https://ntrs.nasa.gov/search.jsp?R=20150019911 2019-08-31T06:07:19+00:00Z

Conjunction Assessment Risk Analysis

Trending in Pc Measurements via a Bayesian Zero-Inflated Mixed Model

Jonathon Vallejo, Matthew Hejduk, James Stamey 25th ISSFD OCT 2015

- **Two satellites predicted to come within close proximity of one another**
	- Usually a high-value satellite and a piece of space debris
- **Moving the active satellite is a means of reducing collision risk**
	- But reduces satellite lifetime, perturbs satellite mission, and introduces its own risks
- **So important to get a good statement of the risk of collision in order to determine whether a maneuver is truly necessary**

• **Two aspects of risk statement**

- Calculation of the Probability of Collision (Pc) based on the most recent set of position/velocity and uncertainty data for both satellites
- Examination of the changes in the Pc value as the event develops
	- Events in principle should follow a canonical development (Pc vs time to closest approach (TCA))
	- Helpful to be able to guess where the present and future data point fits in the canonical development in order to guide operational response

- **Conjunction usually first discovered 7 days before TCA**
	- Covariances large, so typically Pc below maximum
- **As event tracked and updated, changes to state estimate are relatively small, but covariance shrinks**
	- Because closer to TCA, less uncertainty in projecting positions to TCA
- **Theoretical maximum Pc encountered when 1-sigma covariance size to miss distance ratio is 1/√2**
	- After this, Pc usually decreases rapidly
- **Behavior shown in graph at right**
	- X-axis is covariance size / miss distance (Mahalanobus distance)
	- Y-axis is log $_{10}$ (P $_{\rm c}$ /max(P $_{\rm c}$))

• **Information extremely helpful to flight safety operations:**

- Has the Pc peak been reached?
	- Future Pc values will be only less serious than what has already been observed
	- If observed values not high enough to take action, then event severity reduced
- Is a presently high Pc likely to fall off by the "maneuver commit point"?
	- Maneuver commit point is time before TCA by which maneuver plans need to be completed and commands sent
	- If reasonable suspicion that Pc will fall off, then events close to remediation threshold less worrisome and need not be worked actively

• **Pc trend models that can answer these questions will contribute significantly to CA operations**

Previous Modeling Effort: Pc Peak Prediction

- **Vallejo, Hejduk, and Stamey 2014 (AAS ASC, Vail, CO)**
- **Modeled Pc time history as inverted parabola**
	- Bayesian framework with informative priors, taken from training dataset
	- Parabolic fit of event data to present given by posterior distribution, calculated through Markov Chain Monte Carlo (MCMC) techniques
- **Used to answer simple question of whether Peak Pc has passed**
	- Correct about 70% of time when tested against entire 2014 dataset
	- Correct about 60% of time against more challenging historical scenarios
- **Not fantastic, but not unpromising results from very simple model**
- **Prompted investigation of more sophisticated model to try to improve performance**
	- Try to predict the actual Pc value at a future point
		- Could be used to decide to cease active working of certain events

- **Dependent variable is log10 value of Pc**
	- Significant changes in Pc on the "order of magnitude" level, thus $log_{10}Pc$
	- Need to address problem of very small and 0 values for Pc
	- For purposes of operations Pc values "essentially 0" when less than 1E-10
		- Small values of Pc can thus be "floored" at 1E-10
		- Long trains of leading or trailing 1E-10 values can also be eliminated from dataset; really just a function of when updates happen to occur.

• **Independent variable is time before TCA (usually in fractional days)**

- Canonical behavior curve uses independent variable as ratio of covariance size to miss distance
- Problematic independent variable for model
	- Not monotonic with time (but it does correlate at least moderately to time)
	- Need temporal independent variable in order to map to operational timelines
- Thus, use time before TCA as independent variable for model

- **Usual choice for bounded random variables is Beta distribution**
	- Because $log_{10}P_c$ values floored at -10, have bounded $log_{10}P_c$ values between -10 and 0
- **When scaled to (0,1) interval, -10 values will become zeroes**
- **Unmodified beta distribution cannot actually accommodate zero values**
	-

values
\n– Extension to allow this creates a "zero-inflated" beta distribution:
\n
$$
f(y | \mu, \phi, p) = (1 - p) \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1 - \mu)\phi)} y^{\mu\phi - 1} (1 - y)^{(1 - \mu)\phi - 1} + pI_{[0]}(y)
$$

- Core portion of distribution is first term
- Indicator function is second term (sets value equal to zero)
- P is the probability that the distribution will yield a zero

