
ISS Double-Gimbaled CMG Subsystem Simulation using the
Agile Development Method

Ravi Inampudi∗

This paper presents an evolutionary approach in simulating a cluster of
4 Control Moment Gyros (CMG) on the International Space Station (ISS) us-
ing a common sense approach (the agile development method) for concurrent
mathematical modeling and simulation of the CMG subsystem. This simu-
lation is part of Training systems for the 21st Century simulator which will
provide training for crew members, instructors, and flight controllers. The ba-
sic idea of how the CMGs on the space station are used for its non-propulsive
attitude control is briefly explained to set up the context for simulating a
CMG subsystem. Next different reference frames and the detailed equations of
motion (EOM) for multiple double-gimbal variable-speed control moment gy-
roscopes (DGVs) are presented. Fixing some of the terms in the EOM becomes
the special case EOM for ISS’s double-gimbaled fixed speed CMGs. CMG sim-
ulation development using the agile development method is presented in which
customer’s requirements and solutions evolve through iterative analysis, de-
sign, coding, unit testing and acceptance testing. At the end of the iteration
a set of features implemented in that iteration are demonstrated to the flight
controllers thus creating a short feedback loop and helping in creating adap-
tive development cycles. The unified modeling language (UML) tool is used in
illustrating the user stories, class designs and sequence diagrams. This incre-
mental development approach of mathematical modeling and simulating the
CMG subsystem involved the development team and the customer early on,
thus improving the quality of the working CMG system in each iteration and
helping the team to accurately predict the cost, schedule and delivery of the
software.

I. Introduction
Training systems for the 21st Century (TS21) at JSC will provide a simulation-based training for crew

members, instructors, and flight controllers on the operation of FOD (Flight Operations Directorate) sup-
ported spacecraft including the International Space Station (ISS), Robotics, ISS Visiting Vehicles and other
future NASA owned crew transport like MPCV (Multi-Purpose Crew Vehicle). TS21 products include the
simulation architecture and math models for the space environment, robotics, and vehicle subsystems as
well as an integrated image generation system for out-the-window and camera views.1 The 6-dof state (po-
sition and attitude) of the space station is one of the most fundamental components for all ISS operations.
The ISS Attitude Determination and Control Officer (ADCO) has overall responsibility for the integration of
∗Lead Software Engineer, Training systems for the 21st Century (TS21), Lockheed Martin, Houston, Texas, 77058, AIAA

Member

1 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

https://ntrs.nasa.gov/search.jsp?R=20150021962 2019-08-31T05:18:50+00:00Z

all Guidance, Navigation and Control (GNC), including propulsive and CMG attitude control. The ADCO
works in partnership with Russian controllers to manage the station’s orientation, controlled by the on-board
Motion Control Systems. They also plan and calculate future orientations and maneuvers for the station.2

The ISS GNC subsystem for TS21 has two sensor models and an actuator model. The sensors are
the Rate-Gyro Assembly (RGA) and the Space Integrated Global Positioning System/Inertial Navigation
System (SIGI). The SIGI is broken down into a GPS model and an accelerometer model. The actuator
model needed for ISS attitude control is a cluster of four CMGs. The Russian segment (RS) is considered
an external model and interacts with the TS21 GNC models through the 1553 telemetry buses. The CMGs
operate as momentum storage devices that exchange momentum with the ISS, through induced gyroscopic
torques. The CMGs are non-propulsive actuators that provide continuous attitude control in the microgravity
environment. Control moment gyros create moments through gimbaling of constant rotation rate momentum
wheels. Each wheel is gimbaled to the commanded pointing direction using inner and outer gimbals. The
gimbaling of all four wheels is done symmetrically, until all are aligned, at which point desaturation is
required to reinitialize the CMGs to their initial state. A minimum of two CMGs are required for attitude
control. The magnitude of the induced torque is proportional to the rate of change of the direction of angular
momentum vector.4

TS21 goal for building ISS simulation is to create a working, reliable software incrementally that is
flexible, maintainable and reusable. As TS21 is a developmental and non-sequential project with multiple
subsystems, agile development process is used to quickly and reliably develop the CMG subsystem simula-
tion. This natural process also facilitates to concurrently work with engineers, managers and the customer.
Agile development is a set of software development methods in which requirements and solutions evolve
through collaboration between self-organizing, cross-functional teams. It promotes adaptive planning, evo-
lutionary development, early delivery, continuous improvement, and encourages rapid and flexible response
to change.5, 6 A few ways of developing better software using the agile method are

1. Have a self-organized and motivated team.
2. Working software is a more useful measure.
3. Involve customer feedback on a regular and frequent basis.
4. Respond to change and continuous development.

