Telescope Development for a Space-based Gravitational Wave Observatory

eLISA Consortium Meeting 12-14 Oct 1 2015

Prepared by Jeff Livas Shannon Sankar, Peter Blake, John Crow, Joe Howard, Len Seals, Ron Shiri, Garrett West NASA Goddard Space Flight Center

> Guido Mueller, Alix Preston, Pep Sanjuan University of Florida

Project Objective and Approach

• Objective:

To design, fabricate and test a telescope to verify that it meets the requirements for precision interferometric metrology for space-based gravitational-wave observatories.

Key challenging requirements

- Optical pathlength stability
- Scattered light performance
- Manufacturable design
- Approach
 - Develop a telescope design that
 - Meets eLISA technical requirements
 - Can be manufactured (need multiple (~ 10) copies)
 - TRL-5 by CY2018 (nominally for EM model)
 - Commission a study with a commercial optics/telescope vendor for advice on manufacturability
 - Demonstrate we can implement the design

Telescope Requirements

		Parameter	Derived From	eLISA/NGO	
	1 Wavelength			1064 nm	
	2	Net Wave front quality departure from a collimated beam of as built telescope subs system over Science field of regard under flight-like conditions	Pointing	$\leq \lambda/30 \text{ RMS}$	
	3	Field-of-Regard (Acquisition)	Acquisition	+/- 200 μrad (large aperture)	
	4	Field-of-Regard (Science)	Orbits	+/- 20 μrad (large aperture)	
	5	Field-of-View (Science)	Stray light	+/- 8 µrad (large aperture)	
	6	Science boresight	FOV, pointing	+/- 1 µrad (large aperture)	
challenging	7	Telescope subsystem optical path length ¹ stability under flight-like conditions	Path length Noise/ Pointing	$\leq 1 pm / \sqrt{Hz} \times \sqrt{\left(1 + \left(\frac{0.003}{f}\right)^4\right)}$	
				where $0.0001 < f < 1$ Hz 1 pm = 10^{-12} m	
	8	Afocal magnification	short arm interferometer	200/5 = 40x (+/-0.4)	
	9	Mechanical length		< 350 mm TBR	
	10	Optical efficiency (throughput)	Shot noise	>0.85	
challenging	11	Scattered Light	Displacement noise	<10 ⁻¹⁰ of transmitted power into +/- 8 μrad Science FOV	
	Interfaces: Received beam (large aperture, or sky-facing)				
	12	Stop Diameter (D) (large aperture)	Noise/ pointing	200 mm (+/- 2 mm)	
	13	Stop location (large aperture)	Pointing	Entrance of beam tube or primary mirror	
	Interfaces: Telescope exit pupil (small aperture, or optical bench-facing)				
	14	Exit pupil location	Pointing	13.5 +/- 2 cm (on axis) behind primary mirror	l
	15	Exit pupil diameter	optical bench	5 mm (+/- 0.05 mm)	1
	16	Exit pupil distortion	SNR	< 10%	(
	17	Exit pupil chief ray angle error		+/- 10 μrad	Ċ

SGO-Mid = 250 mm

From U of Glasgow bench design, courtesy of Ewan Fitzsimons and Harry Ward

eLISA Consortium Meeting Paris 12-14 Oct 2015

Previous Work: On-axis Telescope Spacer Design

Spacer Activity Objective

- Develop and test a design for the main spacer element between the primary and secondary mirrors
- M1 M2 spacing identified as critical by tolerance analysis
- SiC limited by lab thermal fluctuations
- Would meet requirements on orbit

SiC Spacer Design: QuadPod

eLISA Consortium Meeting Paris 12-14 Oct 2015

SiC Spacer Design Can Meet Requirements at -65C

SiC Spacer Thermal Environment

J. Sanjuan, et al.; Rev Sci Instrum. 83(11), 116107 (2012).

Commercial Vendor: Designs considered

- Both designs have the same nominal requirements
- Exclusion zone (in red) is for bench optics

Commercial Vendor: Manufacturability

- On- vs off-axis mirrors similar in complexity •
- On- vs off-axis system alignment similar in complexity •
 - Compensation techniques are similar
- Schedule is 16 months for first copy •
 - Driver is material availability for SiC (study contractor makes material!)
 - Once material is cast, then machining is the bottleneck
 - "pipeline" approach is possible and reduces recurring schedule to ~ 10-12 months/copy

Off-axis mirror difficulty

SGO Final Report

Overall Stability Budget (@ .1 mHz)

At .1mHz, (worst-case scenario within frequency range), the overall path length stability is divided among the following constituents

Contributor	P-V OPL Change (picometers)	
Thermal	7.075	
Creep	5.096	
Focus Drive	0.015	
Total	12.19	

- Approach that can meet the requirement has been identified
 - Prediction is just within derived specification (12.28 pm).
 - Further optimization and more detailed error budget appropriate for subsequent phase
- Thermal prediction approach assumes electronics box loading and solar loading are in phase (conservative approach)
 - Can further increase stability through using a third baffle (extra mass)
- Belief is that creep is a conservative estimate; could be reduced with geometric design developments and better understanding of the time dependant stability of the Invar material

Scattered Light Analysis

mirror	Path#	# Rays	Power %	Power	1st scatter surface
3	7	2291695	74.947	4.9421e-11	.20140417_elisa_baseline.M3.Front
4	3	2711030	23.053	1.5201e-11	.20140417_elisa_baseline.M4.Front
2	11	2565386	1.9733	1.3012e-12	.20140417_elisa_baseline.M2.Front
1	14	1399213	0.026184	1.7266e-14	.20140417_elisa_baseline.M1.Front
Totals		8967324	100	6.5941e-11	

eLISA Consortium M3 and M4 contribute most of the scattered light on the detector

Prototype Telescope Design

M2 Mount

M3/M4 Assem

Scattered Light Test Bed

Validate scattered light model

- Determine surface roughness
 - o needed to meet requirements
 - Where particulates become important
- Components get dirty while making measurements

M3/M4 dominate budget

- Test M3/M4 separately
 - Faster cycle-time than full telescope
- Use mirrors with different properties
 - Surface roughness
 - Reflective coatings
 - Surface contamination levels
- Mirrors need not have telescope prescription for some tests
- Practice alignment techniques
- Develop analysis pipeline
 - BRDF (component level) to predict system level

M3/M4 Scattered Light Test Bed

Optical Test Setup

Optical Layout

- Telescope tested double-pass from the small aperture side
- Currently aligned to better than λ/34
- stable under normal lab conditions
- Room temperature operation only

Measured WFE performance $\lambda/34$, center field, 632.8 nm

SUMMARY/NEXT STEPS

- Prototype installed and aligned
 - •Delivered to GSFC 6/5/15 (originally 3/20/15)
 - •Reassembled and realigned by 7/27/15
- Tested double-pass with an interferometer (LUPI)
- Residual wavefront error is $\lambda/34$ ($\lambda/30$ spec) at 632.8 nm
- Alignment is stable under laboratory conditions
- Next steps:
 - verify wavefront error at 1064 nm
 - beam dump for transmitted light needed
 - use carbon nanotubes (R < 0.5%)
 - verify scattered light model
- Concern: mirrors are dirty
 - Vendor packaged poorly for shipping
 - May have to try cleaning M1, M2 (no spares)
 - Have clean spares for M3, M4

Particulates on Primary

