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Pressure Loss Predictions of the Reactor Simulator 

Subsystem at NASA GRC 

Terry V. Reid1  

NASA Glenn Research Center, Cleveland, Ohio, 44135 

Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being 

conducted at NASA GRC. The TDU consists of three subsystems: the Reactor Simulator 

(RxSim), the Stirling Power Conversion Unit (PCU), and the Heat Exchanger Manifold 

(HXM). An Annular Linear Induction Pump (ALIP) is used to drive the working fluid. A 

preliminary version of the TDU system (which excludes the PCU for now), is referred to as 

the RxSim subsystem and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In 

parallel, a computational model of the RxSim subsystem was created based on the CAD model 

and was used to predict loop pressure losses over a range of mass flows. This was done to 

assess the ability of the pump to meet the design intent mass flow demand. Measured data 

indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim 

subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the 

pump could provide 2.157 kg/sec (using the Spalart-Allmaras turbulence model), and 2.223 

kg/sec (using the k- turbulence model). The computational error of the predictions for the 

available mass flow is -0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with 

the k- turbulence model) when compared to measured data. 

Nomenclature 

ALIP = Annular Linear Induction Pump 

k = turbulent dissipation rate and turbulent kinetic energy 

FM = Flow meter 

FPS = Fission Power System 

Gb = production of turbulent kinetic energy due to buoyancy 

Gv = production of turbulent viscosity 

Gk = production of turbulent kinetic energy due to the mean velocity gradients 

Gv = production of turbulent viscosity 

HXM = Heat Exchanger Manifold 

mf = mass flow 

 =  density 

P, P = pressure, pressure difference 

RX = Reactor Simulator 

, k = turbulent Prandtl number for  and k 

t =  time  

TDU = Technology Demonstration Unit 

, t = molecular dynamic viscosity and eddy viscosity 

v = molecular kinematic viscosity 

�̃� = turbulent kinematic viscosity 

YM = contribution of the fluctuating dialation in compressibly turbulence to the overall dissipation rate 

Yv = destruction of turbulent viscosity 

I. Introduction 

xploration of our solar system continues to bring many exciting challenges to our nation’s scientific and 

engineering community. As we expand our visions to explore new, more challenging destinations, we must also 
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expand our technology base to support these new missions. NASA’s Space Technology and Mission Directorate 

(STMD) is tasked with defining and developing these technologies for future mission infusion and continues to seek 

answers to many existing technology gaps. One such technology gap is related to compact power systems (> 1 kWe) 

that do not rely on solar energy and can provide abundant power for several years if not decades. Below 1 kWe, 

Radioisotope Power Systems (RPS) have been the workhorse for NASA and will continue to be used for lower power 

applications similar to prior missions like Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, 

Fission Power Systems (FPS) become the base technology with multiple options for reactor design, power conversion, 

and heat rejection which are driven by specific power needs and mission requirements.  

At NASA, efforts are being made to develop a Technology Demonstration Unit (TDU) that uses Fission Power 

System technology to produce ~12 kW of electric power. As components of the TDU are tested and developed, the 

components are then assembled for subsequent test, with lessons learned applied along the way. One of the main 

components of the FPS is a pump that circulates liquid-metal throughout the reactor system. This annular linear 

induction pump (ALIP) needs to meet specific mission requirements and is tested at representative operating 

conditions. In the early stages of testing (originally performed at NASA MSFC), testing was performed using the 

Reactor Simulator loop to verify that the selected ALIP could deliver the required pressure and flow at nominal 

conditions. While testing with the TDU ALIP in place, it was discovered that this particular pump could not deliver 

the required pressure and flow at nominal conditions. A FPS ALIP with a larger capacity than the TDU ALIP was 

available for use, but testing was needed to verify that FPS ALIP could provide the needed pressure and flow rate as 

a component in the Reactor Simulator loop. The Reactor Simulator loop was moved to NASA GRC with the intention 

of rebuilding the loop, and conducting tests using the FSP ALIP. Prior to the assembly of this loop, a computational 

model of the RxSim loop was constructed in an effort to generate predictions that tracked the pressure as a function 

of flow rate throughout the loop, and over the anticipated operating range of the system.  

