson et al., 2014 [49], who have presented a synthesis of the current science of accuracy 
assessment and area estimation. 

The sampling design is the protocol for selecting the subset of spatial units that can be pixels and/or 
polygons that will form the basis of the accuracy assessment [49]. To define the sampling design, a 
subset area within an image scene is often selected [34]. Two-stage cluster sampling, sub-sampling 
within the original sample, is generally undertaken to reduce the amount of reference data  
required [83]. Sampling units for image classification are typically clusters of pixels used as a single 
sample (e.g., a 3 × 3 pixel block) to reduce the effect of registration error between the reference data 
and map locations [84–87]. We applied a stratified sampling design with a simple random automated 
sample and a systematic manual class-stratified sample to ensure that all change classes were 
adequately represented. We provide a diagram in Figure 3 that describes our workflow. 

We analyzed classification accuracy from values extracted from an error matrix with area 
proportions, overall accuracy (a combination of both user’s and producer’s accuracies, related to 
commission and omission errors) [88–90], report the area of each class as determined by the map and 
assess the impact of reference data uncertainty on the accuracy and area estimates. All of these 
strategies were implemented in our semi-automated accuracy assessment. 

Figure 3. Accuracy assessment workflow based upon “good practices” synthesized in 
Olofsson et al., 2014 [49]. 
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2.5.5. Automated Classification Evaluation 

Our reference routine was based on the analysis of both randomly-generated 90 × 90 m polygons 
and manually-selected polygons in pixels that we defined as forested within systematically-selected 
subset areas for each path/row-based image scene (Figure 1, yellow polygons; workflow in Figure 3). 
This approach ensured that classification output was checked for underrepresented forest change 
classes and ensured a distributed reference sample. Our sampling design consisted of five disturbed 
and five non-disturbed 90 × 90-m polygons randomly chosen to represent automatic reference 
selection and were visually assessed against aerial photographs to determine initial cover type and 
possible change. Stratified sampling was used to delineate ten polygons of cover type changes visually 
identifiable from aerial imagery; ten additional reference polygons were acquired for disturbance types 
that were not adequately represented. A final analysis of cover-type disturbance and date of change 
was determined from aerial photos with associated analyst confidence. Type of disturbance was broken 
into six categories: no change stable forest, logging, fire, insect, salvage logging and unknown, which 
could later be reclassified based on ADS and MTBS data. 

2.5.6. Manual Classification Evaluation and Statistical Analysis 

A number of parameters were added to the attribute table to summarize information from the 
classified image, such as the number of pixels associated with the major disturbance. In addition, 
information from insect outbreak and fire polygons was added to the attributes of the reference 
polygons with the percentage ranging for interpreters confidence for identifying the change type. This 
information aided in determining whether disturbances were associated with insect outbreak 
defoliation or fire, and the resultant tree mortality was visually identified in either the aerial photos or 
classified Landsat TM imagery. As a result, the visually-identified “unknown” class, reference 
polygons with low confidence for any change type were updated to known disturbance classes with 
ADS (>1 dead tree per hectare) and MTBS data acting as the ground truth. In addition the time series 
from ADS and MTBS were added as an attribute to reference data polygons to aid in determining 
associations with other disturbance classes. Reference polygons were converted to a raster and used to 
generate a per pixel summary of disturbance class for each reference polygon. All possible 
comparisons between disturbance classes of the classification and those identified from aerial 
photographs were populated and used to generate reference statistics. 

3. Results 

3.1. Drivers of AVHRR NDVI Declines 

Our automated classification approach revealed widespread disturbance dynamics similar to those 
reported in previous studies [20,91]. However, we discovered additional time series information 
through simple linear regression of DI’ to detect insect disturbance in many regions that had a  
long-term 1982 to 1991 decline in AVHRR NDVI (Figure 4). We selected classification iteration 8 to 
report our results. Our study region was comprised of 61,200 km2 of forested area, with 1984 to 1995 
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disturbed area totaling 13,417 km2 (22%). Within our forest defined area, logging accounted for  
8745 km2, insect outbreak totaled 4252 km2 and fire accounted for ~400 km2. 

