
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
 

Abstract—Although the volume of the remote sensing data 
managed by the Earth Observing System Data and Information 
System is formidable, an oft-overlooked challenge is the variety 
of data. The diversity in satellite instruments, science disciplines 
and user communities drives cost as much or more as the data 
volume.  Several strategies are used to tame this variety:  data 
allocation to distinct centers of expertise; a common metadata 
repository for discovery, data format standards and conventions; 
and services that further abstract the variations in data. 
 

Index Terms—data storage systems, data systems, information 
architecture, remote sensing, search problems. 
 

I. INTRODUCTION 
HE National Aeronautics and Space Administration 
(NASA) has been launching Earth observation satellites 

for several decades. Since the 1990’s, the data from these 
satellites have been archived in the Earth Observing System 
Data and Information System (EOSDIS). EOSDIS is a 
distributed system, anchored by 12 data centers across the 
United States and mediated by a common inventory database 
and a portfolio of common services.  

Almost from the beginning, the volumes of science data, the 
first and best-known ‘V’ of Big Data, have presented a not-
insignificant challenge to EOSDIS system architects and 
implementers. However, often overlooked has been the 
driving role of the second ‘V’, Variety in system architecture 
and operations.  

The variety in NASA’s Earth science data archives is rooted 
in the need to study the Earth as a system [1]. The Earth 
system components that are the subjects of remote sensing 
studies include the lithosphere, cryosphere, hydrosphere, 
atmosphere and biosphere. The union of these spheres 
represents a substantial diversity in the physical measurements 
needed to study them. Furthermore, the study of Earth as a 
system often requires two or more measurements to be studied 
together, increasing the impact of variety on the discovery and 
use of Earth observation data. 

Due to the wide scope of Earth system science, NASA flies 
a wide variety of instruments on its satellites, as well as 
brokering data from other national space programs, such as the 
European Space Agency (ESA) and the Japan Aerospace 
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Exploration Agency (JAXA).  Fig. 1 shows a schematic view 
of the instruments orbiting in the A-Train constellation, a 
group of satellites that flies in formation in order to provide 
measurements that are roughly coincident in time and space.  
A-Train includes satellites operated by NASA, ESA and 
JAXA; EOSDIS distributes at least some products from all of 
the A-Train satellites.   

These satellites host several different kinds of instruments, 
with varying horizontal and vertical resolution.  Typically, 
horizontal coverage, vertical resolution and horizontal 
resolution trade off amongst each other. CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations), 
for example, hosts a laser-based instrument to make high-
vertical-resolution measurements of atmospheric aerosols and 
clouds for very small areas (90 m footprint).  Conversely, 
Aqua hosts the Moderate Resolution Imaging 
Spectroradiometer (MODIS), which takes pictures in the 
visible and infrared spectrum over very wide (>2000 km) 
tracks, with a horizontal resolution of 0.25 to 1 km but limited 
vertical resolution of the atmosphere. The Aura satellite hosts 
two limb scanners, the Microwave Limb Scanner and High 
Resolution Dynamics Limb Scanner, which look at the 
atmosphere at an oblique angle to produce good vertical 
resolution, but low (and difficult to characterize) horizontal 
resolution. 

Satellite data are typically transmitted to the ground in raw 
form, and then processed to higher levels (Table 2). While the 
variety of data at lower processing levels (0 and 1) is driven 
largely by the instruments and satellites involved, the data 
products at level 2 often proliferate as the science team 
develops numerical algorithms to retrieve a multitude of 
geophysical measurements. Often, this is limited only by how 
many measurements the instrument science team thinks can be 
safely retrieved from the lower level data. In some cases, 
alternate algorithms may also be used to retrieve the same 
measurement. For example, ozone concentration from the 
Ozone Monitoring Instrument is derived using both a multi-
wavelength Differential Optical Absorption Spectroscopy 
method [2] and a “TOMS-like” algorithm to maintain 
continuity with the predecessor Total Ozone Mapping 
Spectrometer instrument [3]. Similarly, aerosol optical depth 
from the MODIS instrument is computed using both a “dark 
target” algorithm for oceans and low-reflectance land surfaces 
[4] and a “deep blue” algorithm [5] for high-reflectance 
surfaces such as deserts. The measurements are often 
accompanied by ancillary variables describing data quality, 
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first-guess values, and the like. A further proliferation often 
takes place in Level 3 processing, which aggregates the data in 
space and time to a (usually regular) grid. In this case, science 
teams will often output a daily and a monthly set of 
measurements, representing different time aggregations. Some 
also include 5-day or 8-day aggregation for Earth observations 
where daily data tend to have sparse coverage, but sub-
monthly variations are of interest to the science community.  
Finally, assimilation of the data into models, such as the 
Modern Era Retrospective-Analysis for Research and 
Applications [6], results in regularly gridded, gap-filled 
measurements, often corresponding to the measurements 
available at Level 2 or 3. In addition, first time derivative 
(“tendency”) versions of many of the measurements are 
included in the model output. 

