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A theory is developed that gives the diffusion coefficient in strained systems as an exponential function of 
t~e strain. This theory starts wit~ the statistical theory of the atomic jump frequency as developed by 
Vme~ard. The ~aramet~r determin~ng the effect of strain on diffusion is related to the changes in the inter- . 
atomic forces with stram. Companson of the theory with published experimental results for the effect of 
p~es~ure on ~iffusion shows that the experiments agree with the form of the theoretical equation in all cases 
Within experimental error. • 

I. INTRODUCTION 

SINCE. th~ diffusi?n rate in a crysta! depends on the 
atomIC mteractlOn energy, and smce this energy 

depends on the interatomic distances, it is to be ex­
pected that the diffusion coefficient of a migrating 
species will be altered by a strain superimposed on the 
crystal. EJ.:perimental evidence shows that the change 
in the diffusion coefficients resulting from strains can be 
considerable. Uniaxial elastic strain can increase the 
self-diffusion coefficient by as much as a factor of two l 

and large hydrostatic pressures may decrease the self­
diffusion coefficient by as much as an order of 
magnitude.2-5 

The theory of the effect of pressure on diffusion has 
been examined on the basis of the dynamic theory of 
diffusion. 6, 7 In this theory, the pressure effect is repre­
sented by a parameter that is a function of the normal 
mode vibrations of the atoms in the crystal, and the 
diffusion coefficient is an exponential function of the 
pressure. 

1 T. Liu and H. G. Drickarner, J. Chern. Phys. 22, 312 (1954). 
I Norman H. Nachtrieb, Wright Air Development Center 

Technical Report No. 55-68 (unpublished). 
a J. Petit and N. H. Nachtrieb, J. Chern. Phys. 24, 1027 (1956). 
4 W. Jost and G. Nehlep, Z. physik. Chern. 34,348 .(1936). 
5 Norman H. Nachtrieb, Henry A. Resing, and Stuart A. Rice, 

J. Chern. Phys. 31, 135 (1959). 
I Stuart A. Rice, Phys. Rev. 112,804 (1958). 
7 Stuart A. Rice and Norman H. Nachtrieb J. Chern. Phys. 31 

139 (1959). " 

The dynamic theory of diffusion was developed as an 
alternative to the absolute rate theory of diffusion 
since it was believed that the absolute r,ate theory de~ 
pended on the postulate that the jumping atom spends 
~ long time at the top of the potential barrier. However, 
It can be shown that the theory of the jump frequency 
can be developed without reference to such a postulateS 
by considering the motion of a representative point in 
phase space. The jump frequency then depends on the 
rate at which phase points move over the potential 
maximum in configuration space, and not on the length 
of time the phase points spend at the maximum. In 
view of this situation, it is of interest to investigate the 
effect of strain on diffusion in terms of the statistical 
rate theory. 

The statistical rate theory of diffusion in strained 
crystals as developed in this paper shows that the dif­
fusion coefficient is an exponential function of ~train, 
and that the strain effect can be represented by a pa­
rameter that is a function of the interatomic forces. 
The rate theory, therefore, has an advantage over the 
dynamic theory in two respects: First, the effect of 
strain on diffusion in different materials can be corre­
lated with the interatomic potential energy, and second, 
the interatomic forces provide a basis on which to 
calculate the magnitude of the strain effect for different 
diffusion mechanisms. Accordingly, the possibility pre-

a George H. Vineyard, J. Phys. Chern. Solids 3, 121 (1957). 
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sents itself of deciding among alternative diffusion ¥.tQhQe ~tial e~ergy in Eq. (2) is given by 
mechanisms from a comparison of the results of experi­
ments on the effect of diffusion in strained syst,ems with 
theoretical calculations. Such a program would be con­
siderably more difficult in the framework of the dynamic 
theory. ' 

The general equation for the diffusion coefficient for 
the flow of a single species in an isotropic solid may be 
written 

(1) 

where D is the diffusion coefficient, A is the lattice 
parameter, n is the concentration of carrier defects, r 
is the jump frequency, and a is a constant that is deter­
mined by the crystal structure. -In the following sec­
tions expressions are derived for the effect' of homo­
geneous static strains on the jump frequency and va­
cancy concentration. The resulting equations are put 
into a form in which comparisons can be made with 
existing experimental data. 

