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CRITERIA FOR YIELDING OF DISPERSION-STRENGTHENED ALLOYS*

et : . G. S. ANSELL and F. V. LENEL}

A dislocation model is presented in order o account for the yield behavior of alloys with a finely
dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs
in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or
plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation
sources,

Equations derived on the basis of this model, predict that the yield stress of the alloys varics as the
reciprocal square root of tho mean free path hetween dispersed particles. Experimental data is presonted
for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with
the yield strength varintion as a function of disporsion spacing predicted by this theoretical treatment.

CRITERE DE RUPTURE. POUR UN ALLIAGE DURCI PAR DISPERSION

Un modele de disloecation a été présenté pour expliquer le comportement de la rupture des alliages a
phase secondaire finement disperséo. Le eritére de rupture employé dans eo modéle est qu'une déforma- -
tion appréeiable se produit dans ces allinges quand Ia tension de cisaillement due & des empilements de
disloeations. est sufisante pour eauser une rupture vu une déformation plastique des particules de la
phase secondaire dispersée relachant Ia tension arridre sur les sourcos de la dislocation.

Des équations dérivées sur la base de ee modéle prédisent que la limite élastique des alliages vario
en raison inverse du earré des libres parcours moyens entre les particules dispersées. Des valeurs
expérimentalos sont connues pour quelques allinges du type SAP, des alliages & précipitation structurale
et des aciers, qui sont en bon accord avee la variation de la limite élastique en fonetion de la distance
entre particules dispersées prédites par ces considérations théoriques. - - .

FLIESKRITERIEN FUR DISPERSIONSGEHARTETE LEGIERUNGEN

Ein Versetzungsmodell, welches dem Flieverhalten von Legierungen mit einer feindispersen zweiten
Phase Rechnung triigt, wird ausgearbeitet. Das in diesem Modell beniitzte FlieBkriterium besagt, daf}
in solchen Logierungen ausgiebiges Flieflen einsetzt, wenn die von aufgestauten Versetzungsgruppen
herrithrende Schubspannung ausreicht, um die dispersen Teilehen der zweiten Phase zu durchbrechen
oder plastisch zu verformen; die Riickspannung auf die Versetzungsquelle wird dann verringert.

Die auf Girund dieses Modells abgeleiteten Gleichungen sagen voraus, dafl sich die FlieBspannung wie
die reziproke Quadratwurzel aus der mittleren freion Weglingo zwischen den dispersen Teilchen vorhilt.
Experimentelle Ergebnisse an verschicdenen SAP-Legierungen. ausscheidungsgehirteten Legierungen
und Stihlen werden mitgeteilt, bei welchen die Variation der FlieBspannung als Funktion der Teil-
chenabstinde gut mit den Voraussggen der theoretischen Behandlung iibereinstimmt. /

INTRODUCTION where g is a shear modulus, b is the Burgers vector

Plastic deformation in erystals is due to movement
of dislocations. Yielding takes place when many
dislocations move large distances through the lattice.
Dislocations are nucleated at sources in the lattice due
to an applied stress. If the stress required to nucleate
dislocations is greater than the stress necessary to
move dislocations appreciable distances along a slip
plane, the yield stress of the material will equal the
stress necessary to propagate dislocations from a
- source. In alloys where a continuous three-dimensional
dislocation network provides Frank-Read sources,
this stress is equal to

b

nucléating stress N = ~— (1)
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and £ is the linear distance between nodes in the
network. For unresolved stresses and strains the
right hand side of this equation should be multiplied
by two. -

In a dispersion-strengthened alloy, however, the
stress necessary to move dislocations appreciable
distances along a slip plane may be higher than the
stress necessary to nucleate dislocations from a source.
In this case, the yield stress of the alloy is determined
by the stress required to move dislocations freely in a
crystal lattice containing a uniformly dispersed
second-phase. This paper presents a model for
caleulating this stress.

