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ABSTRACT 

 

When equipment designs must perform in a broad band vibration environment it can be difficult 

to avoid resonances that affect life and performance.  This is especially true when an organization 

seeks to employ an asset from a heritage design in a new, more demanding vibration environment.  

Particle dampers may be used to provide significant attenuation of lightly damped resonances to 

assist with such a deployment of assets by including only a very minor set of modifications.  This 

solution may be easier to implement than more traditional attenuation schemes. Furthermore, the 

cost in additional weight to the equipment can be very small.  Complexity may also be kept to a 

minimum, because the particle dampers do not require tuning.  Attenuating the vibratory response 

with particle dampers may therefore be simpler (in a set it and forget it kind of way) than tuned 

mass dampers.  The paper will illustrate the use of an “equivalent resonance test jig” that can assist 

designers in verifying the potential resonance attenuation that may be available to them during the 

early trade stages of the design.  An approach is suggested for transforming observed attenuation 

in the jig to estimated performance in the actual service design.   
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INTRODUCTION 

The vibroacoustics team at MSFC has investigated the effectiveness of particle impact dampers 

(PIDs) as a mitigation strategy to attenuate troublesome vibration response in equipment.  The 

trials conducted with several different test articles successfully indicates that the PIDs can be 

very effective at diminishing specific lightly damped resonant modes.  In fact, if the resonance 

under investigation is “lightly damped” then the team has come to expect a reduction on the 

order of 10 dB in resonance magnitude.   The addition of this type of mitigation device might be 

much less effective for a system resonance that already had significant damping before the PID 

was added. 

An array of different sized PIDs ranging from miniature to more substantial sized devices is 

displayed in Figure 1.  When designing a mitigation device using particles many options exist 

and some may work better than others.  The trials conducted at MSFC have led us to some basic 

sizing recommendations that seem to work admirably.   

 
Figure 1. (a.) Smaller sized PID containers for system modes with less than 1 lb modal mass.  (b.) Mid-

sized PID containers for system modes with approximately 3 lb modal mass.    (c.) . Mid-sized PID container that 

has been machined as an integral part of a linkage mechanism  (d.) Mid-sized PID containers fitted with retaining 

ring for mechanical attachment via bolted connection to test article    (e.)    Full view of Linkage with integral PID 

and cover.     (f.) Larger Size PIDs intended for use as a pair in mitigation strategy for a resonant modal mass in 

excess of 15 lbs. 
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The recommendation is to select the mode of concern and identify a location near the point of 

maximum displacement.  Ideally, a PID would be attached to the identified location (maximized 

for displacement), and sized such that the weight of the enclosed particles represents 10% of the 

mode’s effective mass.  Motion of the particles removes energy from the mode of concern for the 

vibrating system.  The recommendation could likely be further optimized, but these guidelines 

serve well as a starting point from which the reader can expect to be effective at attenuating a 

specific resonant mode. 

 

BACKGROUND 

New launch vehicle programs may be interested in making use of assets that seemed trustworthy 

performers in a previous program.  They may also want to explore the use of items of 

“Commercial off the Shelf” (COTS) design.  The Space Launch System (SLS) program has 

access to avionics units or propulsion/navigation and control equipment that performed well for 

previous launch vehicles.  Therefore, an investigation was begun through “development/risk 

reduction” testing to ascertain whether or not the existing designs could be used as is (or with 

minor modifications) 

 

The possibility of including certain Thrust Vector Control (TVC) actuators of heritage design 

was investigated for the propulsion system of the SLS first stage core segment.  The function of 

the actuators is to adjust and maintain the gimbal orientations of the four RS25 Engines.  The 

heritage design actuators were originally developed for the space shuttle orbiter.  Controlling the 

thrust vectors for these engines is part of the overall steering and navigation scheme for the new 

vehicle during the first stage phase of flight. 

 

The desire to use the heritage TVC actuator equipment proved to be a challenge because the 

vibration environment in which the equipment would have to perform is more demanding than 

the previous service environment.  The functional performance of the equipment during exposure 

to vibration was a matter for verification by test.  Several risk reduction tests were conducted in 

order to mitigate risk for the program.  A final qualification for the designs for all of the SLS 

environments is scheduled for the near future. 

