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In an effort to further refine potential point of departure nuclear thermal rocket engine 

designs, four proposed engine designs representing two thrust classes and utilizing two 

different fuel matrix types are designed and analyzed from both a neutronics and 

thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a 

tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based 

on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-

carbide in a graphite composite fuel and a prismatic fuel element geometry developed during 

the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality 

limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of 

numerous manned mission studies, including NASA’s Design Reference Architecture 5.0. 

Nomenclature 

 

ANL = Argonne National Lab 

cermet = ceramic-metallic fuel containing ceramic particles in a metal matrix 

GE = General Electric 

HTGR =  High Temperature Gas Reactor 

Isp = specific impulse 

K = temperature in Kelvin 

kg = mass in kilograms 

klbf = kilopounds of force 

kN = kilonewtons of force 

lbm = pounds mass 

MCNP = Monte Carlo N-Particle transport code 

MPa = pressure in megapascals 

MWth = megawatts thermal power 

NERVA = Nuclear Engine for Rocket Vehicle Applications 

NESS = Nuclear Engine System Simulation code 

NTR = Nuclear Thermal Rocket 

Psia = absolute pressure in pounds per square inch   

R =  temperature in Rankine 

SNRE = Small Nuclear Rocket Engine 

TPA = Turbo-Pump Assembly 
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I. Introduction 

he Nuclear Thermal Rocket (NTR) engine concept is being evaluated as a potential propulsion technology for 

numerous human exploration, cargo deployment, and robotic probe missions1-4. The need for high performance 

propulsion systems in these missions has been documented in numerous studies, including NASA’s Design Reference 

Architecture 5.0. These studies have shown NTR based systems to provide superior performance for these high delta-

V missions, compared to various electric and chemical propulsion concepts. Nuclear thermal propulsion system 

development was the primary focus of a considerable effort undertaken during the Rover/NERVA, GE-710, and 

Argonne National Lab (ANL) nuclear rocket programs from 1955 to 19735-7, which preformed both extensive engine 

component and fuels development, and resulted in multiple full scale engine tests using graphite matrix fuel.  

In an effort to further refine potential point of departure NTR engine designs, four proposed engine designs 

representing two thrust classes and utilizing two different fuel types are analyzed from both a neutronics and 

thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium 

dioxide cermet fuel with a prismatic geometry based on the ANL-200 and GE-710, while the other two designs utilize 

the uranium carbide based composite fuel matrix and a prismatic fuel element geometry developed during the 

Rover/NERVA program. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN 

(25 klbf) thrust class engine design. The 111 kN (25 klbf) thrust class has been the focus of numerous manned mission 

studies, including NASA’s Design Reference Architecture 5.08 . 

In order to evaluate these engine designs, a highly detailed Monte Carlo N-Particle (MCNP) model of each engine 

is first developed and exercised in order to determine the thermal energy deposition rate in the various engine 

components via decelerating fission products and scattered neutrons and photons. These results, along with additional 

rocket engine design inputs such as the desired chamber pressure, nozzle area ratio, cycle type, and flow circuit 

pressure drops are then utilized in NASA’s Nuclear Engine System Simulation (NESS) code to determine engine 

cycle state points, overall engine performance, and to estimate both engine mass and dimensions.   

 

II. NTR System Overview 

A typical NERVA derived NTR propulsion system is shown in Fig. 1. These systems typically consist of a small 

nuclear fission reactor, turbo pump assembly (TPA), nozzle, radiation shields, neutron reflector, pressure vessel, 

control drums, and various propellant lines and support hardware. They are typically expander cycle based, and thus 

utilize thermal energy gained by the hydrogen propellant from actively cooling various engine subcomponents 

