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ABSTRACT 

Equations which will describe the pressure—time curves for the 

ignition of cylindrical, boron—potassium nitrate, igniter pellets in 

vented, inert chambers are derived on the assumption that the burning 

rate is independent of pressure. This assumption is justified on the 

basis of closed chamber experiments. 

Experimental firings were conducted over a considerable range of 

igniter weights and nozzle throat sizes. Smooth, reproducible pressure—

time histories were obtained which showed excellent agreement with 

the analytically predicted curves. 

I. INTRODUCTION 

A logical approach to the analysis of the ignition pres-
sure transient for a solid propellant rocket motor is to 
examine separately the contribution of the igniter in an 
inert motor of the same internal configuration, and the 
contribution of the propellant grain. This Report is con-
cerned with boron—potassium nitrate igniters fired in 
inert, vented, motor configurations. Specifically, the object 
is to develop equations expressing pressure as a function 
of time for cylindrical boron—potassium nitrate pellet 
igniters. 

The required function is derived by applying the law 
of the conservation of mass and the perfect gas law to 
the burning of a group of pellets. By assuming that burn-
ing proceeds normal to the pellet surface, and that all 
pellets are initiated simultaneously (Ref. 1), these two 
equations may be solved for pressure as a function of 
time. For the general case where burning rate is depend-
ent on pressure, the solution can be arrived at by means 
of a stepwise technique. The equations derived in this

Report are based on the assumption that the burning 
rate is independent of pressure and an analytical solu-
tion was achieved. The validity of this assumption for 
the boron—potassium nitrate pyrotechnic used is partially 
demonstrated by the results of the firing of a set of igrli-
ters in closed chambers under different pressures. The 
burning time of the pellets, as measured by time to peak 
pressure, does not vary monotonically when pressure is 
varied. 

The term K, which is analogous to c, is incorporated 
into the mass balance equation. It relates rate of gas 
flow through the nozzle to the chamber pressure (Ref. 2). 
Another parameter which appears is M/aT, a property 
of the igniter reaction product. Both K and M/aT are 
assumed constant for a given igniter firing. When K and 
M/aT are known, along with the easily-measured igniter 
and chamber parameters, a pressure—time curve may be 
generated. Additional equations, derived under the 
assumptions stated previously, permit calculation of K 
and M/aT from an experimental pressure—time history. 

I
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II. MATHEMATICAL DEVELOPMENT 

The law of the conservation of mass and the perfect 
gas law, applied to the burning of pyrotechnic, is: 

rA bp	 + 454g'1tP	 (1) 
RaTdt	 K 

when M/aT is constant. This relation between pressure 
and time is subject to the boundary condition: p (0) = Pa. 
K,, is defined by Eq. 2:

[6VrK (M/aT)2 + (4R0 + L0 ) 17r2 K (M/aT) 
K3

 = 2Np [ (454gA,) 3 R2	 (454gA,)2R 

+ (R + ROLO) rK,,

454gA 

and 

K — 454gAR 
— J/K (M/aT) 

or, in equivalent form, 

K = 454gAfpdt 
p 

For cylindrical pellets, where the burning rate, K,,, and 
M/aT are constant, Eq. 1 may be solved giving pressure 
as a function of time. 

p = K1I2 — K 2t + K3 (1 — e_K4t) + p_K4t, forOttb 

(4) 

and 

p = Pbe, fort > tb, 

where 

K — 67rNpr3K,, 
'	 454gA 

[ 6Vr3K (M/aT) + (4R0 + L,,) r2K,, 1 
K22irNp	

(454gA t ) 2 R	 454gA1

- 454gAR 
lnp	

VKp(M/aT) 
t+c,	 (5) 

where c is constant. 

Setting the derivative of the first part of Eq. 4 equal 
to zero yields Eq. 6, a relationship between tm and the 
igniter and chamber parameters. 

[6r 3VK (M/aT) + (4R0 + L0) r2 K + I? (Rl + ROLO ) r 

L (454gA t ) 2 R	 454gA	 V(M/aT) 

____________________	

(_-454yRA, '	 r6r3K 1 — 454PagRA t	 ______ 
2NpVKp(M/aT)]e VKp[M/aT1) tm + [ 54gjtm 

- [

6r3VK (M/aT) + (4R0 + L,,) r2 K] = o
	 (6) 

(454gA) 2 R	 454gA, 

Combining Eq. 4 and Eq. 6 gives, for peak pressure, 
the expression: 

- 27rNpK 
PM — 454gA1 [3r 3t — (4R0 + L,,) ri + (R + RQLO ) r]. 