II. DEPENDENCE OF JUMP FREQUENCY 
ON STRAIN 

According to, the statistical theory of rate processes, 
the jump frequency is determined by the ratio of two 
configurational integrals, one referring to the activated 
state and the other referring to the normal state. In 
analyzing the effect of strain on the jump frequency, the 
formulation of the rate process theory in solids given by 
VineyardS is used, in which the jump frequency is given 
in terms of these integrals by 

(2) 

where k is Boltzmann's constant, T is the temperature, 
and 'P is the potential energy of the system as a function 
of all the coordinates of all the atoms in the crystal. 
The integral in the numerator of Eq. (2) is evaluated 
over a hypersurface 0' in the configuration space such 
that the surface passes through the point corresponding 
to the diffusing atom at its activated position with all 
other atoms at their equilibrium positions. The hyper­
surface is also required to be perpendicular to contours 
of constant potential energy in the configuration space. 
The hypersurface defined in this manher divides the 
configuration space into two symmetric parts. The 
integral in the denominator is evaluated over the config­
uration volume A of one of these symmetric parts. 

Equation (2) was derived for the case of an unstrained 
crystal. However, it is applicable to strained crystals if 
the potential energy 'P is taken to be a function of the 
six strain components Eap as well as the atomic co­
ordinates q •. A similar procedure has been used by Born9 

in an analysis of the statistical mechanics of crystal 

9 Max Born, Proc. Cambridge Phil. Soc. 36, 160 (1940). 

(3) 

where qi represents the set of all atomic coordinates 
and Eap represents the set of six independent strain 
components. . 

The potential 'P can be expanded as a Taylor series 
in the strains about the point of zero strain with the 
result that 

a,p 

+ L: Ca{jpuEaPE pu+ .. " (4) 
a,{J,p,u 

where the coefficients Cap and C aPpu are defined by , 

(5) 

(6) 

The subscripts indicate that the derivatives are evalu­
ated when the strains are zero and the coordinates 
have the value qj. 

Substituting Eq. (4) into Eq. (2) gives the jump 
frequency in terms of the strain: 

f c-V>(Q;·O)'kT exp(-~ L: CaPEap)dA, (7) 
A kT a,p 

where terms of order higher than the first have been 
ignored. It will)e shown later that the first-order con­
tribution of the strain to the jump frequency depends 
on the difference of the average value of CaP evaluated 
near the normal configuration and near the acti­
vated configuration, and on similar differences 
in the averages of CaPpu, etc. It is extremely difficult 
to give an a priori estimate of the relative magnitudes 
of these differences. At any rate, for small enough 
strains the first-order terms predominate and the higher 
order terms can be neglected. It will be seen later that 
the form of experimental results is adequately de­
scribed by considering only the first-order terms in the 
strains. For zero strain, Eq. (7) gives the jump fre­
quencyas 
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Now take the ratio of Eqs. (7) and (8). The result is 

r(Eatl) < (1 ) / --= exp -- L CatlEatl 
ro kT a.tl a 

<exp(-~ L CatlEatl). (9) 
kTa.tl A 

The angular brackets indicate that a statistical average 
has been taken of the quantity within the brackets, and 
the subscripts u and A indicate that the averages are 
taken over the regions of configuration space u and A, 
respectively. The explicit expressions for these averages 
are 

< exp(-~ L CatlEatl) 
kTa.tl a 

= f e-'P(q;·Ol/kT exp(-~ L CatlEatl)du / 
a kTa.tl 

f e-'P(q;·OllkTdu, (10) 
a 

<exp(-~ L CatlEatl) 
kTa.tl A 

=fe-'P(q;.Ol/kT exp(-~ L CatlEatl)dA/ 
kTa.tl 

f e-'P(q;·OllkTdA. (l1a) 
A 

For small strains and high temperatures, the conditions 
under which the experimental effects of strain on dif­
fusion are usually determined, the exponents in Eq. (9) 
can be expanded into a series, and only the first two 
terms need be retained. Thus, Eq. (9) can be written as 

( 1-~ L (Ca(1)AEo.fJ)' (l1b) 
kTa.tl 

where (Catl)a and (Catl)A are given by 

(Catl)a= f( acp ) e-'P(qj.Ol/kTdu / 
a aEatl fJj.O 

je-'P(q;.Ol/kTdu, (12) 
a 

ie-'I'(q;·Ol/kTdA. (13) 

Taking logarithms of Eq. (11) and utilizing the fact 
that In(l-x)",,-x for small x, gives 

r(Eatl) 1 
In--= -{L [(Catl)A - (Catl)a]Eatl}, (14) 

ro kT a.tl 

or, defining a parameter matl by 

ma{1=(Ca{1)A-(Catl)a' (lS) 

Equation (14) can be written as 

r(Eatl)=rO exp(~ L matlEatl). 
kTa.tl 

Since ro can always be written ass 

r= ,,*e-I:!.E*lkT, 

(16) 

(17) 

where AE* is the energy of activation for the atomic 
jump and ,,* is an effective frequency, it is evident from 
Eq. (16) that the strain affects the jump frequency by 
an effective change in the energy of activation. 