 

Results of early development tests indicated that the higher levels of vibration exposure could 

result in undesired perturbations of the actuator piston motion.  Essentially, a mechanical feeler 

gauge used to sense the extensional position of the actuator piston was “being fooled”.  The 

feeler gauge was used to mechanically report the degree to which the jaws of a scissor element 

were open in order to represent the motion of the piston fitted with a conically shaped cam.  The 

narrowing of the cam as it moved over the scissor jaws indicated that the actuator piston was 

retracting into the unit.  Conversely, extension of the piston resulted in the opening of the jaws of 

the scissors wider as they were pressed against the conical cam. 

 

The TVC design includes a series of coil springs that press the scissor jaws open against the cam. 

The risk reduction tests eventually demonstrated that inertial loads became greater than the coil 

spring’s resultant force and that caused a loss of contact of the scissors with the cam. This 

phenomenon “fooled” the gage. A detailed description of the mechanical system follows. 
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Actuator Operational Details and Functional Perturbation Problem under Vibration: 

On a basic level, the thrust vector of each liquid rocket engine is controlled using a pair of 

hydraulic piston actuators.  The forward attachment for the TVC actuator body is through a 

pinned connection to the vehicle thrust structures.  A piston-driven rod end extends out of the 

body’s hydraulic cylinder and interfaces to the engine at another pinned connection.  The pitch 

and yaw actuators are depicted in relation to the engine and vehicle interfaces in Figure 2. 

In order to facilitate the sensing of the rod end position, the movable piston/rod end assembly is 

fitted with a long conical cam.  The cam interfaces with the mechanical sensing feedback linkage 

through a preloaded feeler gauge which has been dubbed the scissors. The scissors press open 

against the inside surface of the conical cam via the three coil springs.  A cut away view of the 

actuator assembly is provided in Figure 3 along with an expanded view with labels describing 

elements of the position sensing feedback mechanism. 

 
Figure 2 A pair of hydraulic actuators are used to select and control the thrust vector produced 

by the RS25 liquid rocket engines.  The actuators span from the vehicle thrust structure to an interface 

location approximately aligned with the middle of the engine main combustion chamber. 

 

 



29th Aerospace Testing Seminar, October 2015 

The problem encountered is that the feedback mechanism will only provide a reliable measure of 

the extensional position of the rod end of the actuator so long as the scissors stay in contact with 

the cam.  Figure 4 provides insight into how the mechanism can be fooled registering that the 

piston rod has retracted into the unit somewhat if either the upper or lower scissor roller lifts off 

the cam.   

 
Figure 3. Cutaway view showing interior details of hydraulic actuator including the major feedback mechanism 

components (i.e.  Cam, Feeler Gauge–Sensing Scissors, Preloaded Scissor Springs, Link, Bell Crank, and Cage). 

 

 

 

 
Figure 4. The perception of a retracted piston rod that lifting either the lower or the upper scissors roller off 

the cam might have. 
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The development tests successfully revealed that choosing to manifest this heritage design 

equipment in a more severe vibration environment could lead to some performance challenges.  

As we have already mentioned, the position feedback mechanism design works well as long as 

the scissors rollers remain in constant contact with the cam. The first set of development tests 

began to reveal that there was a very “one sided” position perturbation that began to manifest as 

the units were exposed to higher levels of vibration.  When the unit was commanded to hold at a 

certain position, it was not surprising that there should be some dither within tolerance about that 

position, but it was surprising that it should make some larger excursion extensions and then 

correct back to the original position (See Figure 5).   

 

Figure 6 presents relative displacements generated using the baseline design which were 

measured in a subsequent series of tests at another facility (Reference [1]).  These illustrate 

nicely how the single sided perturbations of the rod end displacement developed and worsened 

with increasing overall vibration level.  The plot begins at low level on the left and progresses to 

higher levels moving right.  The data was concatenated in 20 second records to illustrate the 

differences in the steady state response measurements.  