Peak insect disturbance occurred in 1989 and covered ~3% percent of the forested area in that year. 
In Figure 5, we provide an example of the AVHRR 8 × 8-km sub-pixel heterogeneity observable with 
our Landsat classification. This subset is a part of the Deschutes National Forest on the eastern flank of 
the Cascade Range, which has many strato- or composite volcanoes. The center of the image is 
Newberry, a large shield-shaped volcano. The Landsat imagery is displayed as a 4,3,2 red, green and 
blue band combination. Heterogeneous patch logging of ponderosa pine forest (classified in green) 
intermixed with our assessment of insect outbreak (purple) displayed in the 1984 to 1995 change layer. 
All insect disturbance followed by salvage logging was reclassified as logging, and no fire disturbance 
was identified within this subset. The lower right images correspond to the region of air photo date 
overlap between National Historical Air Photo Archive (NHAP) and National Agriculture Imagery 
Program (NAIP) used for accuracy assessment. 

Figure 4. AVHRR NDVI time series for six path/rows with a mean of negative trends less 
than −0.05 indicted with green circles for growing season months May to September and 
the solid green line indicating the three-year running average. The number of AVHRR 
sampled pixels meeting the criteria is indicated by the title for each path row. Vertical grey 
lines indicate image dates, and the bimonthly standard deviation is shown in black circles. 
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Figure 5. Example of Landsat classification for a subset region of Path 44 Row 30, which covers one AVHRR pixel, displayed in 3D with the 
shuttle radar topography mission (SRTM) digital elevation model. The yellow inset box corresponds to the region of air photo date overlap 
between NHAP and NAIP used for accuracy assessment (Figure 1). 
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3.2. Ensemble Accuracy Assessment Error Matrices 

The ensemble approach removed user interpretation biases that can develop when deciding 
threshold values for decision tree splits through semi-automated accuracy assessment of all ensemble 
outputs. This approach allowed quantitative assessment of classification splits, while enhancing the 
understanding of commission and omission error in the disturbance type classification. We applied a 
two-value variance split parameter to reduce analyst accuracy assessment effort, although more splits 
could potentially further enhance our classification accuracy. Our approach had moderate 0.65–0.77 
user’s accuracy for harvest detection to low 0.19–0.42 user’s accuracy for insect outbreak with 
acceptable performance afterward (overall accuracy 0.74) (Table 3). 

Ensemble classification accuracy assessment revealed a distribution in the decision tree threshold 
splits that were important to improve accuracy. We selected the last iteration, which had thresholds of 
∆ DI' > −3000, ∆NBR of −350 and p < 0.05, because of how it represented map classes compared to 
other iterations. Overall user accuracy was 0.90 vs. 0.93 and producer accuracy 0.64 vs. 0.81. Details 
of our classification results are presented in Table 3 as an error matrix populated by estimated 
proportions of area. Figure 6 displays the commission and omission errors by cover-type as a 
percentage of the forested area domain. 

Table 3. Error matrix populated by estimated proportions of area for iteration eight, 
ensemble threshold for logging ∆DI >−3,000, fire ∆NBR >−350 and insect outbreak  
p < 0.05. 