II. VARIETY CHALLENGES AND SOLUTIONS 
In many ways, the variety of data available from NASA 

Earth observation datasets is a boon to the science and 
applications communities: the chances of a suitable 
measurement existing for a given science application are 
greater. However, the variety in the types of data available 
also presents a challenge to the organizations responsible for 
providing support related to the data. The EOSDIS system has 
addressed this from the beginning by assigning data 
management duties to a network of data centers, based on 
science discipline (Table I). These data centers, called 
Distributed Active Archive Centers (DAACs) employ science 
experts in their assigned disciplines, provide discipline-
specific documentation, and even develop tools of particular 
interest to the science users in that discipline, such as the 
Charctic Interactive Sea Ice Graph at the National Snow and 
Ice Data Center1. 

Of course, the variety of available data is a boon to science 
users only insofar as they can identify data that meets their 
needs. In order to mitigate the distributed nature of EOSDIS 
from a data discovery standpoint, a Common Metadata 
Repository (CMR) has been developed, which contains both 
dataset-level (directory) and file-level (inventory) information 
about the holdings at the EOSDIS data centers. The CMR is 
populated by metadata published by the DAACs as they 
produce new data or receive new data from their providers. 
The CMR is served by a search engine that can be accessed 
via an application program interface (API) or via the 
OpenSearch convention with Geo and Time extensions [7]. In 
addition, a search user interface (Earthdata Search) for the 
CMR is available, so that users need not know which DAAC 
has a particular dataset in order to discover it. As of 22 August 
2015, EOSDIS presents 6055 datasets to users via Earthdata 
Search. In order to aid navigation of this large number of 
datasets, the search interface includes both a keyword search 
and interactive facet filtering capability. 

In addition to the large number of data collections, the 
individual data files in most collections contain many different 
measurements, manifesting in an even larger number of 
 

1 http://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/ 

individual data variables. For instance, gridded atmospheres 
products from both the MODIS and Atmospheric Infrared 
Sounder (AIRS) instruments contain in excess of 800 
variables apiece, which span several disciplines. The AIRS 
data include both atmospheric chemistry (methane, carbon 
monoxide, ozone) and atmospheric dynamics (temperature, 
moisture, clouds) variables.  Most end users are likely to be 
interested in a small subset of variables in such files. 
Transferring the entire file, only to have the user discard most 
of it is clearly an unnecessary use of network and input/output 
resources. 

The solution to this dilemma can be found (mostly) in the 
Open-source Project for a Network Data Access Protocol 
(OPeNDAP) [8]. OPeNDAP is enabled through deployment of 
an HTTP-based OPeNDAP server where the data are stored 
and configuring it to serve the desired data over the network. 
In turn, an OPeNDAP client can extract the variables of 
interest, or even subsets (“hyperslabs”) of those variables. The 
OPeNDAP client software is built into the popular libraries 
(both C and Java) for network common data form (NetCDF). 
The result is that any tool built with the NetCDF library (and 
“DAP-enabled”) can read data subsets across the network as if 
they were read from local NetCDF files. These tools range 
from full-featured analysis and visualization tools like 
Panoply2, the Integrated Data Viewer3, and ArcIMS, to plug in 
modules for IDL and Matlab to the basic command-line 
utilities provided with the NetCDF library (e.g., ncdump). In 
addition, some OPeNDAP servers, particularly the ones using 
the Hyrax implementation4, support a NetCDF response that 
allows a user to download a NetCDF file subset using web 
browsers or analogous command line utilities like wget or 
curl. 