19.1 What about
$$
\mu
$$
 and ρ ?
\n
$$
f(y | \mu, \phi, p) = (1 - p) \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} y^{\mu \phi - 1} (1 - y)^{(1 - \mu) \phi - 1} + p I_{[0]}(y)
$$
\n
$$
\cdot
$$
 These parameters, which express the mean and the zero-inflation probability, can be single parameters or linear functions
\n• In a mixed-model framework, they can also include random elements – Better way to specify overall trend yet random effects for each event
\n• Trial runs with training dataset indicated that a second-order linear model with a random intercept (constant) produced best results
\n(minimum deviance; see paper)
\n• Parametriced functions for μ and ρ are thus as follows:
\n
$$
\log \left(\frac{\mu_{ij}}{1 - \mu_{ij}} \right) = \beta_0 + \beta_i t_{ij} + \beta_2 t_{ij}^2 + b_i \qquad \log \left(\frac{p_{ij}}{1 - p_{ij}} \right) = \alpha_0 + \alpha_i t_{ij} + \alpha_2 t_{ij}^2 + a_i
$$
\n**?**

- **These parameters, which express the mean and the zero-inflation probability, can be single parameters or linear functions**
- **In a mixed-model framework, they can also include random elements**
	- Better way to specify overall trend yet random effects for each event
- **Trial runs with training dataset indicated that a second-order linear model with a random intercept (constant) produced best results (minimum deviance; see paper)** What about μ and p ?

(y | μ , ϕ , p) = (1 - p) $\frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)}$ y^{(ϕ -1} (1 - y)<sup>(1- μ) ϕ -1</sub> + $pI_{[0]}(y)$

These parameters, which express the mean and the zero-inflation

in a mixed-model fram</sup> **What ak**
 $\frac{\Gamma(\phi)}{(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1}(1-y)$

th express the mean and the z

le parameters or linear function

work, they can also include rate and the z

rall trend yet random effects for each

dataset indicated that a *f* (**y** | μ , ϕ , p) = (1 - p) $\frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)}$ $y^{(\psi_{0-1}}(1-y)^{(1-\mu)\phi_{0-1}} + pI_{[0]}(y)$
 These parameters, which express the mean and the zero-inflation
 probability, can be single parameters or linear f What about μ **and** p **?**
 $= (1-p) \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1}(1-y)^{(1-\mu)\phi-1} + pI_{[0]}(y)$

neters, which express the mean and the zero-inflation

can be single parameters or linear functions

nodel framework, they can also **What about** μ **and** p **?**
 $\frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)}$ $y^{\mu\phi-1}(1-y)^{(1-\mu)\phi-1} + pI_{[0]}(y)$

ich express the mean and the zero-inflation

igle parameters or linear functions

nework, they can also include random elements

vera
- **Parameterized functions for** *μ* **and** *p* **are thus as follows:**

$$
\log\left(\frac{\mu_{ij}}{1-\mu_{ij}}\right) = \beta_0 + \beta_1 t_{ij} + \beta_2 t_{ij}^2 + b_i \qquad \log\left(\frac{p_{ij}}{1-p_{ij}}\right) = \alpha_0 + \alpha_1 t_{ij} + \alpha_2 t_{ij}^2 + a_i
$$

- **We solve not for single parameter values but the posterior density of the parameters given the data**
	- Suppose we have a model with parameter β
	- $-p(\beta|y) \propto p(y|\beta) * p(\beta)$
	- Thus, we specify a prior distribution for the parameter β p(β), update it with the data that we have seen p(y|β), and get an updated probability distribution of beta given the data p(β|y).
- **Prior (here historical) information included through the use of informative prior distributions**
- **Posterior density is thus combination of trends derived from prior information and event-specific information up to the point from which predictions are to be made, as in the following example scenario**
	- Informative priors come from last years' conjunction information database
	- Current event information is actual Pc values from 7 through 4 days to TCA
	- Posterior distribution prediction is of the Pc value at 2 days to TCA
- i. solutions.