II. Problem Statement 

In the Reactor Simulator subsystem, an Annular 

Linear Induction Pump (ALIP) is required to drive the 

liquid metal working fluid. The ALIP is an 

electromagnetic pump that generates a pressure rise 

through the interaction of a traveling magnetic field 

produced in the stator and the current flow induced in 

the liquid metal contained within the pump. Two pump 

choices were readily available, which included the 

TDU ALIP and the FPS ALIP. Both pumps were 

previously tested individually at NASA MSFC in their 

ALIP Test Circuit (ATC)1. These tests produced pump 

curves and performance maps which defined the 

expected pump performance. Reactor Simulator 

testing performed at NASA MSFC was done using the 

TDU ALIP, which was not capable of providing the 

nominal pressure and flow rate due to a manufacturing 

irregularity. As a result, the tests of the Reactor 

Simulator subsystem (shown in Figure 1) were 

repeated at GRC, for the FPS ALIP. To help anticipate 

the pressure demand of the Reactor Simulator loop, 

computational predictions were generated as part of 

the process to validate the FPS ALIP’s ability to 

provide the nominal flow. 

 
The CAD (Computer-Aided-Design) model of the TDU was used to generate the computational model. The 

FPSALIP and the HXM were removed from the model, and a wedge flow meter was added. This configuration is the 

same as the hardware that was ultimately tested. The components of the full-scale TDU are shown in Figure 2. The 

computational model of the NaK loop only is shown in Figure 3. The FPS ALIP was removed so that the inlet and 

exit boundary conditions could be applied at that location. Calculated pressure drops represent ALIP pump 

requirements. The primary components in this configuration are the flow meter, tubing, and the core simulator. 

 
(a) Test article     (b) CAD Model 

 

 

Figure 1. Fission Power System (FPS) Technology 

Demonstration Unit (TDU). 
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III. Analysis Description 

ANSYS Mesher™ and ANSYS Fluent™ were used to generate the mesh and calculate solutions. The generated 

unstructured mesh has approximately 2.5 million cells. Boundary conditions include a mass flow inlet, a pressure 

outlet, and no-slip walls. The inlet temperature was held constant for all cases at 798 K, although this isn’t expected 

to  be critical at this time since all walls have an adiabatic boundary condition. For future cases, heat flux boundary 

conditions will be added to the Core Simulator (to add heat), and to the HXM (to remove heat). The focus of this series 

of calculations is to predict the pressure losses throughout the loop and the subsequent requirement for the ALIP over 

a range of mass flows.  

Numerical solutions were obtained for the single-phase Navier-Stokes equations. Temperature-dependent material 

properties for liquid metal (NaK – Sodium Potassium) were used for the fluid. The Semi-Implicit Method for Pressure 

Linked Equations (SIMPLE)2 algorithm was used for the pressure-velocity coupling. Convective terms were 

discretized using a second-order upwind scheme. Spatial gradients are computed using a cell based least squares 

method. Steady-state simulations were conducted until the root mean square (rms) values of the continuity, velocity, 

and energy residuals were reduced by at least four orders of magnitude. Calculations through a pre-determined mass 

flow range were performed using both the Spalart-Allmaras3 and the Realizeable k-4 turbulence models. 

The Spalart-Allmaras model is a one-equation model that solves a modeled transport equation for the kinetic eddy 

(turbulent) viscosity. It is not calibrated for general industrial flows and does produce relatively larger errors for some 

free shear flows, especially plane and round jet flows. Because it is a one-equation model, it uses less resources (CPU 

time) than the other two-equation models. However, it cannot be relied on to predict the decay of homogeneous, 

isotropic turbulence. 

The Realizeable k- model is a two-equation model. It differs from the standard k- model by using an alternative 

formulation for the turbulent viscosity, and by using a modified transport equation for the dissipation rate , which 

has been derived from an exact equation for the transport of the mean-square vorticity fluctuation. The term 

“realizeable” means that the model satisfies certain mathematical constraints on the Reynolds stresses, consistent with 

the physics of turbulent flows. The model has been extensively validated for a wide range of flows, which includes 

free flows including jets and mixing layers, channel and boundary layer flows, and separated flows. This model uses 

considerably more CPU resources than the Spalart-Allmaras model while obtaining a higher degree of accuracy. 