The serving of data through OPeNDAP also mitigates 
another aspect of Variety, the heterogeneity of data formats. 
EOSDIS has long promoted use of Hierarchical Data Format 
as a standard within the system. Nonetheless, a significant 
number of data collections are stored in other formats, 
including NetCDF, ASCII and unstructured binary formats. 
However, serving such data through OPeNDAP provides a 
standard, uniform interface to data for all of these formats. 

Until recently, OPeNDAP was deployed for a minority of 
eligible datasets within EOSDIS. However, a recent U.S. 
federal initiative named the Big Earth Data Initiative (BEDI) 
[9] has enabled the proliferation of OPeNDAP-served datasets 
within EOSDIS. Note that not only does this help address the 
Variety aspect of multi-variable data files, but the spread of 
subsetting capabilities also helps the Volume challenge faced 
by many end users, who typically have more limited computer 
and data management resources available than institutional 
data centers. 

In addition to the subsetting capabilities, the Hyrax 
implementation of OPeNDAP includes a plug-in data handler 
based on NetCDF Markup Language (NcML) with three 
capabilities that help to further smooth over the data variety 
 

2 Available at http://www.giss.nasa.gov/tools/panoply/ 
3 Available at http://www.unidata.ucar.edu/software/idv/ 
4 See http://docs.opendap.org/index.php/Hyrax 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

problem (Fig. 2). The NetCDF-based tools that support map 
visualization (such IDV, Panoply, and ArcIMS) often depend 
on a standard representation of coordinate variables in the data 
files that follows the Climate-Forecast (CF) convention. The 
NcML handler allows the data center deploying the server to 
amend or even substitute for the internal file metadata to 
satisfy the CF convention, thus smoothing over some of the 
irregular variations among data products and making them 
more usable in the analysis tools.  

Another key capability of the NcML handler is the ability to 
present just a subset of the data file’s variables to the end user 
or client. Thus, the data center serving AIRS data might 
deploy one NcML handler configuration that presents only the 
methane-related variables, another that exposes only the 
carbon-monoxide variables, another that shows only 
temperature, and so forth. This capability has the salutary 
effect of allowing us to quickly create new data products 
tailored to specific communities without duplicating the actual 
data. This also allows us to form “single-parameter” 
data products, which are easier to align with layer-oriented 
data tools such as visualizers or map servers such as the 
EOSDIS Global Imagery Browse Services, which are also 
being populated as part of the BEDI effort.  

On the other hand, DAACs are typically oriented toward 
managing actual data files, whereas these NcML based single-
parameter subsets exist largely in a virtual, on-demand sense. 
Rather than force DAACs to instantiate a full set of file-level 
metadata for the single-parameter versions of data served 
through OPeNDAP, the Common Metadata Repository has 
been enhanced to support “virtual data products.” These are 
derivative products whose metadata are cloned from their 
parent “real” data products and modified slightly to describe 
the virtual product. Then, as file-level URLs for the parent 
data product are published to the CMR, the derivative URLs 
are computed automatically, using configurable generation 
rules, and inserted into the file-level CMR database. This 
capability has proven to have additional applications, 
particularly with respect to on-demand standard products. 

A third benefit of serving data through OPeNDAP is the 
ability to represent a data collection of individual files as a 
single virtual “granule” of data through aggregation. For both 
the Hyrax and THREDDS Data Server varieties of OPeNDAP, 
this is done via an NcML file, while “data descriptor files” 
serve the same purpose with the GrADS Data Server. The 
BEDI effort is improving the performance of the Hyrax 
implementation (the most common deployment type in 
EOSDIS) with respect to aggregation performance. 
Aggregation reduces the complexity of dealing with variations 
in temporal resolution data collections, as a user can simply 
request a time range of data from a single virtual “granule”. 

III. CONCLUSION 
The increase in data available through OPeNDAP that is 

enabled by BEDI is mitigating part of the Variety problem of 
EOSDIS data collections. However, in order to realize the full 
benefit, the user community needs simple instructions on how 
to access, and particularly to subset and reformat, data through 

OPeNDAP. Since many prospective users are scientists or 
applications users, i.e.., not software engineers, a how-to guide 
is envisioned that offers several options for accessing subsets 
via OPeNDAP. These will include command-line versions of 
access recipes in addition to popular scripting languages such 
as Python, which has modules that support NetCDF (and thus 
OPeNDAP) access. The NetCDF Common Operators (NCO) 
is especially useful in this context, as the package supports 
specification of spatial subsets using latitude and longitude. 
The package converts these specifications into the grid indices 
required in a typical OPeNDAP constraint expression, for 
datasets that support CF coordinates. 

