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Sensitivity Analysis:
The basis for adjoint model applications

Adjoints in simple terms



Adjoint Sensitivity Analysis for a Discrete Model
The Problem to Consider:

A possibly nonlinear model:
y = m(x)
A differentiable scalar measure of model output fields:
J = J(y)
The result of input perturbations
AJ =Jx+x")— J(x)

A 1st—order Taylor series approximation to AJ

The goal is to efficiently determine gT] for all 4



Adjoint Sensitivity Analysis for a Discrete Model
The Tangent Linear Model (TLM)

Apply a Ist—order Taylor series to approximate the model output

dy;
i = Z ai.

Oy;/Oz; is called either the Resolvant matrix of the TLM or the
Jacobian of the nonlinear model.

Approximate A.J by a lst—order Taylor series in y’




Yi

A graphical TLM schematic

NLM

dx

TLM




Adjoint Sensitivity Analysis for a Discrete Model
The Adjoint Model

(Adjoint of the TLM or adjoint of the nonlinear model)

Application of the “chain rule” yields

aJ Jy;
oz, Z oz, 3% (9)

Contrast with the TLM

Y
vi = > oz, ) (10)

J

A. The variables are different in the two equations
B. The order of applications of the variables related to x and y differ

C. The indices 7 and j in the matrix operator are reversed



Adjoint Sensitivity Analysis
Impacts vs. Sensitivities

A single impact study yields exact response measures
(J) for all forecast aspects with respect to the particular
perturbation investigated.

AJ=Jy+y)—Jy)

A single adjoint-derived sensitivity yields linearized
estimates of the particular measure (J) investigated
with respect to all possible perturbations.

J' = Z ji X

i
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Adjoint Sensitivity Analysis for a Discrete Model
Additional Notes

. Mathematically, the field 0.J/0x is said to reside in the dual space

of x

. With the change of notation X = 9.J/0x, M = 0y /0x, etc.,

T =37y =37 (Mx) = (3"M) ¥’ = (M7y)" x' =%"x" (11)

The exact definition of the the adjoint depends on the quadratic
expression used to define J'. If the simple Euclidean norm (or dot
product) is used, then for a discrete model, the adjoint is simply
a transpose. Such a simple norm may not be appropriate when
the dual space fields are to be physical interpreted. (More on this
later.)

The adjoint is not generally the inverse: in non-trivial atmo-

spheric models, M? # M~1.

. This is all 1st—year calculus and linear algebra. If examination of

eradients is useful, then so are the adjoint models used to calculate
them.



Adjoint Sensitivity Analysis for a Discrete Model
Ezxample Equations

Nonlinear model:

ou ou
= —u —

ot Ox
Discrete NLM (superscript ¢ index, subscript = index)

ntl _ .n Uit — Wy
w, = (At)u; 2B

TLM (linearized about time and space varying solution )

At
'UJTH = u;” - SAL [u;”(ﬁwrl o)+ al (’UJ@H L;’” 1)]

Adjoint model:

~ 7 ~n+1 (At)
"U, 'h', Q(Agj)

~7 ~7 An+1 ~n—+1 ~n  ~n+1
[(u,};Jrl u, 1) +ul U ?LHlqu]




Warning

Although the previous description of an adjoint for a
discrete model is correct, it fails to adequately account
for some issues regarding the discrete representation of
physically continuous fields.

As long as the interpretations of sensitivity concern the
given model and resolution or the applications of gradients
concern some classes of optimization problems, this
“failure” does not apply.



Examples of Adjoint-Derived Sensitivities



Example Sensitivity Field

aJ,/0z for t=-36. ¢=0.40

Errico and -
Vukicevic:
1992 MWR

Contour interval 0.02 Pa/m M=0.1 Pa/m




Lewis et al. 2001




Idealized cyclone

J=p, with respect to T for an
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From Langland and Errico 1996 MWR



Development of Adjoint Model Software

First consider deriving the TLM and its adjoint model codes
directly from the NLM code



Why consider development from code?

Eventually, a TLM and adjoint code will be necessary.
The code itself is the most accurate description of the model algorithm.
If the model algorithm creates different dynamics than the original equations

being modeled, for most applications it is the former that are desirable and
only the former that can be validated.



Development of Adjoint Model From
Line by Line Analysis of Computer Code

Automatic Differentiation

TAMC Ralf Giering (superceded by TAF)
TAF FastOpt.com

ADIFOR Rice University

TAPENADE INRIA, Nice

OPENAD Argonne

Others www.autodiff.org



Development of Adjoint Model From
Line by Line Analysis of Computer Code

1. TLM and Adjoint models are straight-forward (although tedious)
to derive from NLM code, and actually simpler to develop.

2. Intelligent approximations can be made to improve efficiency.

3. TLM and (especially) Adjoint codes are simple to test rigorously.

4. Some outstanding errors and problems in the NLM are typically
revealed when the TLM and Adjoint are developed from it.