  
(a) Original CAD Model   (b) Trimmed CAD Model 

Figure 2. The RxSim Subsystem. 
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A. Wedge Flow Meter 

The wedge flow meter was manufactured by ABB. The geometry and the location of this flow meter is shown in 

Figure 3. The flow meter in the model is located just downstream of the core simulator. The wedge flow meter is 

essentially a 1½ inch carbon steel Schedule 40 pipe with a wedge inserted in the pipe and the walls roughened. The 

pipe roughness of the wedge flow meter is 0.00015 ft (0.00004572 m).  The wedge and the roughened flow meter 

walls are designed to allow us to take advantage of our knowledge of turbulence to predict the mass flow through 

observed pressure drops within the flow meter. When the flow meter was shipped, it included numerical predictions 

performed by ABB using a computational solver called ABB Suites. When the model was generated (at NASA GRC), 

these calculations were repeated using both OpenFOAM and ANSYS Fluent™. The results of these simulations are 

shown in Figure 4. 

 

 

 
 

 
(a) Geometry of wedge flow meter   (b) Flow meter in model 

Figure 3. The Wedge Flow Meter. 

 

Figure 4. Predicted pressure drops in the wedge flow meter. 
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B. The Core Simulator 

In future simulations, the core simulator will be used to heat the working fluid. In the current series of calculations 

the focal point is pressure drop. Efforts were made to include as many geometric details of the core simulator as 

possible, because they will influence the pressure drop. The geometry of the Core Simulator is shown in Figures 5 and 

6 . The Core Simulator contains 37 rods, which collectively provides a reduced flow area for the flow entering and 

exiting. The primary flow path through the core simulator can be seen in Figure 6, in the leftmost image. The surfaces 

within this simulator are considered to be smooth. 

 

C. The ALIP 

 As mentioned before, the ALIP is an electromagnetic pump that generates a pressure rise through the interaction 

of a traveling magnetic field produced in the stator and the current flow induced in the liquid metal contained within 

the pump. Two pump choices were available, which includes the TDU ALIP (Figure 7a) and the FPS ALIP (Figure 

7b). The target nominal flow is 1.75 kg/sec. Looking at the performance curves for the TDU ALIP shown Figure 7a, 

it is clear that the TDU ALIP does not have the capacity to produce the desired nominal flow. However, the 

performance curves for the FPS ALIP (shown in Figure 7b) suggests that this pump may be able to produce the 

required flow at nominal conditions, but its ability to achieve the nominal flow is based on the pressure losses in the 

RxSim subsystem. 

 

          
(a) CAD model of Core Simulator         (b) Mesh of Core Simulator 

Figure 5. The Core Simulator. 

 

Figure 6. Anatomy of the Core Simulator. 

    
(a) TDU ALIP            (b) FPS ALIP 

Figure 7. Measured performance curves of the ALIP. (Courtesy of NASA MSFC). 
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IV. Results 
 The calculated solutions of the RxSim subsystem are shown in Figure 8 (using the Spalart-Allmaras turbulence). 

Mass flow boundary conditions were applied to the face at Station 0 (inlet) and pressure outlet boundary conditions 

applied to the face on Station 9 (outlet), which corresponds to the location of the ALIP.  The schematic in Figure 8 

shows the location of each station, while the plot in Figure 8 shows the pressure at each station. The plot in Figure 8 

can be used to calculate the pressure drop across each component in the loop for various inlet mass flow settings. A 

plot was also generated using the results from the Realizeable k- turbulence model, but is not shown here since the 

pressure drop on a component level are nearly indistinguishable in a plot. Instead, the total differences between Station 

9 and Station 0 (the entire loop) are shown for both the Spalart-Allmaras and the Realizeable k- turbulence models 

in Figure 9. The green circles represent the measured pressure drops during laboratory testing. 