One of the most nettlesome of the remaining Variety 
problems arises from the plethora of data collections in 
EOSDIS. For certain measurements, such as Ozone and 
Aerosol Optical Depth, the number of available data 
collections is several hundred, so that the winnowing process 
is still problematic, even with keyword-based filtering and 
faceted browse.  In order to tackle this, we are working on 
improving relevancy ranking. Rather than treating the data 
collection metadata records primarily as documents for text-
based search (which produces a number of false positives), the 
Common Metadata Repository search engine will be enhanced 
to employ a relevancy ranking algorithm that is more in line 
with how science users make decisions about data collections. 
This will include a heightened emphasis on terms that describe 
the measurements themselves, heuristics on which data sets 
are more likely to be usable to the widest community, and 
metrics on how many users download data for a given data 
collection. In addition, temporal relevance and spatial 
relevance will be computed, with preference given to data 
collections that cover the whole area or time period specified 
by the user. 
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Fig. 1. Satellites in the A-Train constellation. These satellites host a 
number of instruments with very different scanning geometries 
(indicated schematically by the colored cones emanating from the 
satellites.) This diagram (not to scale) is adapted from the original at 
http://atrain.nasa.gov/images.php.  

 

 
Fig. 2. NcML (NetCDF Markup Language) helps mitigate the 
Variety problem in Earth observation data by allowing a 
provider to present a single parameter, by allowing 
supplemental metadata to non-CF-compliant data, and by 
presenting a time-aggregated view of the dataset. EOSDIS’s 
Common Metadata Repository further abstracts the single-
parameter view by supporting virtual data products derived 
from actual parent data products. 
 
 
    
    
 

TABLE 1 
ALLOCATION OF SCIENCE DISCIPLINES TO DAACS 

DAAC Disciplines / Subject Areas 

Alaska Satellite Facility 
DAAC 

Synthetic Aperture Radar, sea ice, polar 
processes, geophysics 

Atmospheric Science 
Data Center 

Aerosols, clouds, radiation budget, 
tropospheric chemistry 

Crustal Dynamics Data 
Information System 

Solid earth, space geodesy 

Global Hydrology 
Resource Center 

Hydrologic cycle, sever weather interactions, 
lightning, atmospheric convection 

Goddard Earth Sciences 
Data and Information 
Services Center 

Atmospheric composition and dynamics, 
global modeling, global precipitation, solar 
irradiance, water and energy cycle 

Land Processes DAAC Ecosystem variables, land cover, radiation 
budget, surface reflectance / radiance, surface 
temperature, topography, vegetation indices 

Level 1 and Atmosphere 
Archive and 
Distribution System 

Atmosphere, MODIS radiance 

National Snow and Ice 
Data Center DAAC 

Cryosphere, frozen ground, glaciers, ice 
sheets, sea ice, snow, soil moisture 

Oak Ridge National 
Laboratory DAAC 

Biogeochemical dynamics, ecological data, 
environmental processes 

Ocean Biology DAAC Ocean biology, sea surface temperature 

Physical Oceanography 
DAAC 

Gravity, ocean currents and circulation, 
ocean surface topography, ocean winds, sea 
surface salinity, sea surface temperature 

Socioeconomic data and 
applications data center 

Environmental stability, geospatial data, 
human interactions, land use 

 

TABLE 2 
SATELLITE DATA PROCESSING LEVELS 

Processing 
Level Definition 

0 Reconstructed, unprocessed instrument/payload data at 
full resolution (with communications artifacts removed) 

1A Level 0 data that have been time-referenced and annotated 
with ancillary information (calibration and georeferencing 
parameters) computed and appended but not applied 

1B Level 1A data processed to sensor units, usually 
georeferenced and with calibration applied 

2 Derived geophysical variables at the same resolution and 
locations s the Level 1 source data 

3 Variables mapped on uniform space-time grids, involving 
temporal and/or spatial aggregation 

4 Model output or results from analyses of lower level data 
(e.g., variables derived from multiple measurements) 

 