  Reference     

  
Stable 
Forest 

Logging Fire Insect Total User’s Producer’s Overall 
Map Area 

(ha) 

Map 

Stable 
forest 

0.74 0.03 0.02 0.03 0.82 0.90 ± 0.02 0.95 ± 0.01 0.87 ± 0.02 5,046,744 

Logging 0.03 0.11 0.01 0.00 0.14 0.74 ± 0.03 0.76 ± 0.03  880,224 
Fire 0.00 0.00 0.01 0.00 0.01 1.00 ± 0.00 0.23 ± 0.07  41,949 

Insect 0.01 0.00 0.00 0.01 0.02 0.38 ± 0.05 0.21 ± 0.06  151,096 
Total 0.79 0.14 0.03 0.04 1    6,120,013 

Figure 6. Error summary reported as the percent of domain. 
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3.3. Index Performance by Disturbance Type and Cover Type 

The distribution of AVHRR negative trends by cover type was dominated by ponderosa pine (70%) 
and to a lesser degree by Douglas fir (18%) and fir spruce (12%). Most of the anomaly had strong 
negative values less than −0.05 with the distribution centering near −0.1 displayed in Figure 7. ∆DI' 
and ∆NBR appeared most sensitive to logging disturbances due to large changes in near-infrared 
reflectance. Fire disturbance had a strong signature, as well, which made it difficult to distinguish. The 
application of the segmentation spatial filter alleviated this problem substantially, as prior 
classification iterations before this method had introduced producers and users accuracies less than 0.5 
for these change classes. This is a primary limitation to this spectral vector approach; redundant 
information exists between indexes and capturing distinct disturbance dynamics requires additional 
spatial-temporal and spectral analysis. We acknowledge that our interpretation of insect disturbance is 
limited to a specific response that the dominant species of ponderosa pine has had after a wide 
outbreak of beetle infestation, as identified with aerial surveys. 

Figure 7. (A) Stacked histogram of forest type distribution by negative AVHRR anomaly 
rescaled to 1 × 1 km, with an inset pie chart of the distribution of forest cover type with an 
AVHRR anomaly of less than −0.05. 

 

Air survey data also reported spruce budworm outbreak in the region. Insect disturbance type could 
not be distinguished in Landsat with our approach, and their signal alone or in combination impacted 
the DI’ signal by an unknown amount. This approach may or may not be consistent with other forest 
types or other types of insect disturbance. We provide an example of our classification with accuracy 
assessment data in Figure 8. 
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Figure 8. Example of classification evaluation with high-resolution air photo data and air survey data located in the orange box displayed in 
Figure 1. 
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3.4. Spatial Disturbance Type Trends 

Our annual Landsat time series classifications revealed a reduction in logging from 1984 to 1995. 
Logging and burned area determinations rely on ΔDI' and ΔNBR. The similarities of these indices in 
the shortwave infrared limit the ability to distinguish between burned area and harvest. NBR and DI' 
are highly correlated (R2 = 0.72‒0.77, p < 0.001), as found through a random sample of 10,000 pixels 
from Path 45 Row 31 for each year in the 1985 to 1994 time series. The abrupt nature of these events 
with an annual record limited our ability to differentiate burned area from logging with this algorithm. 
Insect disturbance cannot be classified prior to 1988, because three of five successive years are needed 
for the regression slopes. We were limited to the Landsat record and did not extend our analysis back 
to the multi-spectral scanner 1972 to 1982 period, because tasseled cap wetness cannot be calculated 
from these earlier data. We found a measure of agreement between our estimated insect outbreak areas 
with Bureau of Land Management (BLM) data, although their estimates indicated that 60% of the 
BLM forested area was affected from 1984 to 1995. 