Equation (16) shows that the jump frequency has a 
simple exponential dependence on the strains and that 
this dependence is controlled by the derivatives of the 
potential energy with respect to the strains evaluated 
at the saddle point of the activated state. . 

Equation (16) gives the general relation between the 
jump frequency and the strain that will be used in this 
paper. 

To illustrate the application of Eq. (16), three special 
cases will be considered: 

(1) Uniform compression or expansion, in which 

(18) 

(all other strains=O) 
(2) Simple shear, in which 

(19) 

(all other strains=O) 
(3) Simple elastic tension or compression in the x 

direction, in which 

Ezz= EL, 
EUII = E .. = -Jl.EL, 

(20) 

where JI. is Poisson's ratio. For these three cases, Eq. 
(16) gives the following results: For uniform compres­
sion or expansion, 

r(E)= roe(3m l kT l., (21) 
where 
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For simple shear, 

where 
(25) 

(26) 

(C.)A and (C.)" are given by statistical averages similar 
to Eqs. (23) and (24), i.e., 

(27) 

(28) 

For simple elastic tension or compression m the x 
direction, 

r( fL) = roe(m1IkT) (1-21'), 

where 
(29) 

or 

(30) 

III. DEPENDENCE OF VACANCY CONCENTRATION 
ON STRAIN 

The n appearing in Eq. (1) has a different significance 
for different mechanisms of diffusion. Broadly speaking, 
n is the probability that a diffusing particle has a site 
available to jump into. For dilute interstitial diffusion 
this probability is nearly unity whether or not the 
system is strained. For diffusion by a vacancy mecha­
nism, however, n is the atomic fraction of vacancies in 
the crystal, given by 

n=n./NT , (31) 

where n. is the vacancy concentration, and NT is the 
total number of lattice sites per cubic centimeter. It 
is therefore necessary to investigate the variation of n. 
with strain. 

The atomic fraction of vacancies in a crystal at equi­
librium is given by (see Appendix) 

f· .. f e-""o(p;,qillkT IJ- dpjdqj, (32) 

vacancy and 1/10 is the energy of the perfect crystal. 
Performing the integrations over the momenta p; con­
verts Eq. (32) into 

r· .. fe-'PO(q;),kT :q dq; II (v.h, (33) 
• 1 k 

where CP.(q) and cpo(q) are the potential energies in a 
crystal containing a vacancy and in a perfect crystal, 
respectively, each taken as a function of all the co­
ordinates; (v.h is the frequency of the kth vibrational 
mode in the crystal containing a vacancy; and (voh is 
the frequency of the kth normal mode in a. perfect 
·crystal. In a strained crystal, the cp and the v must be 
written as functions of strain, so that (33) becomes 

n.(fa/3) 

= f··· f exp[ - CP.(q;,fa /3)/kT] It dq; II (VO')k / 

f· .. f exp[ - cpo(qj,fa /3)/kT] It dqj II (V.')k. 

(34) 

An estimate of the effect of strain on the frequency 
ratios can be made from Grtineisen's relation1o 

d lnv/d In V = -7, (35) 

where V is the volume and 7 is a positive constant. 
Integrating Eq. (35) for each vibrational mode as the 
crystal goes from the strained to the unstrained state 

(VO')k ( OV)-'Y 
--= 1+- , 
(voh V 

(36) 

(vv'h ( OV)-'Y 
--= 1+- , 
(V.)k "V 

(37) 

where OV is the volume change arising from the strain. 
Grtineisen's relation, therefore, leads to an equality of 
frequency ratios in the strained and un strained systems: 

(38) 

where 1/1. is the energy of the crystal containing a Therefore, the ratio of Eqs. (34) and (33) is 

x f .... f e-'PO(q;)!kT It dq; / f··· f exp[ - cpo(qj,fa /3)/kT] IJ dq;. (39) 

10 John Clarke Slater, Introduction to Chemical Physics (McGraw-Hill Book Company, Inc., New York, 1939), p. 238. 
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The potential-energy functions CP.(qj,Ea{J) and CPO(q,Ea{J) 
can be expanded as Taylor series in the strain just as 
in the development beginning with Eq. (4) and leading 
to Eq. (16). The result is 

(40) 

where 

For the special case of uniform compression or ex­
pansion, Eqs. (40) and (41) become 

n.(E) __ = e(3tJ1lkT)., 

n.o -
(42) 

(43) 

where E is the volume strain. 