 

 
Figure 5. Relative displacements of the rod end from the body/cylinder produced under varying levels of 

vibration during the first set of risk reduction vibration tests.  a.) The expected dither at low vibration level  b.) 

Single sided excursions observed at higher vibration Levels   c.) One of the test setups 
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The capability of the design to command and hold position degraded when exposed to 

increasingly severe levels of vibration.  One of the early questions was to identify any modes of 

vibration that might explain this difficulty.  An obvious direction of inquiry was, “What are the 

vibration modes of the feedback mechanism?”  Both analytical simulations and test results 

confirmed that there was a fundamental mode of vibration for the scissor, link, bell crank, and 

cage assembly at or near 250 Hz (Figure 7).  Therefore efforts were initiated to diagnose whether 

or not the feedback assembly resonance was at the root of the problem.  

Others have investigated the use of particle dampers, with some success Reference [2-8].  Often 

the solution they have written about is fairly tied to one particular design problem.  We are 

 
Figure 6. This plot of measured piston rod end  relative displacements nicely illustrates the functional 

anomaly that appeared and grew worse with increasing vibration level. 

 

 

 

 
Figure 7. A resonant mode of the feedback mechanism was predicted by the FEM simulation to occur at 254 

Hz.  The deformed mode shape is depicted above.  Testing with small accelerometers mounted on the cage spring 

leaf elements and scissors confirmed the presence of this mode which would cause the link to move up and down 

as the bell crank rotated about its lower pivot.  This translated to forward and back motion of the cage assemblies. 
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seeking in this paper to generalize the strategy somewhat so that many resonance attenuation 

problems may be addressed in a similar fashion.   

Once the resonance was identified and confirmed a prevailing theory existed that the inertial 

forces of the bell crank and link responding resonantly at the end of the upper scissor might be 

enough to cause the upper scissor roller to lift off the cam.  In order to confirm this, some 

vibration test case trials were conducted where the broad band input vibration spectra was split 

into two different test cases: 

1. In the first trial only the energy from 20-100 Hz was applied.  This 100 Hz cutoff 

provided more than one octave of separation between the input vibration energy and the 

feedback mechanism first resonance.  This first case should not have excited the feedback 

mechanism first resonance. 

2. In the second trial energy from 100-2000 Hz was applied.  This second case should have 

excited the feedback mechanism first resonance. 

The result of these trials provided two very important observations.  The first case was sufficient 

to produce the unwanted one sided perturbations in the piston rod end displacements, therefore 

the feedback mechanism resonance was not solely responsible for the functional difficulties.  But 

the second case also produced the same kind of perturbations that the program wished to avoid.  

Therefore, the 250 Hz feedback mechanism resonance was assigned a portion of the 

responsibility for the anomaly.  But another explanation was sought to explain how the large one 

sided perturbations were being produced for the vibration case for only the frequency bands 

below 100 Hz. 

The proposed hypothesis was that the energy in the overall composite acceleration RMS was 

sufficient to make the rollers lift off the cam and produce unwanted perturbations.  This 

hypothesis was confirmed by plotting the 1 sigma displacements against the RMS response of 

the cage.  A very pronounced correlation between the displacement size and the cage response 

RMS was discovered (Figure 8).  It turned out that the vibration input levels which were highest 

in the range below 100 Hz could produce enough RMS response in the mechanism to initiate the 

lifting of the scissors off the cam.   

However, the result should not be interpreted as an indication that the contributions of the 250 

Hz resonance were insignificant, the resonant response was also sufficient to lift the rollers off 

the cam without the contributions of the bands below 100 Hz  

It was at this point when the team became aware that adding a damper for one mode would not 

be sufficient to correct the functional difficulties.  Instead a combined solution was investigated.  

The combined solution included increasing the spring forces holding the scissors against the 

cam, as well as adding the damper for the feedback mechanism resonance.   

One additional avenue of assistance was other than a design modification.  The reduction of the 

vibration environment estimate as the vehicle design became more mature and uncertainties 

could be removed also became important.  This was the third promising avenue for refinement 

that was identified.   