(7) 

(3) 
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III. APPARATUS AND INSTRUMENTATION 

A. Igniter 
The igniter which was tested consisted of a perforated 

cellulose acetate butyrate tube, loaded with pyrotechnic 
pellets and initiated with a Du Pont S-89 squib. (See Fig-
ure 1.) The pyrotechnic was U.S. Flare Corporation 2A 
pellets, whose composition is given in Table 1. The pel-
lets are cylinders 1/8 in. in diameter and ^o in. long.

Table 1. Composition of U.S. Flare Corporation 2A


pyrotechnic pellets 

Ingredient wt. % 

Boron 23.7 

KNO3 70.7 

Binder 5.6

B. Test Chamber 
The igniter was fired in a cylindrical steel chamber, 

3 in. in diameter and 6 in. long, equipped with a nozzle 
(Figure 2). In some cases, the inside of the chamber wall 
was lined with 0.004-in, cellulose acetate tape. For the 
closed chamber tests, the nozzle was replaced by an end 
plate.

0-RING

CELLULOSE ACETATE BUTYRATE TUBE 

f 
CD CD CD CD CD CD CD CD CD CD CD 

DU PONT S-89 SQUIB 

C. Instrumentation 

In the vented chamber tests, pressure was measured 
with a Photocon transducer in conjunction with a Dyna-
gauge discriminator and Kin-Tel DC amplifier. The 
output signal was then applied to a galvanometer oscillo-
graph, and recorded photographically on paper moving 
at 48 in./sec. Reproducibility was sufficiently high to

Figure 1. Igniter assembly 

enable a clear comparison between calculated pressure—
time curves and experimental data. 

In the closed chamber tests, pressure was measured 
by means of a Tabor transducer and a Miller carrier 
system, and recorded in the same manner as in the vented 
chamber tests. 

Figure 2. Vented chamber assembly

3 
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IV. METHODS OF CALCULATING IGNITER CONSTANTS


FROM PRESSURE—TIME HISTORIES 

0 
U, 

w 

U, 
U) 
Ui 

0 

Ui 

(-3 

Pyrotechnic burning rate is determined for closed 
chamber firings by substituting in the equation: 

R0 
r—.	 (8) 

Vented chamber pressure—time histories are needed to 
determine K and (M/aT). The first of these igniter gas 
parameters is calculated by means of Eq. 3, while two 
methods are available for calculating M/aT. One way is 
to solve Eq. 6 for M/aT. The alternative is to plot in p 
vs t for the tail-off portion of the pressure—time history. 
In general, this is a straight line, in accordance with Eq. 5. 
A typical curve of this type is shown in Figure 3. The 
term M/aT may be calculated by substituting the slope S 
of this line into the equation:

The latter method gives very consistent results when the 
nozzle throat area is small. 

EEEEEEEE 
0123 in-48.3 

Kp3795 ft/sec 

SI7.I5 

o	 rdh1 

0 - -------

4 - -------

--
0.01	 0.02	 0.03	 0.04 0.05 006	 0u7 008	 0.09 0.10

TIME, I, sec 

M/aT = 454gAR	 Figure 3. Plot of In p vs t for the tail-off portion 
of the pressure—time curve 

V. EXPERIMENTAL PROGRAM 

A. Closed Chamber Tests 

That the burning rate of boron—potassium nitrate pyro-
technic is in fact nearly independent of pressure is sup-
ported by the results of closed chamber tests. Three 
identical igniters were fired in sealed chambers whose 
volumes were 48, 90, and 176 in. 3 The pressure—time his-
tories for these three firings are shown in Figure 4. The 
time-to-peak pressure t,, may be taken as a rough meas-
ure of the total burning time of the igniter pellets. If 
burning rate were some increasing function of pressure 
over the entire range tested, then tm would decrease regu-
larly in going to successively higher pressure-time curves.

However, this is not the case (see Figure 4). Similar 
reasoning could be applied if the burning rate were a 
decreasing function of pressure. Hence, the burning rate 
must be approximately constant over the range of pres-
sures tested. The burning rate calculated from these data 
is 1.5 in./sec. 

B. Vented Chamber Tests	 .	 - 
Igniters were fired in vented chambers under a wide 

range of conditions in order to test the 'validity of the 

4
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Figure 4. Igniter pressure—time histories

for closed chambers 

above equations, and to determine values of the igniter 
gas constants K and M/aT. A number of interesting 
relationships were established. 