IV. PROOF THAT THE STATISTICAL AVERAGES 
«ltlpjlte)qj,o) DO NOT VANISH 

The preceding theory depends on the statistical aver­
ages of the derivatives of the potential- energy of the 
crystal with respect to strain. It has been assumed that 
these averages are not zero, and that a first-order ex­
pansion in the strains is therefore adequate for small 
strains. This assumption can be justified by expanding 
the crystal energy in normal coordinates. The sta­
tistical averages of interest all have the form 

Now perform a coordinate transformation according to 
the following definition: 

Uj=Wiqi. (52) 

Then, after a few simple algebraic manipulations, Eq. 
(51) becomes 

«(::))= -3 ~ 'Yi f~ ul exp( - 2~T )dUj / 

La) exp( -ul/2kT)duj (53) 
-00 

where cP is the total potential energy of the crystal as 
a function of all the coordinates q;, and the subscript 
zero means that the derivative is evaluated at zero 
strain. If the qi are taken to be the normal coordinates, 
cP can be written to the second order as 

(45) 

where cp(O) is the potential energy when all the atoms 
are at their mean positions, and the Wj are the normal 
mode frequencies. Differentiating Eq. (45) with respect 
to strain gives 

(46) 

and, since at zero strain the first term on the right is 
zero, 

(47) 

For the purposes of this discussion, E will be taken to 
be the strain corresponding to uniform compression or 
expansion, so that for small strains the volume is given 
by 

(48) 

Vo being the volume at zero strain. Introducing the 
Griineisen parameter 'Yi by the relation 

d lnwi/ d In V = -'Y;, (49) 

where the 'Yi are a set of positive constants, and using 
Eq. (48), Eq. (47) becomes 

(
aCP) -- = -3 ~ 'YjwNl. 
aE 0 , 

(50) 

Substituting Eqs. (45) and (50) into Eq. (44) gives 

f ... f exp( - 2~T ~ wlql) II dqj. (51) 

and performing the integrations gives 

(54) 

Equation (54) shows that the averages of the first 
derivatives are never zero and that these averages are 
proportional to the temperature. 

It is extremely difficult to make any a priori decisions 
concerning the signs of ma{J and Wa{J defined by Eqs. 
(15) and (41). Such a decision requires a detailed in-
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vestigation of the variation of localized normal mode 
vibrations with strain in the vicinity of a defect. How­
ever, on the basis of general physical considerations, it 
is to be expected that both ma{3 and Wa{3 are positive. 

V. EFFECT OF PRESSURE ON DIFFUSION 
CONSTANT 

Using Eqs. (1), (21), and (42), and the fact that the 
lattice parameter in the strained system is (l+f) times 
the lattice parameter in the unstrained system, the 
relation between the diffusion coefficients in the strained 
and unstrained systems for uniform compression or 
expansion is 

D(f) = Du(1 +f)2 exp(~3f), (55) 

where D" is the diffusion coefficient in the unstrained 
system, and M is given by 

M=m+w (vacancy mechanism), (56) 

M = m (interstitial, ring or 
exchange mechanism). (57) 

In terms of the volume strain, f = H.1 V / Yo) for small 
strains, where .1 V is the initial volume, so that Eq. (55) 
takes the form 

Therefore, it is evident that a plot of In[D(.1V/Vo) 
X (1+.1V/Vo)-fJ against .1V/Vo should be linear with 
a slope a given by 

a=M/kT, (59) 

and an intercept given by InD". 
Several investigators have obtained data on the 

variation of the diffusion coefficients with pressure that 
is suitable for testing Eq. (58). Reference 2 presents 
data for the self-diffusion coefficient as a function of 
pressure for sodium, phosphorous, and mercury up to 
pressures of 12 000, 4000, and 8000 atmospheres, re­
spectively. The self-diffusion coefficient of liquid gallium 
up to· pressures of 10 000 atmospheres is given in 
reference 3. The self-diffusion coefficient for single­
crystal zinc up to pressures of 10 000 atmospheres for 
diffusion in the directions parallel to and perpendicular 
to the c axis is given in reference 1. The self-diffusion 
coefficient of lead up to pressures of 8000 atmospheres 
at two temperatures is given in reference 5. 