29th Aerospace Testing Seminar, October 2015 

The strategy for considering the use of a PID modification to an existing design should include 

steps to verify that one or more resonances of the system design are indeed the correct  source of 

concern for the design.  Such verifications are best carried out by test rather than analysis. For 

the actuator we did identify the feedback mechanism resonance as a likely source of concern for 

using the design in a more severe vibration environment.  In order to verify the hypothesis, the 

team proposed splitting the random vibration band input into two parts as described above. 

These two trials did reveal whether or not the feedback mechanism resonance was solely 

responsible for the functional difficulties for the equipment that were being observed.   So in this 

case a resonance of the feedback mechanism was not the only consideration.  But the 

investigations by test generated interesting data to illustrate how to implement a particle impact 

damper approach. 

 
Figure 8. A combined approach was proposed a.)  The  PID could be added to attenuate RMS vibration 

of the feedback mechanism.  An increase of  preload in scissor springs would increase the capability for the 

scissors to remain in contact with the cam.  b.)  Correlation of Rod end motion to measured cage RMS 

acceleration. Note that the same trend was observed no matter which direction of vibration was being applied 

as an input (X axis, Y axis, or Z axis). 

 

 



29th Aerospace Testing Seminar, October 2015 

The added benefit of conducting some tests with the original design before modification is the 

ability to determine the damping characteristics of the resonance you would like to affect by 

adding a PID to the design.  Note that damping characteristics can be nonlinear and dependent on 

vibration input levels.  This data can be  

Once the team has determined that, attenuating a specific resonance may allow them to deploy 

the heritage design in the more demanding environment, the next step is to understand what the 

mode shape of that resonance is.  For this step referring to models may be quite appropriate.  The 

task is to identify a “location” on the structure that is suitable to attach a container full of 

tungsten particles.  This location should optimize the motion seen by the container of particles 

when the Identified mode responds.  The particle container may be attached to existing hardware, 

or embedded within a part if desired.  The purpose is to locate the package of particles at a 

location where they will endure a great deal of motion when the target system mode is excited. 

Another aspect of the strategy may be to develop an estimate of the degree to which adding the 

particle damper package may help.  For this purpose we have added a section describing our use 

of a parallel beam test jig.  Test data from the jig trials and from development tests with the 

original  design may be all that is needed to provide a useful initial estimate of attenuation 

performance 

 

Equivalent Resonance Test Jig 

A jig was devised to allow us to tune an SDOF-like resonance on a shaker table to match both 

the modal mass and the natural frequency of our target mode.  Two beams were aligned parallel 

to one another in a clamped-clamped arrangement with a provision for trim masses and particle 

dampers at the midpoints of the beams.  Stiffness and mass adjustments can be made by varying 

the section modulus of the beams, the distance between the supports, and the amount of trim 

mass added at the center.  The fastener retaining the trim masses to the beams also included a 

feature for attaching particle damper housings.  Selection of the available degrees of freedom 

(span, cross section, and center mass), was guided by a finite element beam model.  Once a 

design was chosen that best fit the desired natural frequency and modal mass, one of the dampers 

was filled with particles to the prescribed level.  This parallel beam arrangement allows for a 

comparison between the damped and un-damped responses.  Stepping up to the final test level in 

increments shows how much damping can be achieved.   

Figure 9 presents results from a vibration trial using such a jig and related to the TVC actuator 

problem we have discussed.  The resonance frequency and modal mass were chosen to closely 
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match the feedback mechanism resonance.  A full 10 dB attenuation of the beam resonance was 

achieved using only 51 grams of particles.  

In order to estimate the final damping of our system with the particle damper installed it is 

necessary to study the damping results in the parallel beam study from the equivalent resonance 

jig.  The difference can provide you an estimate of how much extra damping was contributed by 

the particles.  Keep in mind that the beam jig resonance without particles is probably not a true 

estimate for the damping of the resonance in the design you are planning to affect.  You will 

bring the extra damping that the Jig helped you measure to the design resonant mode by 

installing a PID, but the attenuation produced will depend on how much damping was already 

present in the mode you are addressing in the design.  The best attenuation results will be 

obtained for lightly damped modes.  Adding additional damping to a system resonance that 

already has a fair amount of damping is not as effective as providing damping to a lightly 

damped mode.   