5. Some approximations to the NLM physics considered are
generally necessary.

6. Itis best to start from clean NLM code.

7. The TLM and Adjoint can be formally correct but useless!



Nonlinear Validation

Does the TLM or Adjoint model tell us anything about
the behavior of meaningful perturbations in the nonlinear
model that may be of interest?



linear

Linear vs. Nonlinear Results in Moist Model

24-hour SV1 from case W1
Initialized with T’=1K

Final ps field shown Errico and Raeder
1999 QJRMS

a

Contour interval 0.5 hPa



Linear vs. Nonlinear Results in Moist Model
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Linear vs. Nonlinear Results

In general, agreement between TLM and NLM results
will depend on:

Amplitude of perturbations

Stability properties of the reference state
Structure of perturbations

Physics involved

Time period over which perturbation evolves
Measure of agreement

S 01k

The agreement of the TLM and NLM Is exactly
that of the Adjoint and NLM if the Adjoint is exact
with respect to the TLM.



3.

4.

D.

Problems with Physics

The model may be non-differentiable.
Unrealistic discontinuities should be smoothed after
reconsideration of the physics being parameterized.
Perhaps worse than discontinuities are numerical insta-
bilities that can be created from physics linearization.
It is possible to test the suitability of physics components
for adjoint development before constructing the adjoint.
Development of an adjoint provides a fresh and
complementary look at parameterization schemes.



Efficient solution of optimization problems



Optimal Perturbations

Type I
f .. I oJ .1
Maximize J' = > 55 7
: . i, _ 1 2
Given the constraint: C = 5 Zl w; T

Solution Method: Minimize the augmented variable

I = Z(’?:ri T )\(C—%Zwix?)

1

0l 0J —_—
— — \w; x;
Solution: Y
J{ t' C l = -
z;(optimal) w; Ox;

\— VIO {Z . (gj)]

(3



Optimal Perturbations

Type I
Minimize O = %Z@, w; 3122
: : f ot _ o.J

Given the constraint: J =5, o !
Solution Method (as before)
Solution:

' (optimal) A 0J

. (optimal) = —
i\OP w; Ox;

1

A=J

Z1 oI\’ |
~ W, ox;



Optimal Perturbations
Singular Vectors

Maximize the L2 norm: N = 3y"Ny’ (40)
Given the TLM: y' = Mx/ (41)
And the constraint: 1 = C =3xTCx (42)

Solution Method: Minimize the augmented variable I(x’):

1 ‘ 1
I= ix’TMTNMx" + A2 (O = EX’TCX’) (43)
I &
g - = M"NMx' — \>Cx’ (44)
X

1 . :
For z = C2x’, the solution is an eigenvalue problem

A2z = C TMTNMC 2z (45)
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Optimal Perturbations
Additional Notes Regarding SVs

. A are the singular values of the matrix NzMC~ 2.

. The set of x’ form an orthonormal basis with respect to the norm

C.

. If C and N are the Euclidean norm I, then x’ = z are the right

(or initial) singular vectors (or SVs) of M and y’ = Mx' are
the left (or final or evolved) singular vectors of M. The same
terminology is used even for more general norms.

A\? = N/C for each solution.

. If C is the inverse of the error covariance matrix, then the evolved

SVs are the EOFs (or PCs) of the forecast error covariance, and
truncations using the leading SVs maximize the retained error

variance. (Ehrendorfer and Tribbia 1997 JAS)

. The SVs and A\? depend on the norms used; i.e., on how measure-

ments are made. This dependency is removed only by introducing
some other constraint or condition.

SVs produced for semi—infinite periods are equivalent to Lyupanov
vectors (Legras and Vautard, 1995 ECMWF Note).



The more general nonlinear optimization problem

Find the local minima of a scalar nonlinear function J(x).

0J/ox

Grad_ient Contours of J
at point P In phase (x) space

P

N\ =



The Energy Norm

_ 1 2, 2, Cprua BRIy 4
E_QA][ + v +TT-T +p§rp3 dA do

Errico, R.M., 2000: Interpretations of the total energy and rotational energy
norms applied to determination of singular vectors. Quart. J. Roy. Meteor.
Soc., 126A, 1581-1599.



Problems with Physics



Tangent linear vs. nonlinear model solutions
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Problems with Physics
Parameterization of Vertical Eddy Diffusion

NLM:
Ou 10 .Ou
a9 02

The K are flow—dependent eddy diffusion coefficients.

TLM:

ou’ 190 _~o0u 10 Ol
——pK —— oK' — t s f !
" ﬁ@zp 0z i ﬁé?zp 0z - terms for p

ot

Usually a semi—implicit treatment of du/0z is used to greatly

increase numerical stability. This appear to work in the NLM but
is insufficient in the TLM.