Let Y_{ij} be the predicted log(P_c) at the j^{th} time for the i^{th} event, scaled **to be between 0 and 1.**

Model Parameter Assigned Distributions
\n
$$
Y_{ij} \text{ be the predicted } log(P_c) \text{ at the } j^{th} \text{ time for the } i^{th} \text{ event, scaled}
$$
\nbe between 0 and 1.
\n
$$
Y_{ij} \sim f(y_{ij} | \mu_{ij}, \phi_{ij}, p)
$$
\n
$$
log \left(\frac{\mu_{ij}}{1 - \mu_{ij}} \right) = \beta_0 + \beta_i t_{ij} + \beta_2 t_{ij}^2 + b_i \qquad log \left(\frac{p_{ij}}{1 - p_{ij}} \right) = \alpha_0 + \alpha_i t_{ij} + \alpha_2 t_{ij}^2 + a_i
$$
\n
$$
b_i \sim N(0, \tau_b) \qquad a_i \sim N(0, \tau_a)
$$
\n
$$
\tau_b \sim Gamma(0.001, 0.001) \qquad \tau_a \sim Gamma(0.001, 0.001)
$$
\n
$$
\beta_k, \alpha_k \sim Normal(0, 1) \quad \text{for } i = 1, 2, 3
$$
\n
$$
\text{solutions}
$$

$$
\beta_k
$$
, $\alpha_k \sim Normal(0,1)$ for $i = 1, 2, 3$

Mixed Model Comments
\n
$$
f(y | \mu, \phi, p) = (1 - p) \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} y^{\mu \phi - 1} (1 - y)^{(1 - \mu) \phi - 1} + pI_{[0]}(y)
$$

\n• μ and *p* both have a linear and a random portion
\n– Linear portion (here quadratic) expresses trends across entire dataset
\n– Random portion expresses observed behavior of current event in progress
\n• μ specifies
\n– The model for μ is a model for the average of the log(PC) values that fall
\n*between* -10 and 0.
\n• A positive random intercept indicates that one is more likely to see a higher than
\nusual log(PC) value in the subsequent days.
\n• *p* specifies
\n– The model for *p* is a model for the probability of observing a log(PC) equal to
\n–10 (i.e. a PC equal to 0).
\n• A positive random intercept indicates that one is more likely to observe a log(PC) of
\n–10 than usual.

• *μ* **and** *p* **both have a linear and a random portion**

- Linear portion (here quadratic) expresses trends across entire dataset
- Random portion expresses observed behavior of current event in progress

• *μ* **specifics**

- $-$ The model for μ is a model for the average of the log(Pc) values that fall *between* -10 and 0.
	- A positive random intercept indicates that one is more likely to see a higher than usual log(Pc) value in the subsequent days.

• *p* **specifics**

- The model for *p* is a model for the probability of observing a log(Pc) equal to -10 (i.e. a Pc equal to 0).
	- A positive random intercept indicates that one is more likely to observe a log(Pc) of -10 than usual.

\n**Q and t Comments**\n

\n\n
$$
f(y | \mu, \phi, p) = (1 - p) \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1 - \mu)\phi)} y^{\mu\phi - 1} (1 - y)^{(1 - \mu)\phi - 1} + pI_{[0]}(y)
$$
\n

\n\n**•**\n\n**φ controls the variance in the data**\n

\n\n- This parameter found to perform best as a constant, thus no linear model associated with it\n

\n\n– Model naturally accommodates the changing variability, so no extra model\n

\n\n**•**\n\n**Model uses only time (t) as a covariate**\n

\n\n- Thus only three pieces of information informing the model:\n

\n\n1. How high/low the log(Pe) values are relatively to the average\n

\n\n2. How many log(Pe) values equal to -10 have been observed relative to the average\n

\n\n3. How unusual these observations are at the particular moment in time they were taken (relative to TCA)\n

\n\n**•**\n

\n\n**•**\n

• *φ* **controls the variance in the data**

- This parameter found to perform best as a constant, thus no linear model associated with it
- Model naturally accommodates the changing variability, so no extra model needed for *φ*

• **Model uses only time (***t***) as a covariate**

- Thus only three pieces of information informing the model:
	- 1. How high/low the log(Pc) values are relatively to the average
	- 2. How many log(Pc) values equal to -10 have been observed relative to the average
	- 3. How unusual these observations are at the particular moment in time they were taken (relative to TCA)

- **Employed 2013 NASA conjunction data for 500-750km orbits**
	- "Training" dataset

• **Used quite uninformative priors**

- Large variances so that both common and extreme data can be represented
- Allows full dataset to influence results
- **Posterior distributions should thus incorporate statistical properties of the actual data**
	- How training dataset behaves and develop over time a template of what to expect from future data
- **These posterior distributions become the prior distributions for the model when it is run against validation data**

