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ABSTRACT 

This report is the first systematic evaluation of the effects of prolonged weightlessness on the 

bipedal postural control processes during self-generated perturbations produced by voluntary upper 

limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised 

postflight postural control. We examined the neuromuscular activation characteristics and center of 

pressure motion (COP) associated with arm movement of eight subjects who experienced long dura-

tion spaceflight (3-6 months) aboard the Mir space station. Surface electromyography (EMG), arm 

acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder 

flexions prior to and after spaceflight. Subjects displayed compromised postural control after flight as 

evidenced by modified peak-to-peak COP anterior-posterior and medio-lateral motion and COP pathlength 

relative to preflight values. These changes were associated with disrupted neuromuscular activation character-

istics, particularly after the completion of arm acceleration (i.e. when subjects'were attempting to maintain their 

upright posture). These findings suggest that although the subjects were able to assemble coordination modes 

that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilib-

rium evident in their preflight performance is compromised after long duration spaceflight. 
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INTRODUCTION 

Astronauts returning from spaceflight exhibit a variety of postural control problems. These 

include deficits while balancing on rails of varying widths (13) increased sway of the body's center of 

gravity (COG) (33,34) modifications in body segment motion (1) and increased response latencies to 

external perturbations (18). Preliminary reports indicate that returning astronauts have difficulty as-

sembling the coordination strategies necessary to efficiently perform rapid voluntary arm raises during 

bipedal stance (18,20). These deficits are accompanied by decreases in lower limb strength (12), in 

part stemming from muscular atrophy (24) and hyperactive proprioceptive and neuromuscular reflexes 

(16,17,35). Moreover, returning astronauts experience alterations in vestibular system functioning 

(36), head movement control (4) and abnormal proprioceptive functioning (38) which also can con-

tribute to postural control deficits. 

Previous research examining postural control has primarily centered on various manipulations 

of sensory input or responses to external perturbations. Few investigations have assessed returning 

astronauts' ability to perform voluntary limb movements with the constraint that bipedal equilibrium 

must be maintained (7,8,30). The present study addresses the question of whether humans who have 

experienced extended periods of microgravity (3-6 months) are able to perform a vigorous arm move-

ment while maintaining bipedal upright stance. 

The arm movement utilized, a rapid unilateral arm raise, has been used extensively as a method to 

investigate the ability of normal and patient populations to control self-generated postural perturbations. Belen'kii 

and his colleagues (2) were the first investigators to report that trunk and lower limb muscles are activated prior 

to the initiation of arm motion. This "anticipatory" postural activity is specific to the particular arm raise task 

(e.g. unilateral versus bilateral, weighted versus non-weighted) and counters the potentially destabilizing reac-

tive forces arising from upper limb motion (6). A variety of patient populations with postural control problems 

also have difficulties while performing voluntary arm movements. These difficulties are manifested as inappro-

pilate anticipatory neuromuscular activation strategies, increased sway of the COP, and decreased arm move-

ment velocity relative to normal subjects (14,37). Therefore, the rapid arm raise is an ideal task with which to 

evaluate the ability of returning astronauts to perform a voluntary limb movement while maintaining an upright 

bipedal posture. We hypothesized that during the arm raise task after spaceflight subjects would display



diminished postural stability quantified using COP measures (see Methods). Measures of COP motion as 

indices of postural stability have often been used to assess differences in postural control between normals and 

patients (9, 23,25) and healthy young adults and the elderly (11,26,28). 

In addition to determining if returning astronauts could maintain preflight levels of postural control and 

arm acceleration, we were interested in how neuromuscular activation characteristics associated with the arm 

raise were affected by spaceflight. Therefore, we assessed potential modifications in muscle activation strate-

gies in response to long duration spaceflight. We were particularly interested in two questions regarding 

neuromuscular activation: whether, after spaceflight, subjects could produce neuromuscular patterns that were 

similar to preflight patterns 1) dUring the movement initiation phase and 2) after the self-generated perturbation 

(i.e. after arm acceleration was completed). Previous investigators have detailed changes in proprioceptive 

functioning and loss of muscle strength, both of which may impact the ability to produce task-appropriate 

neuromuscular control (24,38). Thus, we hypothesized that the neuromuscular patterns associated with the 

maintenance of postural stability in response to the reactive forces produced during the arm movement would 

be more disrupted after flight than those associated with the inittiation of the arm movement.