The authors have postulated that the damping information from the equivalent beam test can be 

combined with the observed damping in the actual heritage design in order to estimate the final 

damping total for the resonance you seek to attenuate in the modified equipment design.  It is 

often useful to study the Q of resonance in order to determine damping from steady state test 

conditions.  The parallel beam tests would supply the information in the bracketed part of the 

denominator from Equation 1 below.  The Q of the resonance from the design system bare (i.e. 

without PID) will probably be available from tests of the heritage design, if the system resonance  

was instrumented.   

 
Figure 9. Illustrating the results of parallel beam test as indicator of potential resonant mode attenuation 

with the addition of a particle damper 
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`     (1) 

 

Then, Equation 2 can be developed to estimate the critical damping ratio of the modified design 

by substitution:   

  (2) 

 

 

Particle Damper Preparation Strategy for System Test Trials 

The development of two different particle damper designs suitable to damp the resonance of the 

TVC actuator feedback mechanism was guided by lessons learned from previous trials conducted 

by MSFC/ES22 aimed at damping the fundamental resonance of some smaller assemblies.  

Several principles were used as guidelines: 

1. The weight of particles adequate to provide significant damping of a resonance should be 

guided by the total modal mass of the un-damped resonant mode shape.  A useful design 

goal is to include a quantity of particles approximating at least 10% of that un-damped 

modal mass.  Tungsten BBs are readily available from suppliers of shot commonly used 

for ammunitions (Tungsten may be preferable to lead for health concerns of those who 

handle the items). 

2. The container for the particles should be located at a position that maximizes the modal 

displacements of the package with particles.  The more the package participates in the 

vibration motions of the resonant mode targeted for reductions the better. 

3. Design measures should be taken to prevent Foreign Object Debris (FOD) from escaping 

the container during assembly, disassembly, and operation in the vibration environment.  

In addition to the small particles themselves, a fine dust is created as the particles wear 

against each other and against the container. 

4. The container for particles is not filled to capacity. A gap is left in the container so that 

the particles can rattle.  MSFC has had promising results with an approximately 90% fill. 

5. A means of mechanically fastening the particle container is desired. 

6. A parallel beam experiment was used in advance to demonstrate potential and to verify 

that the intended particle load (weight of particle enclosed) was in fact adequate to 

provide the intended reductions.  This assisted with design choices that followed. 
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The Link Damper 

The first solution pursued was the development of a particle damper that was housed within the 

link element of the feedback mechanism.  This solution was considered optimal, because it 

maximized the position of the particle container for the most motion in the mechanism resonant 

mode.  In addition, the same link was under consideration for redesign by Moog because of their 

fatigue assessment. A comparison of the original link and the replacement PID_Link is depicted 

in Figure 10.  The integral PID Link slightly increased the participating modal weight of the 

entire feedback mechanism assembly from.   

The parallel beam experiment was conducted at the end of November 2014 using a pair of 

identical cylindrical containers that were on hand.  First a cylindrical container was filled to 

capacity. The tungsten BBs were then weighed.  Next BBs were removed until a 90% fill by 

weight was achieved. This amounted to 51 grams (0.112 lb). 

 

The results from the parallel beam test were so encouraging (approximately an order of 

magnitude reduction in the acceleration spectral density at resonance was demonstrated) that the 

same weight of particles was chosen for the PID_Link.  Table 1 provides weights and 

frequencies associated with the baseline and PID_Link designs.  Note that the weight of particles 

is not included in the modal weight estimate. 