Instead, the K’ term is generally ignored!



Problems with Physics

Consider Parameterization of Stratiform Precipitation

NLM

Modified
NLM




Example of a potentially worse problem introduced by smoothing

df

f(x)
I




3.

4.

D.

Problems with Physics

The model may be non-differentiable.
Unrealistic discontinuities should be smoothed after
reconsideration of the physics being parameterized.
Perhaps worse than discontinuities are numerical insta-
bilities that can be created from physics linearization.
It is possible to test the suitability of physics components
for adjoint development before constructing the adjoint.
Development of an adjoint provides a fresh and
complementary look at parameterization schemes.



Other Important Considerations

Physically-based norms and the interpretations of
sensitivity fields



O (error “energy”) / 0 (Tv 24-hours earlier)
1 x 1.25 degree lat-lon 0.5 x 0.0625 degree lat-lon

BN el T |

= NN
=
. B I a1 A ) Y D T )
EEEEE’EIEI!IE[IEE IEE] Lar:2
o]

ot =0 -0 oL
E"EE!I!EEIEE.EE]IL i
—otod-oofale(o) ;

i)

oo o] o
G o e ) (A A T = e a1 1 T
51 o e ) PR~ A P O [ e A
—o-o-o-dofal Sfehal o [o [ fooe o400
s e i e L K I e e
(S, [0l s 0 s, e
A, L et U Kol L

-
=
=
=
=
o
[

[
=4
=
=
=

RN
ANEARY
HHHHHEHEHHHHE

I NN
]I Ly

10w  8W Gl 4W W i g B i oW B G 4W

From R. Todllng



Sensitivities of continuous fields

Consider J(f(x)) where J is a scalar function of a set f; of continuous fields
represented by the vector f, each defined within a multi-dimensional space x.
Then, the real functional expression

0.J

lf;?‘J — (ﬁ,

5f)

should be interpreted as

> [ dstx) 5 (x) 3£

where S is a volume, mass, or other metric. With this interpretation, 9.J/3 f;
has physical units of J x fi_l x S i.e., it is a kind of sensitivity density.

This field of sensitivity density is relatively independent of the grid on which
it is represented, but to estimate the change of J due to a perturbation of
applied at grid point xg, the grid volume dS at this point must be considered;

e 8.J 8.J
22 (xc) = [S(XG} 5(x) 77

It is safer to base physical interpretations of sensitivity on its density, but
then sensitivities to grid point perturbations become less obvious.



Sensitivity of J with respect to u 5 days earlier at 45°N,
where J Is the zonal mean of zonal wind within a narrow
band centered on 10 hPa and 60°N. (From E. Novakovskaia)

0.1 hPa

1000 hPa

- 180 0 Longitude




vertical level index

11

21

31

41

91

61

71

Rescaling options for a vertical grid

Delta log p 1 hPa

10 hPa
100 hPa
j 500 hPa
Delta p
850 hPa
0 0.01 0.02 0.03 0.04 0.05 0.06

fractional weight




2 Re-scalings of the adjoint results

Mass weighting Volume weighting

0.1
hPa

10
hPa

1000
hPa

From E. Novakovskaia



Summary



Misunderstanding #1

False: Adjoint models are difficult to understand.

True: Understanding of adjoints of numerical models
primarily requires concepts taught in early
college mathematics.



Misunderstanding #2

False: Adjoint models are difficult to develop.

True: Adjoint models of dynamical cores are simpler
to develop than their parent models, and almost
trivial to check, but adjoints of model physics
can pose difficult problems.



Misunderstanding #3

False: Automatic adjoint generators easily generate
perfect and useful adjoint models.

True: Problems can be encountered with automatically
generated adjoint codes that are inherent in the
parent model. Do these problems also have a
bad effect in the parent model?



Misunderstanding #4

False: An adjoint model is demonstrated useful and
correct If it reproduces nonlinear results for
ranges of very small perturbations.

True: To be truly useful, adjoint results must yield
good approximations to sensitivities with
respect to meaningfully large perturbations.
This must be part of the validation process.



Misunderstanding #5

False: Adjoints are not needed because the EnKF Is
better than 4DVAR and adjoint results disagree
with our notions of atmospheric behavior.

True: Adjoint models are more useful than just for
ADVAR. Their results are sometimes profound,
but usually confirmable, thereby requiring new
theories of atmospheric behavior. It is rare that we
have a tool that can answer such important questions
so directly!



What Is happening and where are we headed?

1. There are several adjoint models now, with varying
portions of physics and validation.

2. Utilization and development of adjoint models has been
slow to expand, for a variety of reasons.

3. Adjoint models are powerful tools that are under-utilized.

4. Adjoint models are like gold veins waiting to be mined.

5. Validity of some effects remains questionable.
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