METHODS 

Subjects 

Eight subjects (two US astronauts, six Russian cosmonauts, mean age 43±8 years) who experienced 

three to six months of microgravity aboard the Mir space station participated in this study. All were volunteers 

and had completed the NASA Institutional Review Board for Human Research Informed consent form. 

Protocol

The task comprised 15 right shoulder flexions performed from a bipedal standing position. 

Subjects assumed a comfortable stance on a force plate (Kistler Instruments Inc., Amherst, New York), arms 

resting at their sides with the right elbow extended. The self-initiated movements consisted of first closing their 

eyes and then raising the arm by flexing the shoulder as rapidly as possible until the arm was parallel to the force 

plate. Throughout the task subjects were required to maintain their upright bipedal stance (i.e. no stepping or 

falling). Testing was performed approximately 10 days before spaceflight and, with one exception, one day 

after landing. One crewmember was tested on landing day. All subjects were well-practiced prior to the fmal 

preflight data collection. To ensure that subjects adopted the same foot placement before and after spaceflight, 

during preflight testing the borders of the feet were marked relative to the axes of the force plate. These 

markings were then used to properly position the subjects during postflight testing. 

Data Collection and Processing 

Tangential arm acceleration was measured using a uniaxial accelerometer (Kistler Instruments Inc.) 

mounted on a wrist splint. Additionally, ground reaction forces from the force plate (Kistler Instruments Inc.) 

and surface EMO from the right anterior deltoid (RAD), left (LBF) and right biceps femoris (RBF), left 

paraspinals (LPA), right lateral gastrocnemius (RGA) and right tibialis anterior (RTA) were obtained during 

data collection. These muscles were monitored because they are activated in most subjects in preparation for 

and/or during the arm raise task (2,7,14,22). After cleaning the skin, preamplifier electrodes (Therapeutics 

Unlimited Inc. Iowa City, Iowa) were attached to the skin over the muscles using adhesive collars. To prevent 

motion artifacts, the electrodes were further secured with neoprene wraps or hypoallergenic tape. All data 

were digitally sampled at 500 Hz. Due to temporal and programmatic constraints we were unable to obtain 

kinematic data. 

Arm angular acceleration:



For each trial, the gravity component of the tangential arm acceleration was removed and the remain-

ing linear acceleration component was divided by the radius of the arm to provide arm angular acceleration 

(29). Arm movement initiation was determined using the resulting angular acceleration waveform. For each 

trial, the time of arm movement initiation was used to synchronize the force plate and EMG data records that 

were collected on separate computers. The arm acceleration signal was recorded on both computers which 

enabled data synchronization. Arm movement initiation time was also used to obtain a data window for each 

trial that consisted of 1 second before and 1.25 seconds after arm movement initiation. The 1 second interval 

prior to arm movement initation was chosen to obtain a quiet EMG and COP baseline prior to the initiation of 

"anticipatory" neuromuscular activity and associated COP motion. The 1.25 second interval after arm move-

ment initation encompassed the arm movement itself and the time required for the subjects' COP maximal 

excursion to be reached and begin to return to its starting point. This data was of appropriate length to 

investigate the features of postural stability and the underlying neuromuscular activation during the arm raise 

task. Using the appropriate zero crossing of the accelerometer waveform, two movement phases were iden-

tified: 1) the initiation phase - from the beginning of the data record through the end of arm acceleration and 

2) the recovePy phase - from the beginning of arm deceleration until the end of the data record, (Figure 1). The 

division of the trial into the initiation and recovery phases enabled us to assess the similarity of the initial phasic 

activation features used to prepare for and initiate arm movement separately from the activity primarily used to 

arrest the arm motion and maintain/regain bipedal postural control. Peak acceleration values were obtained 

from the acceleration records of each trial. 

Insert Figure One about here 

Center ofpressure: 

For each trial, the COP signals were obtained from commercially available software (Bioware 2.0, 

Kistler Instruments Inc.) and then tow pass filtered with a 10 Hz cut-off (Butterworth, 4th order, zero phase 

response). Our operational measures of postural stability were anterior-posterior and medio-lateral peak-to-

peak motion and COP path length. Peak-to-peak COP motion within each trial in the anterior-posterior (A-

P) and med io-lateral (M-L) plane and the COP pathlength within the two identified phases were calculated.
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Since the unilateral arm raise creates a torque about the body's longitudinal axis, the COP pathlength measure 

includes motion in both the M-L and the A-P planes. As our subjects were healthy and well-practiced in the 

task, we considered our preflight measures of COP motion (A-P and M-L peak-to-peak motion, COP 

pathlength) as representative of stable postural control. Therefore, we considered subjects experiencing sig-

nificantly different COP motion during thepostflight arm raise task relative to their preflight measures, as 

demonstrating deficits in bipedal postural control. 