1. Relationship between Igniter Gas Constants and 
Weight of Pyrotechnic 

Eight igniters, whose pyrotechnic weights were 10.0, 
21.5, or 33.5 g, were fired in 48.3-in. 3 chambers lined with 
cellulose acetate. The nozzle throat area was 0.214 in.2 
One of these firmgs was Run No. 2206, where the pyro-
technic weight was 21.5 g. The igniter gas constants were 
calculated for this particular run by means of Eq. 3 and 6, 
giving K = 3645 ft/sec and M/T = 0.0102 gm/gm-
mol-°R. 

This pair of constants was then substituted into Eq. 4, 
and pressure—time curves generated for 10.0-, 21.5-, and 
33.5-g igniters. (N equals 147, 316, and 493 respectively.) 
The three calculated curves, superimposed on the eight 
experimental pressure—time histories, are shown in Fig-
ure 5. Two conclusions may be drawn from the agreement 
illustrated in Figure 5. 

(1) The function defined by Eq. 4 is a valid model of 
the pressure—time transient when the correct con-
stants are substituted. 

(2) The values of K and M/aT are independent of pyro-
technic weight when chamber and nozzle param-
eters are fixed. If this were not true, the constants 
determined from a 21.5-g igniter could not generate 
accurate pressure—time curves for 10.5- and 33.5-g

	

ot	 I	 I 

	

0	 0.04	 o.oi	 0.12	 0.16

TIME, t, sec 

Figure 5. Calculated and experimental pressure—time

curves for igniters fired in a cellulose acetate-lined


chamber; A = 0.214 in.2 

igniters. (The only case where this reasoning fails is 
where K, M/aT, and possibly other parameters all 
vary witl pyrotechnic weight in such a manner that 
they compensate for each other). 

This procedure was repeated for lined chambers of 
different nozzle throat areas, as vell as for unlined cham-
bers. The experimental and theoretical pressure-time 
curves are shown in Figures 6, 7, and 8 and confirm the 
conclusions of the previous paragraph. 

2. Relationship between Igniter Gas Constants and 
Nozzle Throat Area 

A set of 21.5-g igniters were fired in lined 48.3-in.3 
chambers equipped with nozzles whose throat area 
ranged from 0.123 to 3.009 in. 2 Pyrotechnic batch #34-9 
was used for this group of tests. A value of K and 
M/aT was calculated from each pressure—time history 
(M/aT was determined by means of Eq. 6). These two 
parameters are plotted vs A in Figure 9, along with a 
similar plot for unlined chambers. 
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curves for igniters fired in unlined chambers; IOC 

A = 0.450 in.2
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While the scatter is great, it is evident that as nozzle 
throat area is increased, K tends to decrease and M/aT 
gets larger. The phenomenon is believed to be primarily 
kinetic in nature. For a large throat area, residence time 
of the reaction product in the chamber is short; combus-
tion does not proceed to completion, and therefore tem-
perature is relatively low. It is known that K varies 
directly with T, and M/aT inversely with T. It follows 
then that, for a large nozzle throat area, K will be small 
and M/aT high. While the slopes of the K and M/aT 
curves are not related to each other precisely in accord-
ance with this explanation, the order of magnitude of 
this relationship is correct. 

It is noted that the values of M/aT, particularly at 
small nozzle throat areas, are consistent with a value of 
.0116 g/g-mol-°R calculated by an independent investi-
gator (Ref. 3) for a stoichiometric boron—potassium nitrate 
mixture from thermochemical data and equations. These 
calculations are summarized in Table 2. 

The reason for the scatter in the M/aT data of Figure 9, 
while K is consistent, is not clear. 

3. Relationship between Igniter Gas Constants and 
Inside Surface of Chamber 

The data of Figure 9 establish that K is higher and 
M/aT lower for lined chambers than for unlined cham-
bers. This effect is clearly illustrated in Figure 10, which 
presents pressure—time histories for 21.5-g igniters in two

TIME, t, sec 

Figure 7. Calculated and experimental pressure—time


curves for igniters fired in a cellulose acetate-lined 


chamber; A = 0.73 1 in.2 
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Figure 8. Calculated and experimental pressure—time 


curves for igniters fired in unlined chambers; 

A=0.731 in.2 
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Figure 9. Plot of K,, and MIaT vs A 
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w	 2!5g 
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0.050	 0.100 