(nozzle, control drums, etc.) to drive the turbine, and thus power the cycle. As NTR engine designs evolved during 

the NERVA program, chamber pressure and engine size increased, thus additional thermal energy was required to 

meet the increasing turbine drive power requirements. To satisfy this requirement, designs began to extract additional 

thermal energy directly from the reactor core by actively cooling the tie-tube structural support elements5-7. Although 

this arrangement is integral to the NERVA derived designs, the cermet based designs don’t utilize tie-tubes, thus their 

chamber pressure and thrust level are limited by the amount of thermal energy available to the turbine drive flow via 

active cooling of various engine components. Once above this operational limit, additional thermal energy is required 

to close the thermodynamic cycle. Previous studies have explored using opposing pairs of low power fuel elements at 

the periphery of the reactor to supply the additional thermal energy by placing them in a parallel cooling flow path to 

the radial reflector and control drums9. The work presented here follows this design philosophy for the cermet based 

designs, but only if required by the engine cycle. Simplified flow diagrams of both the NERVA derived and cermet 

based engine cycles are shown in Fig. 2. 
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A. Engine Cycle 

Several thermodynamic cycles were explored for use in NTR engine design during the Rover/NERVA program, 

with the closed expander cycle being studied extensively and ultimately chosen for the SNRE. This particular cycle 

has also been used extensively in upper stage cryogenic engines such as the RL10. In a closed expander cycle, the 

energy to drive the TPA is obtained by regeneratively cooling various engine components during its operation, 

epically the nozzle and thrust chamber. In a NERVA derived NTR system, heat is also obtained from multiple other 

components, including the radial reflector, control drums, and filler elements. In order to provide structural support to 

the reactor core, neutron moderation, and additional heat for the turbine drive flow, tie-tubes are utilized which are 

capable of providing adequate thermal energy to the TPA drive flow to sustain adequate chamber pressures and 

propellant mass flow rates. The NERVA derived closed expander cycle is shown on the left in Fig.2, and is used in 

both the criticality limited and the larger 111 kN (25 klbf) class NERVA derived engines presented here. 

Unlike the NERVA derived NTR engine designs that utilized tie-tubes to obtain thermal energy from the reactor 

core to drive the TPA, the cermet designs use heat obtained solely from actively cooling various engine 

subcomponents such as the regeneratively cooled nozzle and thrust chamber, control drums, radial reflector, and the 

reactor core filler elements. Although these components can supply several megawatts of thermal energy to the TPA 

drive flow, previous studies have shown that this class of engine design is turbine drive power limited, and simply 

can not provide sufficient propellant mass flow to both adequately cool the reactor and maintain a nominal pressure 

in the thrust chamber9. In order to avoid this limitation, the designs presented here utilize two different approaches. 

The criticality limited engine uses the ANL-200 fuel element geometry and only utilizes active cooling of engine 

components to obtain turbine drive power. The larger engine, however, is based on a modified GE-710 design and 

utilizes fuel elements located at the core periphery to obtain additional turbine drive power, and thus a higher 

chamber pressure. This is accomplished by splitting the regeneratively cooled nozzle exit flow (state point 5 in Fig. 2) 

into to two parallel cooling paths with one cooling the radial reflector and control drum assemblies, and the other 

flowing hydrogen through these heater elements. These two flows are then recombined at their respective exits and 

sent to the turbine. This flow path is shown on the right in Fig. 2.      

 
 

Figure 1. Typical NERVA Derived NTR Engine System. 
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B. Reactor Assembly 

 In a SNRE derived NTR system, a large number of tie-tubes and fuel elements are assembled together to create 

the reactor core. In this assembly, the ratio of fuel elements to tie-tubes is adjustable, but a typical arrangement is one 

in which each tie-tube is surrounded by six fuel elements, and each fuel element is in contact with three tie-tubes6,10. 