Muscle Activation: 

For each muscle of each subject, the EMG signals were first band-passed filtered (20-300 Hz), 

full-wave rectified, smoothed (10 ms time constant) and averaged. Arm movement initiations for each 

of the 15 trials obtained from the accelerometer waveform were used as the synchronization point for 

signal averaging. Mean muscle activation latencies (relative to arm movement initiation) were deter-

mined using an interactive graphics program (EGAA, RC Electronics Inc.) and visual inspection (Fig-

ure 1). To be considered active, a muscle's voltage had to exceed the baseline voltage by two SDs and remain 

active for at least 30 ms (5). Since the nature of the task dictated that the subjects adopt quiet stance prior to 

arm movement initiation, in all cases muscle activation levels were very low. This made muscle activation onset 

identification straightforward. To assess the degree of similarity between pre- and posfflight muscle activation 

features, cross correlation coefficients were calculated for the two phases of the individual subject mean 

waveforms.



RESULTS 

One purpose of this report is to provide quantitative information that illustrates how spacefliht differ-

entially impacts individuals in terms of postural control during self-initiated perturbations. Consistent with our 

previous work and others (4,16,19,3 1), we have observed that in holistic tasks requiring sensory-motor 

integration, spaceflight is associated with a wide range of adaptive postflight behavioral responses. Therefore, 

we believe it is important that individual subject data be presented whenever appropriate. Thus, throughout 

this report each individual's pre- and postflight responses are presented. However, to provide a statistical 

indication of the magnitude of the potential pre- versus postflight differences of the measures, paired t tests 

were applied to the data of each individual subject. 

Arm angular acceleration: 

Figure 2 displays the pre- and postflight peak arm acceleration data for each subject. Four 

subjects significantly decreased (A,C, D, F), two subjects increased (G,H) and two subjects (B,E) 

displayed no change in their peak acceleration after spaceflight. 

Insert Figure Two about here 

Center ofpressure: 

Figure 3 displays pre- and postflight peak-to-peak A-P COP motion. Peak-to-peak A-P COP 

motion increased significantly in six subjects (B, C, D, F, G, H), decreased in one subject (A) and was 

unchanged in the remaining subject (E) after spaceflight. Figure 4 displays pre- and postflight peak-to-peak 

M-L COP motion. Four subjects significantly increased their peak-to-peak M-L motion (B,C,E,G) after 

spaceflight while Subject A displayed decreased motion. Two subjects's M-L peak-to-peak motion was 

unaffected by spaceflight (D,H).	 - 

Insert Figures Three and Four about here 

Figure 5 displays exemplar single trial COP data from one subject during pre- and postflight arm 

movements. It can be observed that postflight COP motion is increased in both the initiation and recovery



phase of the task after spaceflight. Figure 6 shows that the COP pathlength in the initiation phase of the 

movement significantly increased in six subjects (B, C, D, F, G, H) and was unchanged in two subjects (A,E) 

after spaceflight. Figure 7 shows that COP pathlength during the recovery phase was significantly increased in 

six subjects (B,C,E,F,G,H), one subject had no change (D), while subject A displayed a decrease after 

spaceflight. Although COP motion was significantly increased after spaceflight, none of the subjects fell during 

the testing. 

Insert Figures Five, Six and Seven about here 

Muscle activation: 

Pre- and postflight muscle activation latencies are tabulated in Table 1. Although there were 

large individual differences, there was no consistent trend to suggest that spaceflight modifies the time 

of initial activation of muscles during the task. Spaceflight had minimal effect on the sequence of 

muscle activation. In general, and consistent with previous reports (2,14,22), the postural muscles 

RBF and LPA were activated in an anticipatory fashion well in advance of arm movement onset, during 

both pre- and postflight testing. 

