
Possible Space-based Gravitational-wave Observatory Mission Concept

Jeffrey C. Livas¹, for the Gravitational-wave Mission Concept Development Team ¹Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD USA

Abstract

The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This poster will discuss a possible mission concept, Space-based Gravitational-wave Observatory (SGO-Mid) developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

Mission Concept Development Team

Study Manager: Ken Anderson, NASA/GSFC Study Scientist: Tuck Stebbins, NASA/GSFC

Community Science Team

Rainer Weiss, MIT (Co-chair) **Edward Wright, UCLA (Co-chair)** Peter Bender, University of Colorado Joan Centrella, NASA/GSFC Neil Cornish, Montana State University Jens Gundlach, University of Washington Ronald Hellings, Montana State University Guido Mueller, University of Florida Holger Mueller, U. C. Berkeley Thomas Prince, Caltech

Science Task Force

Neil Cornish, Montana State University (Chair) John Baker, NASA/GSFC Matthew Benacquista, University of Texas Brownsville Emanuele Berti, University of Mississippi Curt Cutler, NASA/JPL Ron Hellings, Montana State University Ryan Lang, Washington University Shane Larson, Utah State University Tyson Littenberg, NASA GSFC Jeffrey Livas, NASA/GSFC Sean McWilliams, Princeton University James Ira Thorpe, NASA/GSFC Michele Vallisneri, NASA/JPL

Core Team

Petar Arsenovic, NASA/GSFC John Baker, NASA/GSFC Peter Bender, University of Colorado Edward Brinker, NASA/GSFC Jordan Camp, NASA/GSFC John Crow, NASA/GSFC Curt Cutler, NASA/JPL Glenn deVine, NASA/JPL Robert Gallagher, NASA/GSFC William Klipstein, NASA/JPL Steve Leete, NASA/GSFC Jeff Livas, NASA/GSFC

Kirk McKenzie, NASA/JPL Guido Mueller, University of Florida Juergen Mueller, NASA/JPL Kyle Norman, NASA/GSFC Kenji Numata, NASA/GSFC Babak Saif, NASA/GSFC Robert Spero, NASA/JPL James Ira Thorpe, NASA/GSFC Michele Vallisneri, NASA/JPL Brent Ware, NASA/JPL Gary Welter, NASA/GSFC John Ziemer, NASA/JPL

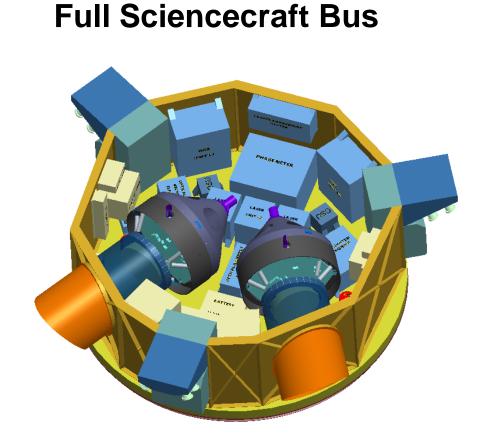
Final report: http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php

Mission Concept Comparison

		This poster	Best
Parameter	NGO	SGO Mid	LISA
Measurement arm length	1 x 10 ⁶ km	1 x 10 ⁶ km	5 x 10 ⁶ km
Number & type of spacecraft	1 corner (2 optical assemblies, 2 end (single optical assembly	3 corner (2 optical assemblies)	3 corner (2 optical assemblies)
Number of measurement arms, one-way links	2 arms, 4 links	3 arms, 6 links	3 arms, 6 links
Constellation	Vee	Triangle	Triangle
Gravitational-wave polarization measurement	Single instantaneous polarization, second polarization by orbital evolution	Two simultaneous polarizations continuously	Two simultaneous polarizations continuously
Orbit	Heliocentric, earth-trailing, drifting-away 9° - 21°	Heliocentric, earth-trailing, drifting-away 9° - 21°	22° heliocentric, earth-trailing
Trajectory	Launch to Geosynchronous Transfer Orbit, transfer to escape, 14 months	Direct injection to escape, 18 months	Direct injection to escape, 14 months
Duration of science observations	2 years	2 years	5 years
Launch vehicle	Two Soyuz-Fregat	Single Medium EELV (e.g., Falcon 9 Block 3)	Single Medium EELV (e.g., Atlas V 551)
Optical bench	Low-CTE material, hydroxy- catalysis construction	Low-CTE material, hydroxy- catalysis construction	Low-CTE material, hydroxy- catalysis construction
Laser	2 W, 1064 nm, frequency and power stabilized	1 W, 1064 nm, frequency and power stabilized	2 W, 1064 nm, frequency and power stabilized
Telescope	20 cm diameter, off-axis	25 cm diameter, on-axis	40 cm diameter, on-axis
Gravitational Reference Sensor	46 mm cube Au:Pt, electrostatically controlled, optical readout	46 mm cube Au:Pt, electrostatically controlled, optical readout	46 mm cube Au:Pt, electrostatically controlled, optical readout

Science Comparison

		This poster	Best
	NGO	SGO Mid	LISA
Massive Black Hole Binary Totals	40-47	41-52	108-220
Detected z > 10	1-3	1-4	3-57
Both mass errors < 1%	13-30	18-42	67-171
One spin error < 1%	3-10	11-27	49-130
Both spin errors < 1%	<1	<1	1-17
Distance error < 3%	3-5	12-22	81-108
Sky location < 1 deg^2	1-3	14-21	71-112
Sky location < 0.1 deg^2	<1	4-8	22-51
Extreme Mass-Ratio Inspirals	12	35	800
Resolved Compact WD Binariess	3,889	7,000	40,000
Interacting	50	100	1,300
Detached	5,000	8,000	40,000
Sky location < 1 deg^2	1,053	2,000	13,000
Sky location < 1 deg^2, distance error < 10%	533	800	8,000
Stochastic Background (normalized)	0	0.2	1