The basic idea is to start with something simple and small that works, and build the software incrementally
by implementing a set of high priority features in a set period of time. For instance, pick a simple feature,
describe the feature in a sentence, understand the underlying model (business, engineering or mathematical),
and write short code to implement the feature. To write production code and test it at the same time, one
widely used practice in agile development methodologies is the test driven development (TDD) strategy.
The key rule of TDD is summarized as ”test twice, code once,” which refers to this three-step procedure
involved in any code change:7

1. Write a test of the new code and see it fail.
2. Write the new code, which does the simplest thing that could possibly work.
3. Verify that the test succeed, and re-factor the code.

These three basic steps form the TDD cycle. The production code and the test cases independently evolve
together and this practice decouples the test cases as well as the production code modules from each other.
The key element of TDD are the unit test frameworks and such frameworks can contribute to every stage of
software design, development, testing and debugging. Furthermore, the principles of object-oriented design
play an important and powerful role in writing flexible (decoupled), testable, maintainable and reusable
software.

This paper presents the mathematical modeling, software design and implementation of a cluster of 4
control moment gyros (CMG) on the space station (ISS). The introduction section briefly explained the
CMG subsystem as well as the agile development method. How the actual CMGs on the space station are
used is then briefly explained to set up the context for simulating a CMG simulation. Next, different refer-

2 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

ence frames and the detailed equations of motion (EOM) for multiple double-gimbal variable-speed control
moment gyroscopes (DGVs) are presented. The software simulation aspect is discussed in detail from a user
requirements, user stories and use case analysis perspective. UML class diagrams and sequence diagrams
are freely used to illustrate the underlying abstractions and design patterns. Finally, the implementation
details from a TDD perspective are discussed that supports and verifies the designs.

II. ISS Non-propulsive Attitude Control
A. CMG

There are four CMGs on the ISS nominally rotating at 6600 rpm and are used for non-propulsive attitude
control. The CMGs are used more often than the rocket engines to control the ISS attitude because the
gyroscopes do not require propellant, which is expensive to launch to the ISS. Instead, the CMGs use the
power generated by the solar panels. Similar to a toy gyroscope, each CMG contains a wheel which spins
very fast. By pointing the wheels in different directions, the CMG’s can either rotate the ISS, or prevent
it from rotating. Since an ISS CMG has two axes of rotation (an outer gimbal and an inner gimbal), the
momentum vector has three degrees of freedom (3-DOF) i.e, it can be pointed in any direction.2 A simple
way to view the relationship between CMG momentum and external torques is to consider that external
torque disturbances can either change the vehicle attitude or the CMG system must counterbalance those
disturbances, resulting in an effective absorption of the external torque disturbances. This ”absorption”
prevents the vehicle’s attitude from changing since there is no net torque on the vehicle. For a system of
multiple gyroscopes, such as that used by the US GNC, the system’s momentum vector is the vector sum
of the individual momentum vectors. Thus, the torque applied by the system is caused by the time rate of
change (i.e., rotation) of the system’s momentum vector.

B. Environmental Torques
To maintain non-propulsive attitude hold control, the controller causes the CMGs to rotate such that

the CMG torque is equal to the external torques on the ISS. The primary source of these torques are the
environmental forces gravity (Fg)and aerodynamic drag (Fd). To simplify many problems, gravity is as-
sumed to act directly upon an object’s center of mass (Cm). However, this simplification would introduce
unacceptable error into the attitude control algorithm for the ISS; more precision is required in modeling
the effects of gravity. ISS Environmental Torques can vary at different locations on the vehicle, depending
on its orientation with respect to Earth’s gravitational field. This gravity gradient creates a resultant torque
about the vehicle Cm. Fd is proportional to the product of the atmospheric density and the frontal area of the
vehicle. Unlike gravity, drag may be assumed to act through the aerodynamic center of pressure (Cp) with
no loss of precision. Fd, then, causes a corresponding torque on the vehicle when the Cp is not co-located
with the Cm. Because Fd is dependent on atmospheric conditions, the aerodynamic torque will vary over
the course of an orbit even if the vehicle’s orientation and frontal area remain the same due to diurnal bulge
causing density changes and articulation of the solar arrays reducing the frontal area.2