MODEL :
Dislocation loops are considered to be formed at
some source under the action of an applied stress. The
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nature of the source is not critical in considering the
model. As tho dislocation loops expand from the
source, they are either blocked from further motion
by the dispersed second-phase particles, or they
continue to move by bowing about the dispersed
particles leaving residual dislocation loops surrounding
each particle. The stress reqiiired to bow dislocation
loops about the dispersed particles is the yield stress in
the Orowan criterion,:® which predicts the yield
stress of dispersion strengthened materials to  be
inversely proportional to the dispersed-particle
spacing. Several investigators®-% have tried to apply
this relationship to their experimental data. However,
in our modol, it is postulated that even when the
dislocations dispersed  particles,
leaving residual loops surrounding the particles,
yielding does not result. This postulate can be
supported by the following argument. The first

move past  the

dislocation nucleated at a source moves in the slip”

plane until it is blocked from further movement by its
interaction with dislocations nucleated from other
sources. In single phase materials this blockage of the
lead dislocation is overcome by the increase of stress

“on the dislocation due to the pile-up of subsequently

nucleated dislocations behind the lead dislocation.
In a dispersion strengthened alloy, however, the lead
dislocation remains blocked because (1) the stress
field of the residual loops—as in the Visher et al.(®
work hardening model—deercases the effective stress

on the dislocation source. Therefore, fewer disloca-

tions are nucleated at cach source; (2) the stress field
of the residual loops interacts with the piled-up
dislocation group changing the pile-up spacing. Both
of these factors decreases the stress on the lead
dislocation making it easier to be blocked. Therefore,
the plastic strain, &, of the dispersion strengthened
alloy is
e = MN#R?* (2)
where M is the dislocation source density, N is the
number of dislocations nucleated at cach source. R is
the average radius of the dislocation loops and b is the
Burgers vector of the dislocation. Assuming reason-
able values for these: M = 109 sources/em?, N == 10
dislocations/sonrce, R = 1/2 (M-3) and b =2 X
10-8 em2, the resultant strain is about 10-%. This is
much less than the strain usually associated with
yici(]ing. Thercfore, plastic deformation stops and
yielding has not occurred when the back stress on the
dislocation source, due to an array of either blocked
dislocations or of residual loops around the particles,
exceeds the applied stress.
Under these conditions, in alloys with fine- dis-

~ persions, no apparent yielding has yet occurred. In
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order to cause such yielding, the shear stress due t(\)
the dislocations piled-up around or against ~the
particles must fracture or plastically déform the
dispersed second-phase particles.” This relieves the
back stress on the dislocation source and also increases
the stress on the lead dislocation. The dislocations
then can sweep out arcas on the slip plane which are
large with respeet to the dispersion spacing.

The fineness of a second-phase dispersion necessary
to make its fracture or plastic deformation the
critical requirement for yielding, depends upon the
density of dislocation sources in the alloy. Even at
one half or more of the absolute melting temperature
of the matrix metal, fracture or plastic deformation
of the second-phase particles should be necessary for
appreciable yielding unless recovery takes place.

.Recovery can occur either by climb of piled-up

dislocations at a rate exceeding the applied strain
rate, or by cross slip of piled-up dislocations out, of the
slip plane if the geometry of the dispersed second-
phase particles permits. The possibility of recovery
is not considered in the following caleulation.
THEORY

On the basis of the preceding model, the yield
strength of a dispersion strengthened alloy is now
evaluated. Tn this evaluation the shear stress on the
dispersed particles due to dislocations piled-up against
or residual loops piled-up around the particles is
caleulated for straight dislocation segments piled-up
against a straight barrier. This calculation is
applicable to dispersion-strengthened alloys which
contain dispersed particles of such a size and shape,
o.g. flat plates and Jarge spheres, that the piled-up
dislocations have a large radius of curvature and can
be considered straight. This is the case for many of
these alloys, c.g. SAP-type alloys and most steels.
When the radius of curvature is small this calculation
of the shear stress on the particles no longer holds
and the Fisher ef al.® treatment becomes applicable.
These two approaches are then compatible, each
being the limiting case of the other. In this treatment
the shear stress, =, on a dispersed second-phase
particle due to a piled-up array of dislocations can be
considered to be equal to

Prz=NG; (3)

where 7 is the number of dislocation loops piled-up
against or around a dispersed particle and o is the
applied stress. The number of dislocations, n, acting
dn a particle depends on the space between the
particles, by

n=-——:- | (4)
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- where 1 is the spacing between dispersed particles
and p is a shear modulus of the matrix metal
(1 &~ A/[1C(Cyy — Cyp)], for cubic metals, C',; being
the usual elastic constants). Combining equations
(3) and (4), the shear stress, 7, on the particle is equal
to . v

2102 .
= _ﬁ[; (5)

The dispersion strengthened alloy yields when the

shear stress on the particle is equal to either the yield

stress or fracture stress of the dispersed particle.