 Curves fits were generated for the results of Figure 9, and are shown below. Note that all curve fits have a zero y-

axis intercept, which corresponds to 0 pressure loss when there is zero mass flow. The predictions using the Spalart-

Allmaras and Realizeable k- turbulence models were generated at the same mass flow increment (from 0 to 3.0 at 

increments of 0.5), but the actual measured data was not. As a result, the resulting curve fits are as follows: 

∆𝑷 = 𝟏. 𝟎𝟏𝟏𝟖𝟕(𝒎𝒇)𝟐 + 𝟎. 𝟑𝟓𝟖𝟑𝟕𝟐(𝒎𝒇) − 𝟎. 𝟎 for the measured data 

∆𝑷 = 𝟏. 𝟐𝟖𝟑𝟖𝟓(𝒎𝒇)𝟐 + 𝟎. 𝟒𝟎𝟓𝟓𝟔𝟓(𝒎𝒇) − 𝟎. 𝟎 for predictions using S-A model 

∆𝑷 = 𝟏. 𝟏𝟎𝟑𝟗𝟗(𝒎𝒇)𝟐 + 𝟎. 𝟓𝟎𝟕𝟓𝟏𝟔(𝒎𝒇) − 𝟎. 𝟎 for predictions using k- model 

 

The curve-fit pressure loss predictions produced by the various turbulence models are compared to the curve-fit 

of the measured data, and their differences can be seen in Figure 9. This plot indicates that at a mass flow of 2.5 kg/s, 

the S-A turbulence model prediction was 1.827 psi higher than measured data while at the same mass flow, the 

Realizeable k- turbulence model was 0.964 psi higher than measured data.  

Another use for these equations is to estimate the mass flow and anticipated pressure the ALIP can provide. This 

is done by defining a curve-fit equation for the ALIP operating at 120 V and 36 Hz (which is the highest performing 

ALIP condition tested, see Figure 9). The equation at these operating conditions are 
 

∆𝑃 = −0.1760963(𝑚𝑓)2 − 2.09680(𝑚𝑓) + 12.19200  for the FPS ALIP at 120V/36Hz 

 
At this point, the pump equation curve-fit can be simultaneously solved with each of the above pressure loss curve-

fits (one at a time), which will provide a mass flow where these curves intersect. The intersection point represents the 

peak mass flow available from the ALIP (based on the predicted and measured results) while connected to the RxSim 

loop. 

 

 

Figure 8. Pressure loss predictions of RxSim subsystem. 
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To estimate the peak mass flow available from the FPS ALIP based on measured data: 

 

𝑃𝑀𝐸𝐴𝑆 = 𝑃𝑃𝑈𝑀𝑃 

1.01187𝑚𝑓2 + 0.358372𝑚𝑓 − 0.0 = −0.1760963𝑚𝑓2 − 2.0968𝑚𝑓 + 12.192 

1.187966𝑚𝑓2 + 2.455172𝑚𝑓 − 12.192 = 0 

𝑚𝑓2 + 2.066702𝑚𝑓 − 10.26292 = 0 
 

which results in an available mass flow = 2.333 kg/sec. This is the maximum mass flow that the FPS ALIP was able 

to supply to the RxSim loop during laboratory testing, which is enough to provide flow at the nominal conditions. 

V. Conclusions 

GRC Laboratory testing of the RxSim loop with the FPS ALIP at the maximum flow was 2.333 kg/sec. 

Computational predictions of the RxSim loop were generated, and the results were curve-fitted to produce an equation 

that describes pressure loss as a function of mass flow. This was done using two different turbulence models (Spalart-

Allmaras and Realizeable k-). When using predictions from the S-A turbulence model, the predicted available mass 

flow = 2.157 kg/sec. Based on measured data, this corresponds to a mass flow error of -0.173 kg/sec (-7.4%) when 

using the S-A turbulence model. 

If the same calculation is done using predictions from the Realizeable k- turbulence model, then the predicted 

available mass flow = 2.223 kg/sec. Based on measured data, this corresponds to a mass flow error of -0.110 kg/sec 

(-4.7%) when using the Realizeable k- turbulence model.  

The combination of laboratory measurements and computational simulations indicate that the FPS ALIP can 

provide adequate pumping for the TDU. 
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