• **Advantages of model:**

- Random intercept used to quantify how much log(P_c) values from any event deviate from the overall mean
	- For instance, if an event had a really high value of *aⁱ* (the random intercept in the linear model for *p*)*,* we would interpret this as a higher than average chance of getting a zero during this event
- The model more closely follows the overall shape of the data. The model includes the *p* parameter, which can be directly interpreted as the probability of getting a $\mathsf{P}_{\rm c}$ of 0 (or a log($\mathsf{P}_{\rm c}$) of -10)
- The beta model accommodates non-constant variance
	- If the log(P_c) values are closer to 0 (*i.e.,* the P_c values are closer to 1), then the variance is relatively small
	- Likewise, if the log(P_c) values are closer to -10 (*i.e.,* the P_c values are closer to 0), then the variance is relatively large
- The model can easily be made more conservative. If one wants to upwardly bias the predictions, simply choose the 75th or 97.5th quantiles of the random intercept instead of its mean

- **Disadvantages of model**
	- As a result of the shape of the overall mean, the maximum predicted log(P_c) value is always at 7 days from TCA
	- This drives how model can be deployed most usefully
		- Not helpful method for peak prediction
		- But well suited to predict drop-offs in Pc value
		- As such, should be able to identify cases that are likely to become non-threatening
		- Will not model truly anomalous Pc progressions

- **Simplest method for predicting future of time-series events for which there are historical data**
	- If unfolding event is in a certain historical quantile at a given time *t*, then it can be expected to remain in the same quantile at time t_{n}
	- $-$ Training dataset can thus be used to estimate Pc at t_{n}
- **Represents, to first order, how many analysts intuitively make decisions**
	- Event of a certain severity at present time is likely to be of an expeted different severity at a given future time
- **Has an attractive simplicity**
- **Also has certain drawbacks**
	- No real theory standing behind it—why would it be true that historical Pc histories would be stratified in this way?
	- No inherent prediction intervals because no distributional assumptions made
		- These must come from bootstrapping techniques

• **If Beta model cannot outperform this, then relevance questioned**solutions

- **2014 NASA CA conjunction message database**
- **LEO2 orbits (500-750 km, near-circular primaries)**
- **Early coverage assessment for beta model revealed difficulties**
	- 86% actual coverage for 97.5% prediction
	- Suggested data stratification as a remedy
- **Data divided into three strata, based on operational severity**
	- Events with Pc > 1E-04 at three days before TCA ("red" events)
	- Events with Pc between 1E-07 and 1E-04 at three days before TCA ("yellow")
	- Events with Pc < 1E-07 at three days before TCA ("green")
- **Coverage improves substantially when different strata processed separately**
	- For example, red dataset produces coverage levels of 97.6% and 97.4% for beta and look-up models, respectively—both excellent
	- Stratified datasets used for remainder of validation activities

- **Shown in graph at right**
- **Look-up model has desired bimodality**
	- Peak for prediction of high Pc and second peak for prediction of drop-off to zero
	- However, bootstrap technique produces physically impossible results (Pc>1)
- **Beta model remains within desired bounds**
	- However, not well poised to predict dropoffs to zero, as very little probability density in this region

- **Both models have positive bias**
	- Nature of data: cannot predict a value below -10, so overpredict
- **Quantile model more symmetric and bounded**
- **Beta model has systematic effects and weaker performance**
	- Somewhat disappointing result
- **Both models struggle with predicting the drop-offs to zero**
	- Although quantile model performs more strongly

- **Receiver Operating Characteristic (ROC) curves useful for evaluating decision support classification algorithms**
- **True Positive event: here defined as the correct identification of an event where the Pc will remain high**
- **False Alarm event: here defined as the incorrect flagging of a dropoff event as a "remaining high" event**
- **Missed Detection event: 1 – True Positive level**
- **Plots give ROC CDF as a function of upper percentile of both beta and look-up models**

- **At lower percentile levels, look-up model performance superior**
	- More true positives with lower false alarm rate
- **At upper percentiles, situation reversed**
- **Operational utility requires a very high true positive rate**
	- Minimizes Type II errors
- **Thus, look-up model not useful here**
- **Beta model could be useful, but false alarm rate (Type I errors) very high**

- **Peak identification capability (from previous effort) provides limited but palpable benefit**
- **Quantile approach provides small utility for red dataset**
- **Beta approach provides small utility for yellow dataset**
- **Emerging conclusion**
	- Trending approaches can provided limited additional operational information
	- Not likely to be a breakthrough or transformative technology for conjunction assessment
	- Will need to determine proper role of such tools within operational decision support framework

• **Future work**

- One more trending method to explore—functional/longitudinal data analysis
- Omnibus evaluation of all four methods investigated