Insert Table 1 about here 

Table 2 lists the cross correlation coefficients for each muscle of each subject representing the maxi-

mum degree of similarity between the neuromuscular activation patterns within the initiation and recovery 

phases between the pre- and postflight waveforms. Consistent with the recommendations of Dickey and 

Winter (10) we used a coefficient value of 0.71 (r2 = 0.50) as the criterion to indicate that the pre- and 

postflight activation patterns were significantly different. On the basis of this criterion, nine ofthe 48(19.0%) 

waveforms during the initiation phase were modified by spaceflight. Seven of the nine modified initiation 

waveforms were obtained from the two shank muscles (RGA and RTA). Thirty-three of the 48(69%) of the 

activation patterns during the recovery phase were altered after flight. Ifthe RAD comparisions are not 

considered, 80% (32 of4O) of the postflight lower limb and trunk neuromuscular activation patterns during the



recovery phase were significantly different. Despite accounting for the phase lag between the pre and post-

flight waveforms, the results ofthe cross correlation analyses indicate that the phasic features ofthe waveforms 

were modified by spaceflight. Further analyses of the phase lag data indicated that 95.8% (92/96) of all 

waveform comparisons displayed either a lag or lead between the pre- and postflight waveforms. However 

there was no consistent direction or magnitude associated with the tags either across subjects or within sub-

jects.

10 

Insert Table 2 about here
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DISCUSSION 

The present findings are the first describing the degree to which long duration spaceflight affects 

returning astronauts' ability to initiate and control self-generated postural perturbations in the form of voluntary 

arm movements. The results generally indicate that although subjects can initiate the necessary neuromuscular 

activation sequences to perform rapid arm movements, upright postural control during the task is compro-

mised after long duration flight. The results of this study are consistent with those of other investigators who 

have reported that astronauts returning from spaceflight display a variety of postural control problems 

(1,3,19,31,34). Previous spaceflight related research has primarily focused on postural control in the context 

ofbipedal stance in response to externally-generated perturbations and manipulations of the sensory input (for 

exceptions see 7,8,30). 

The arm raise task contains at least two explicit behavioral goals: 1) move the arm as rapidly as 

possible until parallel to the floor; and 2) maintain an upright bipedal posture with the feet remaining in contact 

with the support surface. These two goals are not mutually compatible and therefore suggest a possible trade-

off such that the potential postural perturbation resulting from the arm movement can be reduced or increased 

by reducing or increasing arm acceleration. This potential trade-off in postural stability for arm acceleration 

makes the subjects' perception of, and confidence in, their ability to control bipedal stance an important 

consideration. Astronauts who perceive themselves as having postural control decrements after spaceflight 

can reduce their arm acceleration relative to preflight levels to insure they remain upright. Conversely, returning 

astronauts with full confidence in their ability may choose to increase arm acceleration at the risk of challenging 

upright stance. Most interesting, perhaps, is the possibility that astronauts may misperceive the degree of 

diminished postural control after space flight due to modified proprioceptive processing (17). Thus, they may 

still threaten their bipedal stability despite decreased arm acceleration. 

Measures of peak-to-peak A-P COP motion and COP pathlength reflect deficits in postflight postural 

control relative to preflight. With the exception of subject A, our subjects generally displayed increases in 

COP motion. These increases in COP motion were observed despite the fact that the majority of our subjects 

decreased their peak arm acceleration. The increases in COP motion may be related to subjects' perceptions 

of their postflight postural control capabilities. We suggest that these subjects correctly perceived they were 

experiencing compromised postural control but were unable to perceive the degree to which their postural
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control was compromised after spaceflight. This possibillity is reflected in the increased COP motion despite 

decreases in arm acceleration. Additionally, modifications in proprioceptive processing associated with space-

flight (17), may have resulted in the misperception of arm acceleration during the movement and therefore 

generated greater potential postural disturbances than they realized. 

Two subjects significantly increased their peak arm angular acceleration resulting in large increases 

(87% for Subject G, 41% for Subject H) in postflight peak-to-peak A-P COP motion. On the assumption 

that these subjects had full confidence in their ability and wished to retain their preflight performance levels, 

these increases suggest the inability of these subjects to correctly perceive their postflight postural control 

capabilities. 