Table 1   Comparison of Baseline and PID_Link Feedback Mechanism Design Weights and Frequencies 

 

 

 

Particle % of  Frequency

Baseline PID_Link Baseline PID_Link Baseline With PID_Link Baseline With PID_Link Modal Weight % Shift

[lb] [lb] [lb] [lb] [lb] [lb] [Hz] [Hz]

0.000 0.112 0.050 0.105 0.600 0.655 250 239.3 17% -4.3%

Modal WeightLink WeightParticle Weight Resonant Frequency
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The Bell Crank Damper 

Later a second damping solution was requested by ER35.  They placed a priority on the 

additional “capability of adding the damper to the design without disassembling any of the 

feedback mechanism” during the test program   The lightening hole in the body of the bell crank 

presented itself as a likely place to clamp a damping device in place.  Drawbacks for this 

approach included: 

1. The design did not optimize the damper at the location for maximum motion as it 

participated in the location did not optimize motion of the installed damper as well as the 

link location. 

2. More weight was added to the feedback mechanism with the addition of package and 

retaining ring clamp/spacer.   

The  Bell Crank damper (B_crankPID) was  fabricated so that it could clamp either one or two of 

the previously fabricated cylindrical containers at that location.   Since the cylindrical packages 

were reused the particle weight inside each was consistent with the previous beam testing and 

with the PID Link. The choice was made to use both damping packages during the risk reduction 

trials to perhaps compensate for the less than optimum location.  So for the vibration trial, twice 

the weight of particles was employed as compared to using either the PID_Link damper, or using 

the bell crank retaining device with just a single cylindrical package. 

 
Figure 10 Depicts that the design choice for the weight of particles included in the PID Link design was 

guided by a 90% fill level for the cylindrical package used in the parallel beam experiment. 
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The B_crankPID assembly and individual elements are pictured in Figures 11-13.  Table 2 shows 

that the Bell Crank Damper design added somewhat more weight to the feedback mechanism 

than did the PID-Link design. 

  

 
Figure 11. The Bell crank damper was assembled using tow container of tungsten particles a.) The retaining 

ring holds the container in place on either the top or bottom of the bell crank. b.) cylindrical container c.) & d.) 

retaining rings,  e.) The central spacer. 
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Table 2.  Baseline, PID_Link, and B_crankPID  Feedback Mechanism Design Weights 

 

Baseline PID_Link BC_damper Baseline PID_Link BC_damper

[lb] [lb] [lb] [lb] [lb] [lb]

0.000 0.112 0.225 0.000 0.062 0.085

Particle Weight Part Weight Above Basline

 
Figure 12. The Bell crank damper was assembled using a spacer and two retaining rings into the bell crank.  

The Black bell crank part was 3d printed during the manufacturing to conduct fit checks on the unit. a.) fully 

assembled spacer clamped to the bell crank.  b.)  Parts prepared to mate with fasteners across spacer. 
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Results from the system test with and without dampers 

A diagram depicting the measurement locations with respect to the test article is provided in 

Figure 14.  The Bellcrank PID which included twice the weight of particles provided somewhat 

more attenuation.  In this case putting more tungsten BBs in a fairly good location turned out to 

provide more attenuation at the cage accelerometer locations of the resonance than the single 

cavity for tungsten approach used in the link damper.  

 
Figure 13. The Bell crank is depicted installed into the TVC actuator System.  There are actually two packages 

of tungsten particles that are clamped in place on either side of the spacer, the second container is hidden in this 

view. 
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A comparison of acceleration spectral density plots is presented in Figure 15.  Attenuation at the 

feedback mechanism resonance (near 250 Hz) is slightly greater for the bell crank damper.  This 

resonance was diminished by 5.5 and 7.0 dB for the Link and the Bell Crank PID cases 

respectively.   

 
Figure 14. Instrument location map  a.) Channel numbers and instrument locations inside the unit on feedback 

mechanism  b.) Channel numbers and instrument locations on the outside surface of the test article. 
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Also presented in Figure 15 are cumulative RMS plots of the acceleration from the same 

measurements.  The plots show how both the Link Damper and the Bell Crank Damper 

attenuated the broad band response by an order of magnitude  over the broad band from 20 -2000 

Hz.   

But for motion of the type that might lift the scissors off the cam the Link PID worked more 

effectively.  This was true with only half the weight of tungsten particles (Figure 16).  

