Towards an Understanding of Atmospheric Balance

Ronald M. Errico

Global Modeling and Assimilation Office GSFC NASA Goddard Earth Sciences Technology and Research Center Morgan State University (Formerly at) National Center for Atmospheric Research

Why is the extra-tropical atmosphere approx. quasi-geostrophic?

The stability of quasi-geostrophic flow with respect to ageostrophic perturbations

Derivation of (2-layer, f_plane) PE in terms of Normal Modes Errico JAS 1981

$$\begin{aligned} \frac{d}{dt} b_{\mathbf{K}} &= \sum_{\mathbf{L}\cdot\mathbf{M}} \left[C_{1}b_{\mathbf{L}}^{*}b_{\mathbf{M}}^{*} + C_{2}g_{\mathbf{L}}^{*}g_{\mathbf{M}}^{*} + C_{3}g_{\mathbf{L}}^{*}a_{\mathbf{M}}^{*} \\ &+ C_{3}^{*}g_{\mathbf{L}}^{*}d_{\mathbf{M}}^{*} + C_{4}a_{\mathbf{L}}^{*}a_{\mathbf{M}}^{*} + C_{4}^{*}d_{\mathbf{L}}^{*}d_{\mathbf{M}}^{*} \\ &+ C_{5}a_{\mathbf{L}}^{*}d_{\mathbf{M}}^{*} \\ &+ C_{5}a_{\mathbf{L}}^{*}d_{\mathbf{M}}^{*} \right], \end{aligned}$$
$$\begin{aligned} \frac{d}{dt} g_{\mathbf{K}} &= \sum_{\mathbf{L}\cdot\mathbf{M}} \left[C_{6}b_{\mathbf{L}}^{*}g_{\mathbf{M}}^{*} + C_{7}b_{\mathbf{L}}^{*}a_{\mathbf{M}}^{*} + C_{7}^{*}b_{\mathbf{L}}^{*}d_{\mathbf{M}}^{*} \right], \\ \frac{d}{dt} a_{\mathbf{K}} &= i\omega_{\mathbf{K}}a_{\mathbf{K}} + \sum_{\mathbf{L}\cdot\mathbf{M}} \left[C_{8}b_{\mathbf{L}}^{*}g_{\mathbf{M}}^{*} \right]. \end{aligned}$$

+ $C_9 b_L^* a_M^* + C_{10} b_L^* d_M^*],$ $d_K = a_{-K}^*.$

$$- i\omega_{M}(L^{2}\mathbf{M}\cdot\mathbf{K} + M^{2}\mathbf{L}\cdot\mathbf{K})],$$

$$C_{4} = \frac{1}{2}\omega_{M}^{-2}\omega_{L}^{-2}[\mathbf{L}\times\mathbf{M}(M^{-2} - L^{-2})(1 + \omega_{M}\omega_{M} + i(\omega_{L} + \omega_{M})(M^{-2}\mathbf{M}\cdot\mathbf{K} + L^{-2}\mathbf{L}\cdot\mathbf{K})],$$

$$C_{5} = \omega_{M}^{-2}\omega_{L}^{-2}[\mathbf{L}\times\mathbf{M}(M^{-2} - L^{-2})(1 - \omega_{M}\omega_{L}) + i(\omega_{L} - \omega_{M})(M^{-2}\mathbf{M}\cdot\mathbf{K} + L^{-2}\mathbf{L}\cdot\mathbf{K})],$$

$$C_{6} = -\mathbf{L}\times\mathbf{M}L^{-2}\omega_{M}^{-2}(\omega_{M}^{2} - \omega_{L}^{2} + 1),$$

$$C_{7} = \omega_{M}^{-2}M^{-2}(\mathbf{L}\times\mathbf{M} + i\omega_{M}\mathbf{K}\cdot\mathbf{M}),$$

$$C_{8} = -\omega_{M}^{-2}L^{-2}\mathbf{L}\times\mathbf{M}(\mathbf{K}\cdot\mathbf{L} - i\omega_{K}\mathbf{L}\times\mathbf{M}),$$

$$C_{9} = (2\omega_{M}^{2}L^{2}M^{2})^{-1}\{\mathbf{L}\times\mathbf{M}[L^{2}(1 - \omega_{K}\omega_{M}) - \omega_{K}(\omega_{K}M^{2} - \omega_{M}K^{2})] + i[2\omega_{K}(\mathbf{L}\times\mathbf{M})^{2} + \omega_{M}L^{2}\mathbf{K}\cdot\mathbf{M}]\},$$

$$C_{10} = (2\omega_{M}^{2}L^{2}M^{2})^{-1}\{\mathbf{L}\times\mathbf{M}[L^{2}(1 + \omega_{K}\omega_{M}) - \omega_{K}(\omega_{K}M^{2} + \omega_{M}K^{2})] + i[2\omega_{K}(\mathbf{L}\times\mathbf{M})^{2} - \omega_{M}L^{2}\mathbf{K}\cdot\mathbf{M}]\}.$$

 $C_1 = -\frac{1}{2} \mathbf{L} \times \mathbf{M}(L^{-2} - M^{-2}),$

 $C_2 = -\frac{1}{2}\mathbf{L} \times \mathbf{M}(\omega_L^{-2} - \omega_M^{-2}),$

 $C_3 = -(M^2 \omega_M^2 \omega_L^2)^{-1} [\mathbf{L} \times \mathbf{M} (M^2 - L^2)]$

Demonstartion of Equipartition Errico Tellus 1984

DAYS

Examination of Balance

$$\frac{dc_j}{dt} = -i\omega_j c_j + A(r,r) + B(r,g) + C(g,g) + D$$

Diabatic Balance ?