The fuel elements around the perimeter of the core, however, may contact fewer tie-tubes. This reactor core assembly 

is surrounded by partial hexagonal filler elements, which then form a cylindrical reactor core. The cylindrical core 

assembly is then placed inside a beryllium radial reflector assembly which also houses the control drums. The control 

drums consist of a neutron moderator-reflector on one side and a neutron absorber on the other, and are the same 

length as the tie-tubes and the fuel elements. Reactor reactivity is controlled via rotation of these control drums, and 

thus the reactor power level can be adjusted. This entire assembly is then placed inside an aluminum alloy pressure 

vessel to which the nozzle is attached6,7. A cross section view of a typical SNRE derived reactor assembly is shown in 

Fig. 3. 

 

              
                     

                     NERVA Derived Flow Path                                        Cermet Based Flow Path 

 

Figure 2.  NTR Cycle Flow Diagrams. 
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 For a cermet based NTR design, the overall reactor assembly follows the same basic design as the NERVA 

derived systems. The major difference between the two is the lack of tie-tubes in the cermet based designs. Due to 

differences in their neutron spectrums, the cermet designs do not require tie-tubes for neutron moderation, thus 

resulting in a smaller diameter reactor. This smaller core is also encircled by partial filler elements and the entire core 

assembly is placed within a beryllium radial reflector that houses the control drums. Other differences in the reactor 

assembly include the substitution of certain materials for those that are better suited to the neutron spectrum of the 

specific design, and the inclusion of an axial beryllium oxide reflector at the cold end of the reactor which is unique 

to the cermet based systems. 

C. Fuel Elements and Tie-Tubes 

 A tie-tube is a hexagonal shaped axial support element which also serves as a dual pass heat exchanger through 

the length of the reactor core. Cold hydrogen propellant is first sent down the center of the tie-tube and then returns 

via an outer coaxial annular flow path. During this process, it extracts thermal energy from the reactor core, which is 

later used to drive the turbine. Tie-tubes have identical cross-sectional dimensions as the fuel elements, but are 

slightly longer in order to accommodate feed system plumbing on the cold inlet end and fuel element support 

hardware on the hot end6,7. They not only give axial support to the fuel elements, but also provide neutron moderation 

and the thermal energy required thermodynamically close the engine’s cycle. These elements are unique to the 

NERVA derived NTR systems, and are not present in the cermet based designs.  

 The NERVA derived fuel elements are hexagonal in cross-section, have 19 equally spaced hydrogen flow 

channels that run the entire length of the fuel element, and a 50 micrometer thick ZrC surface coating 6,7. The fuel 

matrix selected for use in both the NERVA derived engine designs presented here is the (U,Zr)C-graphite composite 

fuel. This particular fuel was tested during the NERVA program in the Nuclear Furnace 1 test reactor11,12, has a 

higher operational temperature relative to pyrocarbon coated UC2 particles in graphite, and is well characterized. 

Because it has design heritage with numerous NTR engines, and was the baseline fuel in the SNRE design, it is 
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Figure 3.  Typical NERVA Derived Reactor Cross Section. 
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selected for the analysis presented here. A typical NERVA derived fuel element and tie-tube integration arrangement 

is shown in Fig. 4, and fuel element and tie-tube cross section details are shown in Fig. 5. 
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   a) Typical NERVA Derived Fuel Element                       b) Typical NERVA Derived Tie Tube 

Figure  5.  Tie-Tube and Fuel Element Cross Sections. Tie-Tube gaps represent cold (not operating) conditions. 

 

 
Figure  4.  Typical NERVA Derived Fuel Element and Tie-Tube Arrangement. 
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The prismatic fuel elements used in the cermet based engine designs are based on the ANL-20013 and those 

developed under the GE-710 HTGR programs. Both fuel elements utilize a cladding comprised of W /25% Re by 

volume and have a fuel matrix composition of W -60% UO2 -6% Gd2O3 with a constant enrichment of 235U of 93% 

by weight, which is assumed to be at 100% theoretical density. The criticality limited engine uses the ANL-200 fuel 

element geometry, while the larger 111 kN (25 klbf) class engine uses the theoretical GE-711 fuel element geometry. 