C. Torque Equilibrium Attitude
While both the aerodynamic and gravity gradient torques are understandably small and the exact mag-

nitude of each will change as the vehicle orientation and/or configuration changes, it is important to note
their relative size. The general rule of thumb is that the gravity gradient torque will be about one order of
magnitude greater than the aerodynamic torque. Even with the relatively large difference in magnitude, it
is possible to orient the vehicle such that the gravity gradient and aerodynamic torques balance each other
out. This orientation is known as a Torque Equilibrium Attitude (TEA). The TEA is the foundation for the
momentum management controllers used by the US GNC. However, CMGs alone cannot be used to hold a
single attitude. Simply put, one cannot simply pick one single attitude to hold over the orbit and expect the
CMGs to be able to control as it is impossible to exactly model the aerodynamic and gravity-gradient torques

3 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

that will be exerted on the vehicle over the course of an orbit. As a consequence, even very small attitude
errors will result in residual torques, eventually enough momentum will accumulate to saturate the CMG
system. One way to avoid saturation is to continuously manipulate vehicle attitude in order to encounter
external torques that tend to reduce the magnitude of the CMG momentum vector required for attitude con-
trol. The outcome of doing this is to track, on average, the TEA. Since you could never hold the average
TEA perfectly the FSW controllers will always require desaturations in order to effectively maintain attitude
control with a system of CMGs. The US GNC does this desaturation by requesting thruster firings from the
Russian Segment (RS) GNC. These thruster firings are coordinated by the FSW to coincide with the CMGs
moving away from the saturated state.2

III. Double-Gimbal Variable-Speed Control Moment Gyroscope Equations Of Motion
This section derives the equations of motion for a cluster of 4 Double-Gimbal Variable-Speed Control

Moment Gyroscopes. An overview of these EOM for one DGV is presented in Reference 3. The EOM are
for the cluster are rearranged and formulated in terms of the external torques which will be sent to the GNC
FSW. Figure 1 shows a DGV representation depicting different frames and various gimbal angles.

Figure 1: Depiction of a single DGV with coordinates and gimbal angles labeled.

The F frame defines the orientation of a single DGV device in the spacecraft body but stays fixed with
respect to the craft. If the F frame orientation is related to the B frame orientation through a direction cosine
matrix [BF] then it can be expressed in terms of three orthogonal F frame unit vectors f̂1, f̂2 and f̂3 given
by

[BF] =
[
f̂1, f̂2, f̂3

]
(1)

The rotation matrix [BF] maps a vector with components taken in theF frame into a vector with components
taken in the B frame. Similarly, coordinate frame rotations to the outer and inner gimbal frames, G and H,

4 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

are given by Euler angle rotations through angles ψ and θ. The direction cosine matrix [GF (ψ)] that relates
the F frame to G frame is given by

[GF] =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2)

Similarly, the other DCMs [HG(θ)] and [HF (ψ, θ)] are expressed as

[HG] =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (3)

[HF] = [HG] [GF] =

cosψ cos θ sinψ cos θ − sin θ
− sinψ cosψ 0

cosψ sin θ sinψ sin θ cos θ

 (4)

The angular velocity vectors of each frame with respect to the one outside it can be written in terms of these
unit vectors and various angular rates:

ωB/N = ω (5a)

ωG/B = ψ̇f̂3 (5b)

ωH/G = θ̇ĝ2 (5c)

ωW/H = Ωĥ1 (5d)

where Ω is the spin rate of the fly wheel about ĥ1.
The total angular momentum of the spacecraft and the DGV about the spacecraft center of mass is given

by4

H = HB + HG + HH + HW (6)

where HB is the angular momentum component of the spacecraft, HG is the angular momentum of the outer
gimbal frame, HH is the angular momentum of the inner gimbal frame, and HW is the angular momentum
of the spin wheel. Assuming that that all moments are taken about the center of mass, the equations of
motion of a system of rigid bodies follow from Euler’s equation

Ḣ = L (7)

The vector L represents sum of all of the external torques experienced by the spacecraft.
Then HB and ḢB for the spacecraft body are written as

HB = [Is]ω ⇒ ḢB = [Is] ω̇ + ω × [Is]ω (8)

Because the DGV center of mass is not usually located at the spacecraft center of mass, the B [Is] matrix
incorporates the spacecraft inertia terms and the off-center DGV inertia components using the parallel-axis
theorem. With the off-center DGV inertia added, B [Is] is a constant matrix as seen from the B frame.