The electrical conductivities of silver chloride and 
silver bromide have been measured as a function of 
pressure up to 300 atmospheres.4 Since in these silver 
halides it has been shown that the conductivity de­
pends almost entirely on the mobility of the silver ion, 
the conductivity is proportional to the diffusion co­
efficient of the silver ion by the Nernst-Einstein rela-

tion, and the data of reference 4 are suitable for testing 
Eq. (58). 

Plots of the variation of the quantity oflog[D(.1 V /Vo) 
X (1+.1V/Vo)-fJ against .1V/Vo for the self-diffusion 
of sodium, phosphorous, mercury, gallium, and lead 
are shown in Fig. 1. The quantities 10g[D(.1V/Vo) 
X (1 +.1 V /Vo)-fJ for single-crystal zinc were plotted 
against the fractional change in lattice parameter .1Xj).., 
since this is a more natural unit for discussing diffusion 
in anisotropic crystals and the linear compressions 
perpendicular and parallel to the c-axis are available. 
The zinc data are plotted in Fig. 2. 

Figure 3 gives 10g(I/R) plotted against .1V/Vo for 
silver chloride and silver bromide, where R is the re­
sistivity. The volume change .1V/Vo is small enough 
for the pressure range considered so that (1+.1V/Vo)-f 
does not appreciably affect' the results and can be 
ignored. 

Compressibility datal1-l6 were used to obtain the 
appropriate value of .1 V /Vo for zinc, sodium, mercury, 
lead, silver chloride, and silver bromide. For gallium, 
.1V/Vo was computed from the data of Richards and 
Boyer17 assuming that the form of .1 V /Vo as a function 
of pressure is the same as that for mercury. The values 
of .1 V /Vo for white phosphorus were computed from 
data in reference 16 assuming that the variation of the 
fractional volume change with pressure has the same 
form as that observed18 for black and red phosphorus. 

In all cases, the available compressibility data were 
extrapolated to the diffusion temperature. 

The linearity of the plots presented in Figs. 1 to 3 
shows that the form of Eq. (58) is valid for those sys­
tems investigated within the probable inaccuracies of 
the experiments and the calculations. 

The slopes of the plots are given in Table I, where 
a=M/kT and aT are shown for the various materials. 

The fact that aT is so much smaller for the liquid 
metals than for any of the solids including sodium is 
indicative of the difference in the mechanism of dif­
fusion in liquids and solids. In a liquid, the atoms are 
not constrained to remain at lattice positions, so that 
diffusion occurs by a cooperative process involving the 
migrating atom and its nearest neighbors. Thus, the 
change in the interatomic forces can be kept to a mini­
mum throughout the diffusion process, and consequently 
aT would be very low. 

From Eqs: (54) and (59) it is seen that a should be 
temperature independent. For the self-diffusion of lead 
for which pressure data are available at two tempera­
tures, the value of a is reasonably constant. 

11 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925). 
12 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 71 (1948). 
13 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 347 (1911). 
14 P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 58-59, 166 (1924). 
IS P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 74, 21 (1940). 
16 P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 62, 207 (1927). 
17 Theodore W. Richards and Sylvester Boyer, J. Am. Chern. 

Soc. 43, 274 (1921). 
18 T. W. Richards, J. Am. Chern. Soc. 37, 1643 (1915). 
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FIG. 3. Variation of log(l/R) plotted against volume change 
.1V /Vo for mobility of silver at 573°K. (a) Silver chloride. (b) Sil­
ver bromide. 

Activation Volume 

The activation volume is ordinarily calculated from 
the relation 

.1Vt = [a (.1G)] = _kT[a[ln(D/O!A
2
11*)J] , (60) 

ap T ap T 



L. A. G I R IF ALe 0 AN D H. H. G RIM E S 990 

TABLE 1. Comparison of values of aT for various solids. 