In the GE-711 design, the propellant channel diameter is increased to 1.118 mm (0.044 in) from the 0.914 mm 

(0.036in) used in the GE-710 design14, thus resulting in flow passages that are 50% larger in cross sectional area. The 

fuel elements used in the larger cermet engine are also shorter, having a 60.96 cm (24 in) active fuel length. A 

comparison of the ANL-200, GE-710, and GE-711 cermet fuel element geometries is shown in Table 1, and a 

comparison of the ANL-200, GE-711, and NERVA derived fuel element cross sections is shown in Fig. 6.  

 

Table 1. Cermet Fuel Element Geometry Summary. 

Fuel Element Geometry ANL-200 GE-710 GE-711 

Fuel Element Width w/o Clad 7.838 cm 1.078 in 2.278 cm 0.8976 in 2.278 cm 0.8976 in 

Fuel Element Width with Clad 2.774 cm 1.092 in 2.361 cm 0.9296 in 2.361 cm 0.9296 in 

Outer Cladding Thickness 0.178 mm 0.007 in 0.381 mm 0.015 in 0.381 mm 0.015 in 

Fuel Element Length 71.12 cm 28.00 in 60.96 cm 24.00 in 60.96 cm 24.00 in 

Fuel Composition W -60% UO2 -6% Gd2O3 

Cladding Composition W / 25% Re 

Coolant Channels per Element 61 91 

Coolant Channel Diameter w/o Clad 2.057 mm 0.081 in 1.321 mm 0.052 in 1.524 mm 0.060 in 

Coolant Channel Diameter with Clad 1.702 mm 0.067 in 0.914 mm 0.036 in 1.118 mm 0.044 in 

Coolant Channel Pitch 3.454 mm 0.136 in 2.353 mm 0.0938 in 2.353 mm 0.0938 in 

 

 

III. NTR Engine Model 

NTR engine design and evaluation is an iterative process involving neutronic, thermodynamic engine cycle, and 

engine system analysis. An effective design and analysis sequence is to first determine a reactor core configuration 

that meets criticality requirements. The results from this neutronic analysis are used to provide the thermal energy 

deposition rates of the various reactor components to an integrated thermal-fluid-structural analysis of the engine 

system. Once acceptable neutronic and engine cycle performance is achieved, the overall engine system performance 

can be evaluated.  

A. MCNP Model  

The MCNP model of the NERVA derived NTR engine designs begins by explicitly modeling the composite fuel 

elements and tie tubes, shown in Fig. 5. These fuel elements have an active fuel length of 89 cm (35 in) for the 

criticality limited engine and 132 cm (52 in) for the 111 kN (25 klbf) class engine. The two fuel element models 

explicitly incorporate the 19 propellant coolant channels that have a 0.2565 cm (0.101 in) borehole diameter, a 

 
 

Figure 6.   Fuel Element Cross Section Compairson. Elements are shown to relative scale. 
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borehole pitch of 0.40894 cm (0.161 in), and the 50 micrometer thick ZrC outer surface coating. The support arches 

below each fuel element and most of the hot end support assembly are incorporated into a lower extension of the fuel 

element model. Once the reactor core assembly of fuel elements and tie-tubes is complete, the filler elements are 

added along with the surrounding structure, beryllium reflector, control drums, and other engine system components. 

The cermet based engines are modeled in a similar fashion, with all of the propellant channels, fuel matrix, and 

surfaces coatings for both the ANL-200 and GE-711 fuel elements being explicitly modeled. The active fuel lengths 

modeled in the criticality limited and 111 kN (25 klbf) class cermet based engines are 71 cm (28 in) 61 cm (24 in) 

respectively. 