SGO-Mid Mission Summary

- Mission Design - 10⁶ km arm-length, 3 arms, 60 deg triangle
 - 3 identical spacecraft
 - LISA-like payload
 - 25 cm telescope/1 W laser
 - 9-21 degree drift away heliocentric orbit
 - Direct injection to escape, 18 mo transfer Single EELV (e.g. Falcon 9 Block 3)
 - Baseline 2 year lifetime + 2 years
 - Limited by communications bandwidth

3 identical arms enables simultaneous measurement of both polarizations of gravitational waves, which is essential for parameter extraction, particularly of transient events such as mergers.

SGO - Mid Layout 1 million km $S_{\times} = \frac{1}{2}(X+2Y)$ $S_o = \frac{1}{2}(X + Y + Z)$

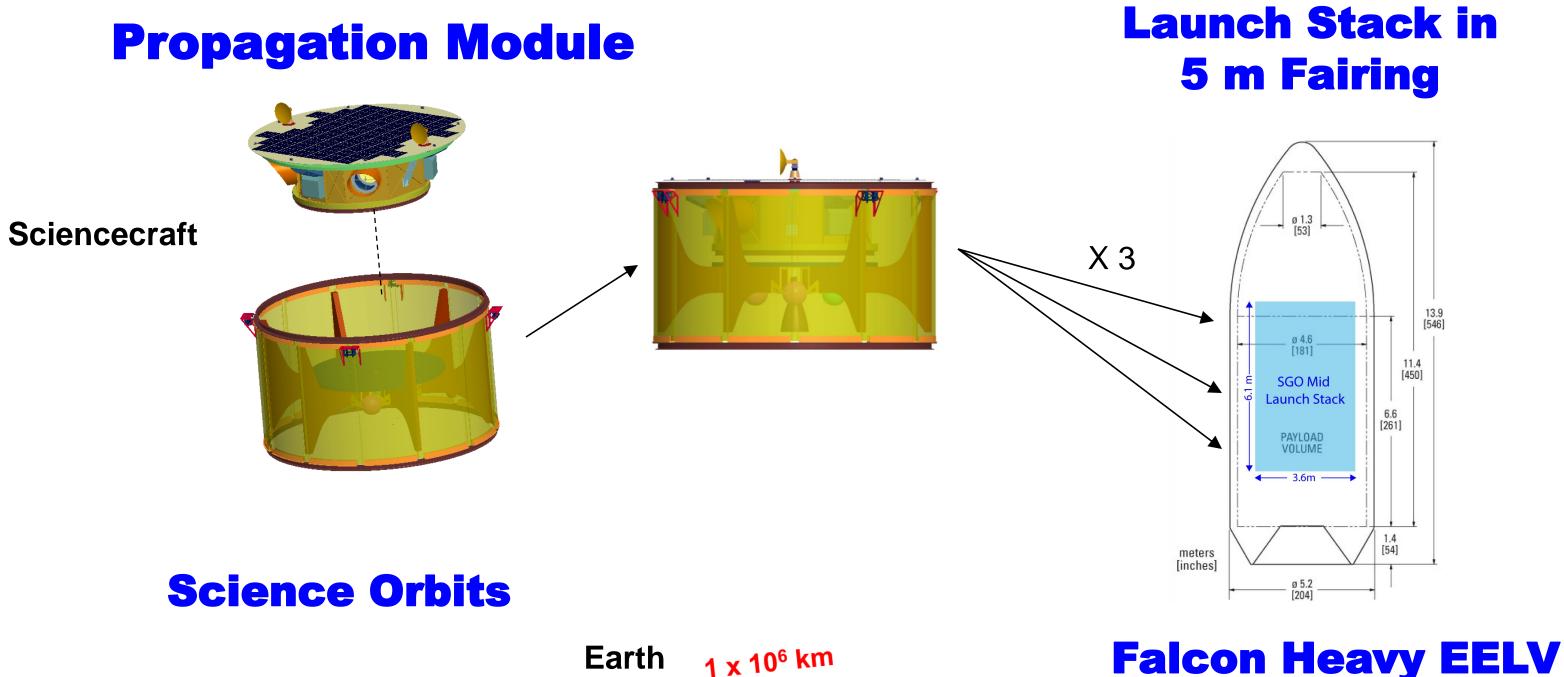
Sciencecraft

Disturbance Reduction System Detail Telescope assembly GRS colloidal µN thrusters

Gravitational

Reference

Optical Bench


Interferometry

Measurement

System Detail

Sensor

Propagation Module

Earth 1 x 10⁶ km 1 AU Sun

4 months commissioning

Mission Timeline 24 months science operations: orbits optimized for 48 months Pre-Launch 🔶 **Science Operations** Cruise

Summary

The LISA-like mission concept SGO-Mid is based on the baseline LISA mission design, but has been updated to reduce risk and cost. The main differences with the baseline are the shorter armlength (1 million km instead of 5) and the mission lifetime (2 years instead of 5). Science return is maximized by keeping three arms to allow simultaneous measurement of both polarizations as well as a Sagnac configuration that allows careful measurement of the noise. Drift away orbits offer graceful degradation as the constellation moves out of communications range.