Temperature, 
T 

Solid (OK) 

Sodium 363 
Zinc (1.) 580 
Zinc (II) 580 
Mercury (liquid) 303 
Gallium (liquid) 303 
Silver in silver chloride 573 
Silver in silver bromide 573 
Lead 526 
Lead 574 

a 

27.9 
86.6 
34.7 
6.5 
6.5 

91.9 
128.0 
139.9 
121.5 

aT 

10130 
50230 
20130 

1970 
1970 

52660 
73340 
73590 
69740 

where P is the pressure and t1G refers to the Gibbs . 
free-energy changes for vacancy formation and for the 
formation of the activated state configuration. This 
free-energy change is calculated from the measured 
diffusion coefficient as a function of pressure. It follows 
from Eq. (58) that (60) may be written 

[
(Ml kT)a(t1 VIVo)] 

t1Vt=-kT ------
ap T 

=_akT[a(t1VIVo)]. (61) 
ap T 

Since 

[
a(t1VIVo)] =-{J, 

ap T 

where {J is the compressibility, the activation volume 
defined by (61) can be calculated from the simple 
formula 

(62) 

Table II presents values of the activation volume 
calculated from Eq. (62) at atmospheric pressure for 
those systems for which d?-ta are available. 

CONCLUSIONS 

A statistical mechanical theory was developed that 
relates the diffusion coefficient to strain in terms of the 

TABLE II. Activation volumes for self-diffusion of various solids 
at 1 atmosphere calculated from Eq. (62). 

Solid 

Sodium 
Phosphorous (white) 
Zinc (1.) 
Zinc (II) 
Mercury (liquid) 
Gallium (liquid) 
Silver in silver chloride 
Silver in silver bromide 
Lead 
Lead 

Temperature, 
T 

(OK) 

363 
314 
580 
580 
303 
303 
573 
573 
526 
574 

Activation 
volume, 

. ;lVt 
(ccjg-atom) 

12.3 
71.7 
3.0 
8.3 
0.62 
0.62 

10.3 
13.7 
13.9 
12.0 

atomic properties of the system. The theory makes the 
following statements: 

1. For diffusion as a function of hydrostatic pressure, 
the diffusion coefficient is an exponential function of the 
volume strain. 

2. The rate of change of the diffusion coefficient with 
strain is related to the interatomic forces. The relation 
is explicit enough that the variation of the diffusion 
coefficient with pressure can be interpreted in terms of 
the interatomic potential-energy functions of the 
material. 

3. For diffusion under hydrostatic pressure, the 
activation volume can be calculated from the com­
pressibility and the rate of change of the diffusion 
coefficient with volume strain. 

in every case for which data are a"vailable, these 
conclusions are in agreement with experiment. 

The general framework of the theory provides a 
basis for understanding the effect of strain on diffusion 
in terms of the atomic properties of the system and 
should provide a valuable tool for comparing diffusion 
rates for different states of strain, as well as for in­
vestigating the mechanism of ·diffusion. 

APPENDIX 

The Vacancy Concentration Formula 

Consider a canonical ensemble containing X member 
systems, each ·system being a crystal containing N 
atoms and 1 vacancies. Let E/ be the jth energy level 
of a system containing 1 vacancies and let Qi be the 
corresponding degeneracy. Then the number of systems 
containing 1 vacancies is 

L Q/ exp( - El/kT) 
i 

(Al) Nz=X--------
z 

where Z is the total partition function for the ensemble. 
The number of vacancies in the ensemble is 

Nv=L lNI, 
z 

and the number of atoms in the ensemble is 

(A2) 

(A3) 

The atomic fraction of vacancies is given by nv = N vi 
(N a+ N v). Since N v«N a, nv is given by the ratio of 
Eqs. (A2) to (A3) to an excellent approximation, and 
therefore 

nv= L lQzI (N L Qz), 
I I 

where Qz is defined by 

QI=L Q;'exp(-El/kT). 
i 

(A4) 

(A5) 

Ql is the partition function of a system containing 1 
vacancies. 
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Carrying out the division in (A4) and retaining only 
the leading term give 

n.= (l/N)QI/Qo, (A6) 

which is an excellent approximation, since the energy 
of formation of a vacancy is of the order of 1 ev, and 
therefore the higher terms in the series are very small. 
Qo is the partition function of a perfect crystal and Ql 
is the partition function of a crystal containing a 
vacancy. 

In the semiclassical approximation, 

~: = (N+1) f··· fe-~.'kTIf dP,1iqj / 

f· .. f e-~olkT If dpjdqi> (A7) 

where 1/;. = 1/;. (p,q) is the energy of a crystal containing 

a vacancy and 1/;o=1/;o(p;q) is the energy of a perfect 
crystal. The integrations are carried out over all values 
of the momenta and coordinates pj and qj. The factor 
(N + 1) arises from the fact that N indistinguishable 
atoms can be placed in (N + 1) numbered lattice sites 
in (N+1) ways so that Ql is proportional to (N+1). 

Combining Eqs. (A6) and (A7) gives 

where unity has been neglected relative to N. 
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