TIME, /, sec 

Figure 10. Pressure—time curves for lined 


and unlined chambers

Table 2. Theoretical reaction products at maximum


flame temperatures produced by 100-g stoichiometric 


mixtures of boron—potassium nitrate igniters 

Products at flame temperatures
Number of 

moles
Weight 

g 

K (g) 0.838 32.7 

02 (g) 0.209 6.6 

N,(g) 0.419 11.6 

B4O, (1) 0.275 19.1 

8,03 (g) 0.430 30.0 

a = 0.809 Total	 2.171 100.0 

Average M =	 = 42.7 gIg-mel 
1.896 Total 

T = 4540CR Gas	 1.896 80.9 
MIaT = 0.0116 g/g-mol-R

chambers, lined and unlined, but otherwise identical. In 
general, pressure will increase directly with degree of 
insulation at the chamber surface. This is to be expected, 
since the gas temperature is higher in an insulated cham-
ber. In addition, certain volatile components in the plastic 
liner may contribute to the chamber pressure at the high 
temperatures involved. 

4. Relationship between Igniter Gas Constants and 
Chamber Volume 

Figure 11 is a plot of igniter gas constants vs chamber 
volume in lined chambers, where pyrotechnic weight was 
fixed at 21.5 g and nozzle throat area held at 0.123 in.2 
Pyrotechnic was batch #34-10. The term M/aT was cal-
culated from a plot of in p vs t for the tail-off portion of 
the pressure—time curve. There is a tendency toward 
higher flame temperatures as chamber volume is 

0.OIb 
0

E
___ - _ .-0.0I0 

a,	 M/aT 

a
0.005 
400(, 

U 
0)

__ + __ ___ __ __ 

3500 

3000 ______	 ______ ______ _______ ______ ______ 
25	 00	 200 

VOLUME, V, in3 

Figure 11. Plot of K,, and MIaT vs chamber volume


for cellulose acetate-lined chambers 
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0

0 

a, 

a, 

0 

In 

increased. This is attributed to the greater reaction 
product residence time for larger volumes which pennits 
more complete combustion of the fuel and oxidizer. The 
magnitude of this effect, however, is small compared to 
the effects of heat losses to the chamber wall. For exam-
ple, in a 48.3-in. chamber with a nozzle throat area 
of 0.123 in. 2 , a four-fold increase in chamber volume 
increases K by 350 ft/sec (Figure 11), while the applica-
tion of acetate tape to the inside chamber wall increases 
K by 750 ft/sec (Figure 9). 

In the case of unlined chambers, Figure 12, no con-
sistent relationship can be defined. Heat losses to the 
chamber wall are considerable, so that the volume effect 
cannot be examined.

.O2O

.1 
T

lW/a T 

ooie_____ .1. _____ ______ _____ ______ _____ _____ 
000 

350C

_:

_____ 

5OO(
IOU	 OU 

VOLUME, 1< in 

Figure 12. Plot of K and MIaT vs chamber volume 

for unlined chambers 

VI. CONCLUSION 

A mathematical model has been constructed which per-
mits calculation of igniter pressure—time curves in inert, 
vented chambers, and conversely, enables calculation of 
igniter gas constants from experimental pressure—time

histories. In both cases, the calculations are consistent 
with experimental measurements conducted over a wide 
range of variables, and this is taken as confirmation of 
the validity of the fundamental assumptions. 

8
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NOMENCLATURE 

Ab Total burning surface of igniter pellet, in.2 

A
	

Nozzle throat area, in.2 

g Acceleration of gravity, ft/sec2 

K
	

Pyrotechnic nozzle flow constant, ft/sec 

Initial length of cylindrical pyrotechnic pellet, in. 

M Average molecular weight of gas in pyrotechnic reaction product, g/g-mol 

N Number of pyrotechnic pellets in igniter 

P Chamber pressure, psia 

Pm Maximum pressure of a pressure—time curve, psia 

Pa Atmospheric pressure, psia 

Pb Chamber pressure at time of pyrotechnic burnout, psia 

r Burning rate, in./sec 

R Perfect gas constant = 40.7, psi-in./g-mol-°R 

R0
	 Initial radius of a cylindrical pyrotechnic pellet, in. 

t Time, sec 

T Pyrotechnic gas flame temperature, °R 

tm Time to peak pressure in a pressure-time curve, sec 

tb Time to burnout of pellets, sec 

V Chamber volume, in.3 

w Pyrotechnic weight, g 

Flow rate of igniter reaction products through the nozzle, g/sec 

a Ratio of weight of gas in reaction products to total weight of reaction 
products 

p Density of pyrotechnic pellet, g/in.3 
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