The interplay of analysis and initialization Errico et al. *MWR* 1993

Tribbia Daley Williamson Fillion Courtier ECMWF

Gravitational modes considered as forced and damped harmonic oscillators

Define g(t) as the complex amplitude of a gravity–wave like mode at each time t, and let R and G be the sets of Rossby– and gravity–wave like modes. Then

$$\frac{dg}{dt} = -i\lambda g + N(R) + N(R,G) + N(G) + D(R,G) - \nu g$$

Consider N(R) = F(t) as the dominant nonlinear term. Approximately then

$$\frac{dg}{dt} = -i\lambda g + F(t) - \nu g$$

Consider $F(t) = F(0) \exp(-i\mu t)$. Then

$$g(t) = \left[g(0) - \frac{F(0)}{i\lambda - i\mu + \nu}\right] \exp(-(i\lambda + \nu)t) + \frac{F}{i\lambda - i\mu + \nu}$$

Errico 1981 JAS, 1984 MWR, 1997 J Japan MS

Harmonic Dial for External m=4 Mode, Period=3.7h Without NNMI With NNMI

Errico 1997 J Japan Met Soc

Behavior of gravitational modes in a climate model: Time series (harmonic dials) of complex mode amplitudes Errico MWR 1989 16 days shown

Behavior of gravitational modes in a climate model: Power spectra of complex mode amplitudes Errico MWR 1989

Solid: Westward propagating

Dashed: Eastward propagating

Behavior of gravitational modes in a climate model: Power spectra of convective heating Errico MWR 1989

Diabatic balance vs appropriate cutoff Errico and Rasch *Tellus* 1988

Higher-order Machenhauer schemes Errico MWR 1989

Other Issues

Vertical modes in discrete models

10 level MAMS Modes 1, 2, 7 (H=10,000, 2050, 13 m)

23 zero crossings above for $\sigma < 0.1$

High amplitude modes in the upper atmosphere

72 level GEOS-5 model with top at 0.01 hPa

Global mean squared divergence tendency

Derivation of (2-layer) PE in terms of Normal Modes Errico JAS 1981

FIG. 3. Like Fig. 1 except for the fifth antisymmetric, zonal wavenumber 4, l = 5 WG mode. The progression in the dial is predominantly clockwise (westward propagation).

Derivation of (2-layer) PE in terms of Normal Modes Errico JAS 1981

Figure 4. The kinetic energy (K), available potential energy (A), rotational-mode energy (R), gravitational-mode energy (G), and total energy (E) contributed by vertical modes of indicated equivalent depths at t = 0. The integers on the right-hand side indicate corresponding vertical-mode indices ℓ .

Derivation of (2-layer) PE in terms of Normal Modes Errico JAS 1981

Figure 6. The (a) and (b) R and (c) and (d) its complement components of the (a) and (c) u' and (b) and (d) T' fields on $\sigma = 0.55$ at t = 0 for SV1 determined using the E norm applied to the dry form of the linearized model. Contour intervals are (a) and (c) 1 m s⁻¹, (b) 1 K, and (d) 0.5 K, with zero-contours omitted and negative values shown dashed. See text for further explanation.

Derivation of (2-layer) PE in terms of Normal Modes Errico JAS 1981

Figure 8. The (a) and (c) v' and (b) and (d) T' fields on $\sigma = 0.55$ at t = 24 h determined from the linearized evolutions begun from (a) and (b) R-mode components of SV1 and (c) and (d) their complement of SV1. Contour intervals are (a) 10 m s⁻¹, (b) 2 K, (c) 5 m s⁻¹, and (d) 1 K, with zero-contours omitted and negative values shown dashed. See text for further explanation.

Partitioning of analysis error energy in terms of normal modes: (as inferred from an OSSE) Errico et al. *Met Z*. 2007

Vert mode index Equiv Depth G-mode Energy R-Mode Energy Ratio G/TE	k H(m) G(J/kg) R(J/kg) f_{σ}	1 10943 .18 .82 .18	2 4444 .16 .47 .25	3 1538 .22 .38 .37	4 628 .32 .51 .39	5 311 .31 .52 .37	6 175 .32 .58 .36	7 109 .29 .56 .34	8 71 .28 .45 .38	9 49 .25 .33 .43
Katio 0/1E	I_g	.10	.20	.31	.39	.37	.30	.34	.30	.43
Ratio G/TE	f_g	.18	.25	.37	.39	.37	.36	.34	.38	.43

Summary

- 1. Much can be learned from some old works
- 2. The standard Normal Modes provide useful concepts and tools
- 3. The standard Normal Modes have limitations
 - a. the universality of vertical modes
 - b. internal modes (when C approx = U)
 - c. more realistic basic states (e.g. as for SVs)
- 4. Is Initialization still an issue ?
- 5. There is more to understand
 - a. time scales of moist diabatic processes
 - b. effects of top boundary conditions, non-hydrostatic behavior
 - c. SV behavior