It is noteworthy that after spaceflight only Subject A displayed decreases in peak arm accelera-

tion, peak-to-peak COP motion and pathlength in both movement phases compared to his preflight values. In 

other words, this subject accompanied his decreased postflight arm acceleration by a generalized depression 

of the associated COP motion. This pattern of decreased motion may suggest that this subject was able to 

accurately perceive that his postural control was compromised after spaceflight. Therefore, he utilized a 

strategy that enabled him to complete the task while maintaining postural stability. This is in contrast to the 

remaining subjects who, for most measures, showed a significant increase in COP motion. 

The suggestion that subjects may experience adaptive postflight proprioceptive problems is reason-

able. Both Watt et al., (38) and Kozlovskaya et al. (17) have reported that returning astronauts display 

disordered proprioception that results in inaccurate perceptions of the interaction between themselves and the 

environment. Additionally, anecdotal evidence indicates that many astronauts experience sensations of'heavi-

ness' and/or illusions of 'sinking' into the floor while standing (Layne, personal observation). Such sensations 

would be expected to influence our subjects' perceptions oftheir postural control capabilities. This disruption 

in perceptual abilities and associated neuromuscular control may be related to a combination of several physi-

ological changes associated with space flight. Changes in postflight ankle proprioceptive functioning could 

result in greater ankle sway prior to adequate detection and/or interpretation by the proprioceptive system. 

Altered functioning of the vestibular system could also result in deficits in sway detection after spaceflight 

(3,33,34). It is also possible that spaceflight affects muscle spindle sensitivity in such a way that the interaction 

between central motor commands and peripheral feedback is altered. Thus, although the command for move-
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ment is initiated properly after spaceflight, as evidenced by the high correlations between the pre- and post-

flight waveforms in the initiation phase, the ability to sustain or generate additional bursts of muscle activity is 

impaired. Loss of muscle strength, particularly in the anide and trunk musculature, may also play a role in our 

subject's inability to prevent excessive COP motion. The anti-gravity musculature, including the trunk muscles, 

tends to show a preferential loss of strength after spaceflight (12,24) which may also have influenced the ability 

to generate the subtle neuromuscular features necessary for optimal control. 

The loss of optimal neuromuscular control after spaceflight would negatively impact the kinematic 

strategies used to produce the arm movement and associated postural control. Although cross correlation 

analysis revealed that the phasic features of the neural activation patterns needed for the preparation and 

initiation of the arm movement remained similar during testing one day after spaceflight. we observed increases 

in COP motion during the initiation phase. These seemingly paradoxical findings can be explained as followed. 

Despite the fact that the shape of pre- and postflight EMG waveforms were quite similar during the initiation 

phase of the movement, the timing of the activation features were generally altered by spaceflight. Nintey-

seven percent of the lower limb and trunk muscle comparisons indicated that the postflight waveforms either 

lagged or led the preflight waveforms at the point of maximum correlation. Thus, the postflight temporal 

relationships associated with muscle force generation relative to arm movement initiation were different than 

those observed preflight. Moreover, the magnitudes of the muscle force associated with the altered postflight 

neuromuscular activation features were unlikely to be the same as preflight, particularly since loss of muscle 

strength typically accompanies extended stays in weightlessness. Additionally, we only obtained EMG from a 

limited number ofmuscles. Other musculature undoubtedly contributed to the control of the bipedal arm raise 

task. The force generating capabilities of these muscles can also be expected to be impacted by exposure to 

long duration spaceflight. Thus, precise force magnitudes and temporal relationships between the muscles we 

obtained EMG from and unmonitored muscles may have been significantly altered as a result of spaceflight. 

Disruptions of these relationships could lead to the diminishment of postural control reflected in the observed 

increases in COP motion during the initiation phase. 

The cross correlation analyses of the lower limb and trunk EMG waveforms during the recovery 

phase revealed that 87.5 percent of the comparisions indicted either a lag or lead in the postflight waveform at 

the point of maximum correlation relative to preflight. Additionally, 80 percent of the lower limb and trunk
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muscle cross correlation coefficients during the recovely phase were significantly different indicating that the 

phasic features of postflight neuromuscular activation generally did not conform with those observed preflight. 

These fmdings further suggest a consequential loss ofneuro-motor control after spaceflight that is reflected in 

the increases in postflight COP motion observed during the recovery phase. 