Once the MCNP models have reached convergence15,16, the total energy deposition rate (sum of neutron and 

gamma deposition) into the various engine components, as well as the associated spatial distributions for the fuel 

elements and tie-tubes, are exported to NESS. For the four models used in this analysis, the energy deposition rate 

data are summed over the length of each fuel element and tie-tube, and a normalized axial distribution profile is 

provided to NESS from MCNP, which is discretized in 1.0 cm (0.39 in) increments. Both the individual thermal 

energy deposition rate data and the axial profile data are then used to construct a unique discretized thermal energy 

deposition rate profile for each individual fuel element. Previous work has shown that there are no appreciable 

differences in the normalized axial thermal power profile of either the tie-tubes or fuel elements based on their radial 

or circumferential locations in the reactor core for a 90-degree control drum setting. This allows for a single 

normalized axial profile to be applied across all the fuel elements and tie-tubes in a given composite or cermet based 

engine design14,17.      

B. NESS Model  

The NESS models begin by utilizing the mass and 

thermal energy deposition data from the above 

mentioned MCNP analysis for all the fuel elements, tie-

tubes, filler elements, control drums, beryllium barrel, 

stainless steel wrapper, pressure vessel, upper and lower 

tie-tube plenums (NERVA based designs only), brim 

shield, internal shields, axial reflector (cermet designs 

only), and numerous hydrogen gaps. NESS uses this 

information in mass summations and as thermal energy 

sources for the thermodynamic cycle calculations. The 

flow splits in the engine cycle are also modeled, 

corresponding to those shown in Fig. 2. Additional inputs 

into the NESS models include adiabatic pump and 

turbine efficiencies, appropriate fuel thermal 

conductivity data, various component pressure drops, 

fuel element geometry and coating thicknesses, chamber 

pressure, and nozzle area ratio. The 15.24 cm (6.00 in) 

thick axial BeO reflector is present only in the cermet 

designs, and is treated computationally as a fuel element 

extension. Once the reactor inlet pressure and mass flow 

rate are obtained, the engine flow circuit is solved via 

iteration until a TPA power balance is achieved17-19.  

 Both the thrust chamber and nozzle on all four 

designs are regeneratively cooled to an area ratio of 25:1. The nozzle is then continued to an area ratio of 300:1 by a 

radiatively cooled and retractable carbon composite nozzle. The SNRE used an uncooled nozzle extension which 

folded about a hinge located at the edge of the nozzle circumference2,3. The designs presented here utilize an RL10B-

2 style nozzle deployment mechanism, which allows a portion of the uncooled nozzle extension to be retracted 

around the engines thrust chamber and power head assembly. This design can effectively reduce the stowed length of 

an NTR engine by approximately 30%20. The deployment mechanism consists of a support structure, control 

electronics, a drive motor, and a set of belt driven ball screw actuators that axially translate the nozzle skirt from its 

stowed position to its deployed position20,21. An RL10B-2 equipped with this system is shown in Fig. 7  

All four of the engine designs analyzed use adiabatic pump and turbine efficiency values of 65% and 80% 

respectively. These values are lower than what can be expected with current start of the art TPAs22, but for 

comparison with previous designs, including the SNRE2,3, the more conservative values are used. A peak fuel 

temperature of  2860 K (5148 R) is used by NESS for both the composite and cermet fuels, and all the fuel elements 

 
 

 Figure 7.  RL10B-2 with Retracted Nozzle Extension.  
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are individually orificed during analysis to reduce the hydrogen mass flow rate in their cooling passages. This results 

in every fuel element reaching the peak allowable fuel temperature, thus maximizing the hydrogen outlet temperature 

and the resulting Isp.  

The 111 kN (25 klbf) thrust class engine designs are both analyzed at a chamber pressure of 6.89 MPa (1,000 

psia). Although this chamber pressure is not an issue for the NERVA derived designs, it is found to be an issue for 

the cermet based engine. In order to obtain sufficient turbine drive power, fuel elements around the core periphery are 

added to the flow circuit in opposing pairs. This flow is modeled by flowing hydrogen through these heater elements 

from the hot end to the cold end until the peak allowable fuel temperature is reached at a point along one of heater 

elements without any orificing. The flow exiting these elements (state point 7 on Fig.2) is then combined with the 

parallel branch that cooled the reflector and control drums, and the resulting flow stream sent to the turbine. The 

criticality limited cermet based design is also turbine drive power limited, but due to its small size, it is undesirable to 

use dedicated heater elements to close the engine cycle. It was decided to run the criticality limited cermet engine 

model to as high a chamber pressure as the cycle would realistically allow without supplementary heater elements, 

and then apply the same chamber pressure to the NERVA derived criticality limited design for comparison.  