A baseline test case that did not include any damper was compared to the two modified design 

test cases.  This comparison reveals that the attenuation of the near 250 Hz resonance provided 

by both the bell crank damper and the Link_PID were in the expected range.  As mentioned 

earlier a damping solution could not stand alone for this design. 

The lower scissor response was also attenuated more at the feedback linkage resonance (near 250 

Hz) by the Bell Crank PID, but the overall broad band rms was helped more by the Link damper.   

The broadband response of the lower scissor was very significant.  The low frequency actuator 

bending mode (approximately 75 Hz) contributed quite a lot to the total response at the lower 

scissors measurement location.  This low frequency system resonance was revealed as an 

additional concern related to the undesired motion of the piston/rod end assembly. Therefore 

attenuating only the feedback mechanism resonance via particle damping was not adequate by 

itself to mitigate the functional difficulties with the TVC actuator design. 

Figure 16 also provides cumulative rms plots from the same measurements show how well the 

Link Damper and the Bell Crank Damper attenuated the broad band response.  It can be seen that 

the Link damper provided a significant attenuation of the energy above 1000 Hz.  This very high 

frequency attenuation helped the Link PID outperform the Bell Crank PID for attenuation of the 

overall vibration. 

For the lower scissor feeler gauge element, the Actuator Fundamental Bending Mode occurring 

near 75 Hz response was easily excited by the vibration input energy below 100 Hz.  Just this 

one mode is provided nearly 25 g rms response at the lower scissor location. 
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Figure 15. a.) A comparison of acceleration spectral density plots depicts that the  attenuation at the 250 Hz 

resonance is slightly greater for the Bell Crank Damper.  The feedback mechanism resonance (near 250 Hz) was 

diminished by 5.5 and 7 dB for the Link and the Bell Crank PID cases respectively.  b.) Cumulative RMS plots 

from the same measurements show that both the Link Damper and the Bell crank damper attenuated the broad 

band response by an order of magnitude  over the broad band from 20 -2000 Hz. 
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Figure 16. The lower scissor response was more affected at the feedback linkage resonance by the Bell 

Crank PID, but the overall broad band rms was helped more by the Link Damper  a.) A comparison of 

acceleration spectral density plots reveals that the attenuation of the near 250 Hz resonance is most evident for 

the Bell crank Damper.  b.) Cumulative RMS plots from the same measurements show how well the Link Damper 

and the Bell Crank Damper attenuated the broad band response..  For the lower scissor feeler gauge element, the 

Actuator Fundamental Bending Mode occurring at 75 Hz  response stemming from the vibration input energy 

below 100 Hz.  Just this one mode is providing nearly 25 g rms response at the lower scissor location. 
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Conclusions 

TVC had functional anomalies that were first theorized to stem from a 250 Hz resonance. 

Instrumenting the unit internally so that the response of the feedback mechanism could be 

understood in risk reduction testing was an important step in verifying this hypothesis.  The 

testing revealed that the 250 Hz resonance was not the only concern related to the functional 

anomalies that were observed in the demanding vibration environment. 

Diagnostic tests used the technique of band splitting to isolate the 250 Hz resonance from the 

low frequency broad band energy.  This set of test trials showed that the 250 Hz resonance was 

not the only problem. 

Band splitting as a diagnostic to determine whether the resonance in question is the only source 

of concern is a highly recommended technique.  If other concerns exist, then the need to seek a 

combined solution in order to deploy an older design in a new more demanding vibration 

environment may be advised. 

Solving the TVC actuator design issues required a combined approach.  Ultimately the test 

program demonstrated that the particle dampers could supply substantial reduction in the 

response of a targeted system resonance. 

In the end the second issue “Inertia loads from low frequency bands that overcame the feeler 

gauge mechanism preload”, was the dominant source of functional anomalies. 

In other designs a resonance may be the dominant source, the PID mitigation strategy remains an 

important tool in the hands of engineers seeking to deploy heritage designs in even more 

demanding broad band vibration environments. 
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