The finding that the vast majority of initial muscle activationpatterns during the initiation phase of the 

movement were not different pre- versus postflight is somewhat inconsistent with the report of Massion and his 

colleagues (30). These authors reported that during backward trunk bending, the early activation ofthe soleus 

observed preflight was replaced by early tibialis anterior activation during their first postflight session. They 

attribute this change in neuromuscular patterning as a vestige of the neuromuscular activation sequence used 

during inflight trunk bending. The normal sequence of activation was restored by the second postflight data 

collection session (8 days after landing). However, in general, our subjects did display the same initial phasic 

muscle activation characteristics pre- and postflight. These patterns were quite similar to the patterns our 

subjects used during rapid inflight arm movements performed when restrained to the support surface of the Mir 

space station (Layne, unpublished data). Thus, the neuromuscular synergies observed preflight were also 

appropriate to accomplish the inflight arm movement, so it is not particularly surprising that.we.found the.. 

'shapes' of the pre- and posfflight activation waveforms during the initial phase of movement to be similar. 

However, the fact that 97 percent of the postflight EMG waveforms obtained during the initiation phase either 

led or lagged the preflight waveforms is consistent with Massion etal. 's findings of disrupted postflight neuro-

muscular activation. 

Primarily due to programmatic constraints, data were collected for seven of the subjects one day after 

landing. Undoubtedly the diminished postural control and modified neuromuscular activation characteristics 

exhibited by our subjects would have been exacerbated had we had the opportunity to test them on landing 

day. One of the subjects, who was scheduled for testing on landing day, was unable to perform the task 

despite a strong desire to do so. This finding is consistent with previous reports indicating that bipedal postural 

control recovers toward preflight performance rapidly after spaceflight, especially in the first hours after land-

ing, but recovery is not complete for several days after landing. In particular, Paloski and his colleagues (34) 

calculated that subjects recover 50% of the postflight equilibrium deficiets experienced at the time of landing 

within 2.7 hours after short duration spaceflight.



To summarize, the present results indicate that astronauts returning from long duration spaceflight are 

able to initiate rapid voluntary arm movements without difficulty. However, these movements are accompanied 

by decreases in bipedal postural control as assessed by measured of COP motion. This is consistent with 

previous reports that postfiight postural control is compromised in response to external perturbations and/or 

during tests of static postural control in altered sensory environments (3,16,34). Additionally, there were often 

significant modifications in neuromuscular activation that may have contributed to the compromised postural 

control exhibited by our subjects. These modifications in neuromuscular activation may have resulted from 

central and peripheral physiological changes associated with spaceflight. Our subjects' behavior may also 

suggest that returning crewmembers ability to perceive the fill functional capabilities of their postural control 

systems may also be compromised, particularly after long duration spaceflight. Our findings contribute to a 

growing body of evidence defining the precise nature of task specific sensory-motor integration deficits expe-

rienced by crewmember's returning from spaceflight (4,7,17,19,30,31,34). Although we chose to investigate 

a task that included a well-documented "anticipatory" postural component associated with vigorous arm mo-

tion, all movements necessarily involve a postural component. Therefore, the fmding that the postural control 

associated with voluntary limb motion is compromised after flight is important. Understanding the underlying 

adaptive processes is an important step towards mitigating the postflight postural control problems experi-

enced by returning astronauts. 
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FIGURE LEGENDS 

Figure 1. Preflight (A) and postflight (B) exemplar mean LPA activation waveforms (+1 SD, upper trace) and 
accelerometer records (lower trace). The initiation phase consists of data 1 second prior to the initiation of 
arm motion through aim acceleration. The recovery phase consists of data from the completion ofaccelera-
tion until the end of the data record. 

Figure 2. Individual subject means (+1 SD) pre- and postflight peak arm angular acceleration. As with the 
remaining figures, the dark bar represents preflight performance and the lighter shaded bar represents post-
flight performance. The asterisks indicate statistical significance at p <0.05. 

Figure 3: Individual subject means (+1SD) pre- and postflight A-P peak-to-peak COP motion. 

Figure 4: Individual subject mean (+1 SD) pre-and postflight M-L peak-to-peak COP motion. 

Figure 5: One example trial showing COP trace from pre- (A) and postflight (B) displaying increased 
postflight motion during both the initiation and recovery phases ofthe arm movement. 

Figure 6: Individual subject means pre- and postflight COP pathlength during the initiation phase. 

Figure 7: Individual subject means pre- and postflight COP pathlength during the recovery phase.



Table 1 Pre- and postflight mean EMG activation onsets. # indicates that no burst was present in the 
averaged record. The values are reported in milliseconds and are relative to arm movement initiation. 