4. Discussion 

We quantified forest disturbances from harvest, fire and insect outbreak in a block area of six 
Landsat scenes in Oregon and Northern California. Co-variation of ΔNBR and ΔDI' results from 
similar spectral reflectance in near-infrared and shortwave infrared Landsat bands limited the ability to 
distinguish between fire and logging disturbances. Similar large declines in leaf chlorophyll and 
shadow variations occur from harvest and burn disturbance, which make it difficult to distinguish 
between events. We could discriminate between fire and clear-cut harvest disturbance types with a  
10-ha spatial filter, because most fires in our study area were above this size threshold, as found with 
monitoring trends in burn severity data, while few logged sites were this size or larger. We believe we 
achieved a low producer’s accuracy of 0.23 ± 0.07 for burned area because of the similar spectral 
signal for ΔDI' and ΔNBR in near-infrared wavelengths. Forests in our study area affected by beetle 
outbreaks were defined with Landsat spectral bands and confirmed through ancillary data. Our low 
accuracy (user’s 0.38 ± 0.05, producer’s 0.21 ± 0.06) for insect disturbance we believe indicates that 
we are not capturing events in LTSS that were found in ADS; also, these events could be missed in the 
temporally sparse ~2-m air photo reference data. More work is needed to understand if a more dense 
LTSS record can capture post-outbreak insect disturbance. Future studies should investigate  
inter-annual needle color change to track the progression of insect outbreak, and this may be possible 
with a virtual constellation approach of merging records from Landsat 8 and Sentinel 2. Unfortunately, 
the Landsat record was not dense enough over the 1984 to1995 period for these path/rows to apply  
this approach. 

We found that the GIMMS “g” NDVI record captures forest disturbances in the Pacific Northwest, 
primarily due to stand clearance events, which have large changes in near-infrared reflectance. We also 
found the ability of AVHRR to detect insect disturbance. We do not directly evaluate complex 
cascading events, such as insect damaged stands susceptible to fire disturbance, although we have 
implemented a salvage logging component, which reduced classification errors between insect outbreak 
and logging [92]. Future efforts could evaluate temporal vectors for these types of events. Insect 
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outbreaks that cause mortality are important ecosystem state variables that need to be accounted for in 
remote sensing observations that are integrated in modeling studies of forest C fluxes. 

We observed the growth of a forest disturbance trend at the 30-m scale that invoked a negative 
AVHRR NDVI trend at the 8-km scale. The productivity trend was apparent when the growing season 
time series of Landsat is available to understand the spatial heterogeneity of disturbed and undisturbed 
stands at the 8-km scale. Disturbance heterogeneity is compounded because of reoccurring events and 
the growing extent of the disturbed area in the late 1980s into the early 1990s. We added a salvage 
logging class after we found that many forested pixels classified as insect disturbance later had a rapid 
decline in DI’ that is indicative of salvage logging. This was necessary because of the dynamic 
interaction of disturbances in this region. If we did not include a disturbance change class, our 
mapping accuracies for the logging stratum would be greatly reduced. Oregon has a dense archive, 
unlike our previous efforts in Wisconsin [24], but the overall accuracy did not change (an overall 
accuracy for both studies >75%). Multiple disturbance agents were identified, including insects that 
reached outbreak populations, causing forest damage and mortality. We found insect damage or 
defoliation to be a widespread disturbance agent that cannot be distinguished between the two with a 
LTSS ΔDI', and we believe time series density has a direct impact on our results. Our low accuracy for 
insect outbreak could be due to our approach also capturing stress from climate, acid deposition, 
pathogens, etc., and the difficulty of identifying multiple types of insect outbreak in panchromatic 
imagery. The severity of the disturbance must be great enough to impose a multi-year change in 
surface reflectance with the statistical trend change approach. Image compositing and other more 
recent complex approaches by Brooks et al., 2013 [93], that use more multi-temporal Landsat data 
could prove useful in detecting degradation, thinning or insect defoliation events. 

We found multiple LTSS path/rows where a strong long-term negative AVHRR NDVI anomaly 
existed, and our methods captured disturbance dynamics well, because of the strong spectral signatures 
of mortality and stand clearance. However, distinguishing between bark beetle and budworm 
defoliation impose additional mapping problems when using LTSS to define disturbance agents. One 
potential solution would be implementing multi-temporal high-resolution commercial data to map 
individual tree crowns through time. This has been successfully done by Wulder et al., 2008 [92], for 
monitoring mountain pine beetle mortality. Future studies could utilize an archive of commercial  
high-resolution data with LTSS to identify which insect outbreak types have discernible multi-temporal 
signals in LTSS. This has become more of a possibility with no-cost access to U.S. commercial  
high-resolution imagery by U.S.-funded researchers [93] and with WorldView-3 satellite, which has 
eight ~1-m multispectral bands and twelve 4-m shortwave infrared bands. The enhanced number of 
spectral bands through the shortwave infrared and ~1-m resolution of visible bands could provide the 
sub-pixel Landsat resolution information needed to distinguish disturbance type on a stem-by-stem 
basis. 