 

IV. Model Results 

The normalized total thermal energy deposition rate profiles for both the criticality limited and 111 kN (25lbf) 

thrust class NERVA derived engine core cross-sections are shown in Fig 8. These two cores have a normalized peak-

to-average thermal energy deposition rate ratio of 1.23 and 1.14 respectively. To help achieve criticality in as small 

an engine design as possible, the criticality limited design required a modified tie-tube and fuel element pattern that 

consists of thirteen rows of tie-tubes which separate adjacent rows of fuel elements. The larger NERVA derived 

engine maintained the original SNRE based pattern. The normalized axial thermal energy deposition rate profiles for 

both NERVA derived designs is shown in Fig. 9, and they display a high degree of similarity both to each other and 

to those of other engine NERVA derived NTR engine designs14,18,20,.    

 

 

 

Figure 8.  MCNP Determined Thermal Energy Deposition Rates. Profiles represent normalized total element 

thermal energy deposition rates for the two NERVA derived engine designs. 
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The thermal energy deposition rate data calculated by MCNP are used by NESS in conjunction with other design 

parameters to determine overall engine system performance. A summary of this analysis is shown in Table 2, and 

includes various engine component masses, dimensions, and engine performance parameters. Although the criticality 

limited design has ample turbine drive power available, for this analysis its chamber pressure was limited to the 3.89 

MPa (565 psia) obtained by the criticality limited cermet design for comparison purposes. The 111 kN (25 klbf) thrust 

class engine has a higher T/W relative to the criticality limited design, which is partially due to the extra tie-tubes 

required by the criticality limited design. These are required to satisfy reactor neutronics requirements and not to 

obtain adequate turbine drive power. The larger engine design also had a higher delivered Isp, due primarily to its 

longer fuel elements which give the hydrogen propellant additional contact time.            

 

Table 2. System Summaries for the NERVA Derived Engine Designs. 

 

NERVA Derived Designs 

Criticality-Limited (7.5 klbf Thrust Class) 111 kN (25 klbf) Thrust Class 

Masses (kg) (lbm) (kg) (lbm) 

Fuel Elements (FE) 207.7 457.8 612.8 1,350.7 

Tie Tubes (TT) 231.0 509.1 313.7 691.4 

Heater Elements (HE) - - 

Reflector Assembly 717.7 1,581.8 1,141.6 2,516.0 

Pressure Vessel 87.9 193.8 284.7 627.5 

TPA 9.1 20.0 41.4 91.3 

TVC, Lines, and Valves 38.2 84.2 85.8 189.1 

Nozzle 81.0 178.6 149.8 330.1 

Assorted Hardware 416.4 917.7 708.1 1,560.7 

Engine Mass 1,789.0 3,943.0 3,338.0 7,357.0 

Dimensions (cm) (in) (cm) (in) 

Core / FE Length 89.0 35.0 132.0 52.0 

TPA / TVC System Length 178.1 70.1 228.3 89.9 

Pressure Vessel Length  207.1 81.5 320.9 126.3 

Nozzle Length 233.7 92.0 320.2 126.1 

 
Figure 9.  Normalized Axial Thermal Energy Deposition Rate Profile. NERVA derived engine designs. 
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Nozzle Exit Diameter 137.9 54.3 189.0 74.4 

