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Afterglow emission:

Prompt emission: dominated by low energies. Long-lived.
gamma rays. Short-lived. Smooth(ish) decay.
Variability reflects central engine
activity.
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Fermi provides an unprecedented view of high-energy emission from GRB:s:
(i) Broad-band spectra from both GBM and LAT

40 MeV 100 MeV
Energy (keV)
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Fermi provides an unprecedented view of high-energy emission from GRB:s:
(i) Sky coverage + sensitivity => Statistics!

1722 GBM GRBs
103 LAT GRBs

In Field-of-view of LAT (894)
Out of Field-of-view of LAT (828)
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Long GBM GRBs
Short GBM GRBs

V. Connaughton TeVPA Tokyo 2015

Angle to LAT (deg)
 LAT detections
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GBM fluence as a function of angle to LAT at GBM trigger time: LAT detects the
GRBs that are brighter (more fluent) at low energies and sees dimmer GRBs
where it is most sensitive.

These were well
outside the LAT’s

vision at GBM
trigger time

Monday, October 26, 15



Emission detected by the LAT > |00 MeV is extended in time relative to lower
enrgies, behaving like afterglow radiation, decaying as a flat power-law in time, (most)
favoring adiabatic expansion into the surrounding material .
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Forward Shock Synchrotron Spectrum - Slow Cooling
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How common is extended high-energy emission?
Is high-energy emission related to the afterglow?
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Sensitivity of LAT to prompt emission is determined by angle to GRB position at
GBM trigger time. Sensitivity to extended emission depends on which direction
LAT boresight is headed after trigger time...

An Automatic Repoint Request (ARR) from the
GBM Flight Software places the GBM on-board
position for BRIGHT (peak flux or fluence) GRBs
close to the LAT boresight for 2.5 hours (subject to
constraints).

Over 140 times|since enabling in 2009

v

Nearly 50% of LAT detections
come from GRBs for which
GBM issues ARRs.

In survey mode the LAT rocks (now) 50 deg off the zenith
north or south on alternate orbits. GRB placement in drifting
of FoV affects sensitivity to GRB -> chance.
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Repointing the LAT to bright GBM GRBs enables the LAT detection of extended
emission for GRBs outside its view at trigger time and/or over a longer period
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ARR allows capture of
extended emission

No ARR for these: too dim to
meet out-of-field criteria

This GRB was bright but
occulted by the Earth to Fermi
for the main emission period.
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fall below LAT
sensitivity.

V. Connaughton

lost extrapolations

LAT flux and upper limits as a function of XRT flux extrapolated into the LAT
energy range for 386 GRBs with exposure during XRT observations (| 156 time

intervals).

Line where LAT flux =

Extrapolation of XRT flux

Some XRT extrapolations
are constraining: breaks in
afterglow spectrum!?
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Courtesy of Dan Kocevski
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The Green points are detections (I | GRBs, 14 time intervals) -
no separation of “prompt” from “afterglow” LAT flux:
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Extrapolated XRT Flux (ergecm * s ')

assumption is that all LAT emission is afterglow.
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medium: wind versus homogeneous.

Forward Shock Synchrotron - Homogenous Medium (Slow Cooling)
Forward Shock Synchrotron - Wind Medium (Slow Cooling)
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To the right of line: LAT flux
is less than expected,
implying cooling break

| between XRT and LAT

Along line of equality: LAT
flux matches expectations.
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One in ~7.5 GBM GRBs also triggers the Swift BAT - broad spectral coverage from
Fermi and redshifts/energetics from Swift follow-ups.

Fermi GRBs as of 151006
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1722 GBM GRBs
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103 LAT GRBs

»  In addition to those GRBs triggering the BAT, Swift detects Fermi GRBs by
observing LAT-detected GRBs with the X-Ray Telescope - hours after the

GBM trigger.
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The overlapping sample of GBM-Swift BAT triggers and LAT detections contains
GRBs observed contemporaneously over the prompt and early afterglow phase

from keV -> GeV

Joint GBM-Swift BAT :&riggers detected by LAT
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GRB 090510 shows variable, spiky “prompt” emission and smoothly decaying
“afterglow” emission
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Delayed onset of >100 MeV emission:
signature of proton synchrotron?! Proton-
induced cascades!?
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to test consistency of LAT with afterglow at lower energies.

But prompt high-energy
emission is really spiky!

V. Connaughton
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Broadband spectrum over 10
decades of energy consistent
with a single power-law
compatible with external-
shock synchrotron.
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GRB 130427: the “ordinary monster” shows variable prompt emission and

extended emission out to 70 ks later.
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GRB 130427A provides 70 ks of HE data to explore afterglow models: standard
afterglow models challenged by GeV photons |100s s after trigger

GRB 130427A
From Visible Light to Gamma Rays

Solid: Adiabatic
Red: Radiative
Dot-dashed: bracketing
Lorentz factors (500 - 2000)
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Even with extreme conditions,
observations of these HE
photons challenge afterglow
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NuStar observations and VERITAS upper limits provide additional evidence against

SSC nature of extended HE emission

UL would require
cut-off at 100 GeV
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These observations are not
contemporaneous with the
final detected LAT data point.

V. Connaughton TeVPA Tokyo 2015

Vv

vF (ergem™@s™)

UL to synchrotron PL compatible

with extension of LAT
PL in time.

1 0'9 E T T T
E TO+ ~1.5 days
10"
10-10 5
: 10
Energy (keYj ..........
0" "
10-12 o 4
10 F——— : ' :
Fermi/LAT
NuSTAR W
107"° Swift/IXRT
Liverpool Telescope
107"
1075
10—13 L 1 4
107 1 10° 10°* 10° 10°
Energy (keV)

Monday, October 26, 15



inferred from GBM observations

Epeak GRB 080916C
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The Band function may not represent some GRB spectra over the energy range
sampled by GBM - extrapolations to LAT energies may not be reliable.
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In addition, pure Band functions are broader than photospheric and narrower than synchrotron predictions e.g., Axelsson
et al. 2014,Yu et al. 2015. Physical modeling (synchrotron, photospheric, combinations) is moderately successful e.g., Ryde

et al. 2010, Burgess et al. 2013, Zhang et al., 2015.
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Afterglow emission:
LAT component is common
and scales with X-ray afterglow
brightness/hardness.

Prompt emission: LAT
component scales with GBM
fluence but often with delayed
onset. [emporal and spectral
relationship complex

*)))%i‘“

20 km INTERNAL
SHOCK
or magnetic energy  EXTERNAL
dissipation SHOCK ostly adiabatic expansion.
Wind medium favored.
Bulk Lorentz factors of >100s
|mP||ed by escape of GeV Bulk Lorentz factors of 100s |mp||ed if
photons & variability timescales. peak LAT emission represents start of
Lorentz invariance. coasting phase..
V. Connaughton TeVPA Tokyo 2015 20
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New LAT catalog will have many new detections over 4 years of old catalog + 2
extra years
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» Pass 8:A new low-level analysis and event reconstruction was developed during the
past years. Data are available since June 24th, giving

» improved effective area (100% improvement below 100 MeV, 25% above | GeV)
» better PSF and localization accuracy

» better background rejection

» reduction in systematic effects

http://fermi.gsfc.nasa.gov/ssc/observations/types/grbs/lat_grbs/table.php

V. Connaughton TeVPA Tokyo 2015 21
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8th Huntsville GRB symposium

Huntsville,Alabama. 24 - 28 October 2016.
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