5. Conclusions 

A majority of the 1982 to 1991 GIMMS “g” AVHRR NDVI decline in the Pacific Northwest 
existed in forests, and we believe that a progressive increase of the clear cut area and insect 
disturbance at Landsat resolution reduced the AVHRR NDVI signal. We initially had three questions 
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when we undertook this study. First, were the declines in AVHRR NDVI an error or real? From our 
LTSS classification results, we found widespread disturbance from logging and insect outbreak that 
induced forest stand mortality followed by salvage logging. A large proportion of forest disturbance in 
the region occurred during the negative AVHRR NDVI trend. Second, can an algorithm be used on 
annual Landsat time series data to extract forest disturbance type? We found that our approach can 
capture stable undisturbed forest and harvest for multiple path/rows, but only harvest events have 
adequate accuracy in this region using this approach. Fire disturbance was minimal in this region over 
our period of study and could not be easily distinguished from logging with DI’ and NBR. Widespread 
insect infestation was observed with airborne sketch mapping surveys, but not readily captured in our 
disturbance classification due to the variation in outbreak intensity. An increased defoliated area and/or  
insect-induced mortality could reduce NDVI through the reduction of leaf area and increased 
background soil reflectance. This result we believe was due to the difficulty in classifying multiple 
types of insect disturbance in temporally-sparse air photo classification evaluation data. BLM air 
surveys suggest our estimate to be low, but it is known these data overestimate the insect disturbed 
area. Third, what dominant disturbance agent caused the NDVI decline at the coarse scale? We found a 
combination of disturbances from clear cut harvest, insect outbreak-induced mortality and burn scars 
in patches of a heterogeneous landscape and suspect that they all have combined to reduce the  
large-scale productivity of forests in the Pacific Northwest from 1982 to 1991. Our results for overall 
accuracy are comparable to our previous study in the Laurentian forests in Minnesota and  
Wisconsin [24], although this region has had NDVI recovery over the 1990s and 2000s, and it appears 
as though an annual anniversary LTSS record does not substantially increase classification accuracy 
for insect outbreak, as our trend approach may be capturing other disturbances that have imposed 
forest stress. 

We believe our approach is important to future forest disturbance mapping studies, as it provides a 
robust area-based accuracy assessment and implements a stratified sampling design using air photo 
reference data that uncovered the limitations of this approach for mapping forest disturbances. Most 
modeling studies use static forest land cover dynamics, and our method provides the means to include 
location-specific disturbance information that could improve terrestrial biogeochemistry models. More 
research is needed to understand the spatial temporal signatures in LTSS for different disturbances, 
forest types and regions. We demonstrated the difficulty of transferring change attribution methods to 
other ecosystems and found that this has implications for the development of large-scale automated 
detection/attribution approaches that are applied over a range of disturbance types and ecosystems. The 
accuracy of mapped disturbance information provided to C modeling could vary from ecosystem to 
ecosystem if the same approach is applied. Annual Landsat monitoring is now practical for large 
forested areas due to new data policies and improved computational resources. Combining coarse 
resolution remote sensing as a “hotspot” detector with temporally-dense Landsat data to understand the 
disturbance dynamics could potentially reduce large C-cycle uncertainties that result from static forest 
cover information used in models [50]. The high spatial and temporal specificity that Landsat data 
provides on forest cover extent could also improve our ability to estimate the C content of forests when 
combined with LiDAR and SAR (synthetic aperture radar) data. 
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