Approx. Total Engine Length 618.9 243.7  869.4 342.3 

Engine Parameters 
  

No. Elements (FE/TT/HE) 260 / 251 / 0 564 / 241 / 0 

Core Power Level  157 MWt 563 MWt 

Chamber Pressure  3.89 MPa 565 psia 6.89 MPa 1,000 psia 
235U Mass  27.5 kg 12.5 lbm 36.8 kg 16.7 lbm 

Thrust  33.4 kN 7.52 klbf 111.2 kN 25.18 klbf 

Thrust-to-Weight Ratio 1.91 3.42 

Delivered Isp (s) 894 909 

 

Similar to the NERVA derived engine designs, the MCNP results for both the cermet based designs also include 

thermal energy deposition rate data for the major reactor core components. The fuel elements are also represented by 

both individual thermal energy deposition rate values and an axial distribution profile. The normalized thermal 

energy deposition rate profiles for both cermet engine core cross-sections are shown in Fig 10. Figure 10 also shows 

the location of the twelve dedicated heater elements that are required to close the thermodynamic cycle of the 111 kN 

(25 klbf) thrust class engine. Figure 11 shows the normalized axial thermal energy deposition rate profiles for both 

cermet based reactor cores. Although similar in shape to the NERVA derived axial distributions, there is a noticeable 

increase in power at the cold end of the reactor, due to the presence of the axial beryllium oxide reflector.  

 

 

 

 
 

 

 
Figure 10. Normalized Thermal Energy Deposition Rate Profiles for Cermet Engine Designs. Profiles 

represent normalized total element thermal energy deposition rates for the two cermet based engine designs. 
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As with the above mentioned NERVA derived engine designs, the thermal energy deposition rate values calculated 

by MCNP are used by NESS along with other design parameters to determine overall engine system performance. A 

summary of this analysis for both cermet based engine designs is shown in Table 3. Due to the desire to not have 

dedicated heater elements in the criticality limited cermet engine design, its initial chamber pressure was set very low 

and then slowly increased until the required pump discharge pressure began to increase dramatically as NESS 

attempted to close the engine’s cycle. This resulted in a chamber pressure of 3.89 MPa (565 psia). The 111 kN (25 

klbf) thrust class cermet engine has a higher chamber pressure of 6.889 MPa (1,000 psia), which required twelve 

dedicated heater elements adding thermal energy to the turbine drive flow to achieve. Both cermet based engine 

designs had comparable Isp, but the larger engine has a slightly higher T/W.    

 

Table 3. System Summary for Cermet Based Point of Departure Designs. 

 

Cermet Based Designs 

Criticality-Limited 111 kN (25 klbf) Thrust Class 

Masses (kg) (lbm) (kg) (lbm) 

Fuel Elements (FE) 950.5 2,094.9 1,226.6 2,703.4 

Tie Tubes (TT) - - 

Heater Elements (HE) - 48.9 107.8 

Reflector Assembly 414.7 914.1 437.5 964.3 

Pressure Vessel 74.9 165.3 205.3 452.4 

TPA 13.3 29.3 53.0 116.9 

TVC, Lines, and Valves 42.7 94.1 73.4 161.8 

Nozzle 107.0 235.7 149.5 329.1 

Assorted Hardware 208.9 460.3 480.8 1,059.6 

Engine Mass 1,812.0 3,993.7 2,675.0 5,895.7 

Dimensions (cm) (in) (cm) (in) 

Core / FE Length 71.0 28.0 61.0 24.0 

TPA / TVC System Length 209.3 82.4 225.3 88.7 

Pressure Vessel Length  155.0 61.0 157.0 61.8 

Nozzle Length 292.0 115.0 318.9 125.6 

 
 

Figure 11.  Normalized Axial Thermal Energy Deposition Rate Profile. Cermet based engine designs. 
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Nozzle Exit Diameter 172.3 67.8 188.2 74.1 