The limiting stress, F, that will cither plastically
deform or fracture the dispersed particles is pro-
portional to a shear modulus, x*, of the particle.
Therefore

*
F=t. (6)

where €' is a constant of proportionality dependent
upon the degree of lattice perfection of the dispersed
particles. One would not. expect to find any dis-
locations within particles whose volumes are less than
105 em3.  Even larger particles of refractory
materials will not deform plasticailly under simple
shear stresses except at very high temperatures, e.g.
1200°C for Al,0,.” For these cases, the yield stress
of the dispersed particles is approximately equal to
the fracture stress, and it can theoretically be shown
-that the constant of proportionality, (!, in equation
(6) is somewhere in the neighborhood of thirty.®
For larger particle sizes and for refractory particles
at high temperatures, the yield stress is much less than
the fragture stress. For these cases, the constant of
proportionality, C, in equation (6) is experimentally
found to be equal to 10* for most metals.(®

Combining equations (5) and (6) gives the maximum
stress that can be applied to the alloy before yielding
oceurs. '

The yield stress of the alloy is therefore equal to

i :
yield stress = /%"}:/%_ ()

If the distribution of second-phase particles is such
that the stress calculated from equation (7) is less than
the stress necessary to cause a dislocation source to
nucleate dislocations, the equation is no longer
applicable. In this case, the yield stress of the alloy
should he calculated from this dislocation nucleating
stress, which is the yield stress of the matrix metal
without a dispersed second-phase. If a continuous
three-dimensional  dislocation network provides
Frank-Read dislocation sources, this stress is given
. by equation (1).
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This model is based on yielding occurring when the
area swept out per dislocation loop is large as
compared to the dispersed particle spacing. The
particles act to hinder dislocation motion. The
derivation is similar to that given by Petch?, where
grain boundaries are the blocking structure.

EXPERIMENTAL VERIFICATION AND
DISCUSSION

With the model outlined, it should be possible to
predict the yield strength of an alloy containing a
finely dispersed second-phase. In most of these

alloys it is not possible to evaluate yield strength

quantitatively from equation (7) for two reasons:
(i) the value of the constant of proportionality, €, in
equation (6) is very approximate since it depends
upon what assumptions are made in its calculation;

“and (ii) the value of the shear modulus of the dispersed
- phase may not be known, or if it is known for the

phase in bulk form, it may not apply to the fine
particles in the dispersion because of differences in
structure and composition. The model predicts,
however, the variation of the yield strength with the
degree of dispersion in these alloys, and under
certain circumstances, the variation of yield strength
with temperature. '
According to equation (7) the yield strength should
vary linearly with the reciprocal of the square root of
the dispersion spacing. The line should extrapolate
to zero for dispersions with an infinite spacing. In
order to ‘verify this relation, data are necessary for
these alloys on the spacing of the second-phase and
their yield strengths. The yield strength predicted by
thé model is the stress required to produce apparent
yielding in the alloy. In single crystals this stress can
be identified with the critical resolved shear stress.
In polycrystalline materials this stress corresponds
most closely to the elastic limit, an experimentally
difficult property to determine. In place of the
clastic limit, the stress required to produce 0.2 per
cent offset may be used. This stress is assumed to be
a constant amount greater than the elastic limit for a
given series of alloys, and therefore should also vary
with the dispersion spacing as predicted by equation
(7). In. this case, the intercept for alloys with an
infinite dispersion spacing is no longer zero, but is
some positive stress. Roberts ef al.™ determined the
lower yield strength of several hypoeutectoid,
eutectoid and hypereutectoid steels, some of them
with a pearlitic, others with a spheroidized structure.
In a fow cases the clastic limit was also measured.

. For this same series of steels, the authors determined

the mean ferrite path, which they defined as the mean
distance between carbide particles or pearlite patches.
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@ PLAIN CARBON STEELS, 25°C
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Fia. 1. The lower yield points of several hypoeutectoid,

eutectoid and hypereutectoid steels aro plotted versus

the reciprocal square root of dispersion spacing. The
line reprosents the least-squares fit of the data.

They plotted the lower yield point, and where
available the elastic limit, versus the logarithm of the
mean free path. This relationship, which was first
proposed by Gensamer et al.'? for flow stress is
empirical however. The explanation Gensamer and

co-workers proposed was bhased upon an assumed

relationship between the rate at which dislocations are
generated and the applied stress. This explanation
no longer seems adequate in the light of modern
dislocation theory. In accordance with the model
post-ulafcd in this paper, the lower yield points of
Roberts et al. were re-plotted in Fig. 1 versus the
reciprocal of the square root of the spacings. A least-
squares line has  been drawn assuming a linear
relationship. The fit is as satisfactory as that shown
in the original plot of Roberts ef al. Unfortunately,
too fow values were available for establishing a valid
correlation between elastic limit and spacing.