RAD LBF RBF LPA RGA RTA 
Subject Pie Post Pre Post Pre Post Pre Post Pie Post Pie Post 

A -46 -44 -68 -6 -118 -114 -58 -96 -16 -32 -96 -60 
B -26 -32 -8 -12 -156 -162 -92 -90 -6 2 -8 -2 
C -34 -26 6 26 -110 -102 -56 -46 -70 18 -82 6 
D -54 -38 30 -6 -106 -72 -94 -56 -24 -44 -62 -54 
E -24 -22 -6 -10 -126 -142 -64 -74 -30 -42 # 
F -48 -52 # -78 -70 # 4 4 
G -54 -86 -12 -18 -124 -122 -78 -90 -34 -28 4 
H -32 -48 -14 -10 -142 -134 -32 -48 -16 -28 -34 -40 

Mean -39.8 -43.5 -18.9 -5.1 -126 -121.1 -69 -71.6 -28 -22 -56.4 -30 
SD 12.2 20.1 24.2 14.3 17.7 29.2 20.7 19.8 20.8 23.2 35.7 30.2
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Table 2 Cross correlations between the pre- and postflight EMG records during each phase of the move-
ment. mit = initiation phase, Rec = recovery phase. 

RAD LBF RBF LPA RGA RTA 
Subject [nit Rec mit Rec mit Rec [nit Rec [nit Rec mit Rec A 0.97 0.75 0.96 0.58 0.95 0.46 0.92 0.42 0.87 0.43 0.96 0.57 B 0.95 0.92 0.99 0.24 0.98 0.59 0.93 0.72 0.60 0.51 0.90 0.78 C 0.98 0.96 0.96 0.69 0.88 0.48 0.96 0.46 0.80 0.59 0.94 0.88 D 0.99 0.93 0.96 0.58 0.98 0.49 0.89 0.66 0.94 0.75 0.96 0.82 E 0.99 0.89 0.92 0.38 0.96 0.88 0.98 0.64 0.50 0.33 0.26 0.31 F 0.97 0.58 0.22 0.29 0.53 0.18 0.88 0.69 0.18 0.34 0.43 0.36 G 0.98 0.82 0.93 0.58 0.91 0.73 0.94 0.71 0.52 0.33 0.47 0.29 H 0.98 0.95 0.97 0.63 0.97 0.59 0.98 0.61 0.90 0.65 0.95 0.71 

Mean 0.98 0.85 0.86 0.50 0.89 0.55 0.94 0.61 0.66 0.49 0.73 0.59 SD 0.01 0.13 0.26 0.17 0.15 0.21 0.04 0.12 0.26 0.16 0.29 0.24

22 



750-

-	 500-

250-

2	 0

j' (v 

Activation onset LI' \_

- Mean EMG 

SDEMG 

1 oca - Preflight	
LPA 

23 

Figure 1

-1000
	

-500	 750	 1000 ms 
Arm Ar Irnm.tr Tr-

____\	 ',-.-.-
Initiation Phase Recovery Phase 

1000 -	 Postflight
LPA 

750 -

J	 VI,, 

::

-1000	 -500 0 750	 1000	 IllS 
________________________________________ - -

--_____________________ 
Initiation Phase Recovery Phase 

I :i



Figure 2 

C.) 

U) 

C.) 
C) I iaI

I II liii IT II 
£ 

of11111111 11111 TIllillitil C C H	 H

24 



Figure 3

80

* 

60

* 

* * 

40

* * 

20

I. OD

Subjects 

25 



Figure 4 

26 

50 

40 

30 

E 
E

20 

10 

0

A A	 B B	 C C	 D D	 E E	 F F	 G G	 H H 

Subjects 



Figure 5

27 

m mn A	 Anterior
60 

40 

Arm AcceIertion Complete 	 20 

Posterior 
-20

	

T.	 Right 

	

10	 mm 20


Arm Aceeleretion Iriitition 

B	 Anterior

60 

20 
Arrri Acceleration	 Arm Acceleration 

comiete
Right 

m mn 20 

Postenor20



E 
E

105

Figure 6 

28 



Figure 7

29 

180

* 

120

j E E

iii 60-I

* 
* *

* 

OI_	 - n 

A A	 B B	 CC
	 DO	 E E	 F F	 GO	 H H 

Subjects 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30