Approx. Total Engine Length 656.3 258.4 701.2 276.0 

Engine Parameters 
  

No. Elements (FE/TT/HE) 163 / 0 / 0 313 / 0 / 12 

Core Power Level  266 MWt 564 MWt 

Chamber Pressure  3.89 MPa 565.0 psia 6.89 MPa 1,000.0 psia 
235U Mass  238.5 kg 525.7 lbm 258.6 kg 570.0 lbm 

Thrust  52.9 kN 11.9 klbf 111.6 kN 25.1 klbf 

Thrust-to-Weight Ratio 2.98 4.26 

Delivered Isp (s) 903 906 

 

Table 4 shows a summary of the four engine designs presented here. The GE-711 based cermet engine design has 

the highest T/W ratio of the four, but the 111 kN (25 klbf) thrust class NERVA derived design has slightly better Isp. 

The criticality limited NERVA derived design has the lowest T/W and Isp of the group. The largest difference 

between the two fuel types at both thrust classes is in the amount of 235U required. The criticality limited and larger 

NERVA based engines require 27.5 kg (60.6 lbm) and 36.8 kg (81.1 lbm) respectively, whereas the cermet based 

designs require almost eight times that amount with criticality limited design requiring 238.5 kg (525.6 lbm) and the 

larger 111 kN (25lbf) class design needing 258.6 kg (570.0 lbm). 

 

Table 4. Point of Departure NTR Engine Design Summary.  

Fuel Type Composite Cermet 

 Fuel Element Geometry NERVA-Derived  ANL-200 GE-711  

Masses (kg) Criticality Limited 111 kN Class Criticality Limited 111 kN Class 

Fuel Elements (FE) 207.7 612.8 950.5 1,226.6 

Tie Tubes (TT) 231.0 313.7 - - 

Heater Elements (HE) -  -  - 48.9 

Reflector Assembly 717.7 1,141.6 414.7 437.5 

Pressure Vessel 87.9 284.7 74.9 205.3 

TPA 9.1 41.4 13.3 53.0 

TVC, Lines, and Valves 38.2 85.8 42.7 73.4 

Nozzle 81.0 149.8 107.0 149.5 

Assorted Hardware 416.4 708.1 208.9 480.8 

 Engine Mass 1,789.0 3,338.0 1,812.0 2,675.0 

Dimensions (cm)         

Core / FE Length 89.0 132.0 71.0 61.0 

 TPA / TVC System Length 178.1 228.3 209.3 225.3 

Pressure Vessel Length  207.1 320.9 155.0 157.0 

Nozzle Length 233.7 320.2 292.0 318.9 

Nozzle Exit Diameter 137.9 189.0 172.3 188.2 

Approx. Total Engine Length 618.9 869.4 656.3 701.2 

Engine Parameters         

No. Elements (FE/TT/HE) 260 / 251 / 0 564 / 241 / 0 163 / 0 / 0 313 / 0 / 12 

Core Power Level (MWt) 157 563 266 564 

Chamber Pressure (MPa) 3.89 6.89 3.89 6.89 
235U Mass (kg) 27.5 36.8 238.5 258.6 

Thrust (kN) 33.4 111.2 52.9  111.6 

Thrust (klbf) 7.52 25.18 11.9 25.1 

Thrust-to-Weight Ratio 1.91 3.42 2.98 4.26 

Delivered Isp (s) 894 909 903 906 
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V. Conclusion 

Four revised point of departure NTR engines were designed and analyzed using an integrated MCNP and NESS 

modeling scheme. All four engines, two NERVA derived and two cermet based, have thermodynamically closed 

cycles at nominal chamber pressures. The SNRE derived fuel element and tie-tube pattern worked well for the larger 

NERVA derived engine design, but a modified pattern was required for the criticality limited engine. The larger 111 

kN (25 klbf) class cermet based engine required twelve dedicated heater elements to close its cycle, but the criticality 

limited design did not require them to operate at a lower chamber pressure. Both cermet based designs had slightly 

higher T/W ratios, but they required substantially more 235U.  
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