Lenel et al.1® determined, by quantitative eleetron
microscopy, the averago spacing between the plate-
like oxide particles for a series of flake aluminum
powder extrusions. For these same extrusions, Lenel
and co-workers™® determined the room temperature
yield strength at 0.2 per cent offsef and the ultimate
tensile strength at 400°C. At 400°C, the ultimate
tensilo strength and the tensile yield strength are
almost cqual.™ In Fig. 2, the strength ralues at
the two t(“l)])(?l‘(lt!ll‘(‘:ﬂ are again plotted vs. the
reciprocal of the average spacing, with the lines
representing the least-squares fit of the data. This
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Fic. 2. The room temperature yield strengths and the
ultimate tensile strengths at 400°C for several Al-
Al,Q, SAP-type alloys are plotted vorsus the reciprocal
square roof of the dispersion spacing. Bach line re-
presents the least-squares fit of the data.
plot does not exhibit any more scatter than the
empirical Gensamer type of plot suggested by Lenel
for his data.

The critical resolved shear stress of a series of
overaged high-purity aluminum-copper alloys and
the spacing between the second-phase particles in
these alloys was determined by Dew-Hughes and
Robertson'®. They interpreted the data asﬂs‘upporhing
Orowan’s yield strength theory. A least-squares
analysis of the data plotted according to Orowan’s
theory, however, shows neither predicted linear
variation of critical resolved shear stress with the
reciprocal of the dispersion spacing, nor a line
intercept of zero for an infinite spacing. On the other
hand, if their values for critical resolved shear stress
are plotted vs. the reciprocal of the square root of the
particle spacing as is shown in Fig. 3, a better fit is
obtained. The line representing the least-squares fit
of the data goes through the origin. This indicates
that the proposed model, in which yielding takes place
when the second-phase particles shear, would also
apply to aluminum alloys containing a dispersion of
the theta
consider this possibility, but conclude from an

phase.  Dew-Hughes and Robertson
examination of the micrograph of a fractured sample
near its fracture surface that the particles do not
shear during plastic deformation of the matrix.
However, we do not believe that the shear of the
particles can actually be detected by this type of
examination.
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Fia. 3. The critical resolved shear stress of soveral

overagoed Al-Cu alloys are plotfed versus the reciprocal

square root of the dispersion spacing. The line repre-
sonts the least-squares fit of tho data,

Inspection of equation (7) shows that of the terms
which determine yield stress, only the shear moduli
have an appreciable temperature dependence. There-
fore, if the temperature dependence of these shear
moduli is known, or a reasonable approximation can
be made, the variation of yield strength with
icmpcmtrure should be predictable according to the
equation

O == Ogs(fhptin™* | flasptos*)"? (8)
in which ¢ is the yield stress, g and p* the shear
moduli of the matrix metal and dispersed phase,
respectively; the subscripts 7' and 25, refer to the
values of the properties at the test temperature and
at 25°C.

This predicted temperature dependence can only be
checked by determining the temperature dependence
of the elastic limit, not that of the offset yicld strength.
Although it is reasonable to assume that the off set
yield strength for a given series of alloys at any given
temperature is a constant amount greater than the
elastic limit, this amount is a function of temperature.
Therefore, the temperature dependence of the elastic
limit cannot be deduced from that of the off set yield

strength. Unfortunately, no data on the variation of

the elastic limit with temperature for any dispersion
strengthened alloy are eurrently available.

CONCLUSIONS
(1) The model presented appears to explain the
yielding behavior of a series of dispersion-strengthened
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alloys for which no other theory seems satisfactory.

(2) The strengthening effect given by equation (7),
due to the dispersed second-phase will be apparent
only if it is greater than the yield stress of the matrix
metal. This indicates that the fineness of dispersion
required for strengthening is a function of the shear
moduli of the matrix metal and of the dispersed

~second-phase and is thus dependent upon the parti-

cular alloy system and test temperature.

(3) When treated in terms of this model, coherency
effects of the dispersed second-phase particles are only
important where the range of additional lattice strain
is of the order of the dispersed particle spacing. Under
these conditions, the effect of a coherent second-phase
would be to change the dispersion spacing.

(4) Particle geometry is important in two ways:

“For determining the mode of particle shear which

causes yielding, and preventing recovery by cross-slip
and climb.

(5) Much additional work must be done in order to
verify the model, such as quantitatively evaluating
from fundamental constants and determining the
temperature dependence of the yield strengths for
several alloy systems. The difficultics involved in
theso areas have heen mentioned previously, but
these should not prove insurmountable.
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