Application of Euler’s equation for the other components requires usage of transport theorem that relates
a vector derivative between two arbitrarily moving reference frames as

Nd

dt
(r) =

Bd

dt
(r) + ωB/N × (r) (9)

5 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

where r is a generic vector.
Therefore HG and ḢG for the outer gimbal in G frame are written as

HG = [IG]ωG/N = [IG] (ω + (ψ̇f̂3) (10)

ḢG =
Gd

dt
([IG]ωG/N) + ωG/N × ([IG]ωG/N)

= [IG]

(
Nd

dt
(ω + ψ̇f̂3)

)
+ ωG/N × ([IG]ωG/N)

= [IG] (ω̇ + ψ̈f̂3 + ω × (ψ̇f̂3)) + ωG/N × ([IG]ωG/N) (11)

Note that G [IG] is a constant in the G frame. And transport theorem is used to show that
NωG/N =G ωG/N (12)
Nd

dt
(ψ̇f̂3) = ψ̈f̂3 + ω × (ψ̇f̂3) (13)

Similarly, the respective equations for the inner gimbal and fly-wheel are

HH = [IH]ωH/N = [IH] (ω + ψ̇f̂3 + θ̇ĝ2) (14)

ḢH = [IH] (ω̇ + ψ̈f̂3 + θ̇ĝ2 + ω × (ψ̇f̂3 + θ̇ĝ2) + ψ̇f̂3)× (θ̇ĝ2)) + ωH/N × ([IH]ωH/N) (15)

HW = [IW]ωW/N = [IW] (ω × ψ̇f̂3 + θ̇ĝ2 + Ωĥ1) (16)

ḢW = [IW] (ω̇ + ψ̈f̂3 + θ̈ĝ2 + Ωĥ1) + ω × (ψ̇f̂3 + θ̇ĝ2 + Ωĥ1) (17)

+ (ψ̇f̂3)× (θ̇ĝ2 + Ωĥ1) + (θ̇ĝ2)× (Ωĥ1)) + ωW/N × ([IW]ωW/N) (18)

Since these equations all need to be expressed in body coordinates, the moment of inertia matrices need
to be modified as follows from their diagonal measured form. The unit vectors are also to be expressed in
body coordinates as discussed earlier:

B [IG] = [BF] [FG]G [IG] [GF] [FB] (19)
B [IH] = [BF] [FH]H [IH] [HF] [FB] (20)
B [IW] = [BF] [FH]H [IW] [HF] [FB] (21)

If the total spacecraft inertia matrix [I] is defined as

[I] = [IS] +
N∑
i=1

[IGi] + [IHi] + [IWi] (22)

The full EOM of a DGV then become

[I] ω̇ = −ω × [I]ω −
N∑
i=1

(
Ḣ
′
Gi
− ω × [IG]ω + ˙H

′
Hi
− ω × [IH]ω + ˙H

′
Wi
− ω × [IW]ω

)
+ L (23)

The induced torque due to the four CMGs is needed by the ISS dynamics model. Consequently, the
expression for CMG induced torque on ISS is

L = [I] ω̇ + ω × [I]ω +

N∑
i=1

(
Ḣ
′
Gi
− ω × [IG]ω + ˙H

′
Hi
− ω × [IH]ω + ˙H

′
Wi
− ω × [IW]ω

)
(24)

This induced torque L is the external torque applied on to the ISS, and, in the TS21 simulation, this
external torque is sent to the rigid body dynamics subsystem. The rigid body dynamics propagates and
calculates the rotational dynamics variables of the ISS.

6 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

IV. CMG Simulation Design
This section describes the first iteration in the development of a simplified CMG subsystem. The prob-

lem statement is picked up from the customers’ request for proposal document. The customer has selected
several user stories as part of the first iteration where basic functionality of the CMG subsystem is clearly
defined. Improving the fidelity of the CMG model, interfacing with thermal and electrical subsystems, and
the malfunction design are scheduled for later iterations.

A. Preliminary Design
The objective is to design and implement a simplified CMG subsystem simulation that helps the flight

controllers to train on it to guide the ISS to the desired attitude (orientation) for various activities, such as
stationkeeping, the docking and undocking of visiting vehicles. Attitude control keeps the ISS pointing in
the desired direction and maintains the microgravity environment needed for scientific research. An external
GNC interface to the CMG subsystem supports three attitude control modes and are defined here.

1. Free-Drift: This mode requires to maintain station attitude by providing active attitude control. In
this mode the CMG gimbal rate is commanded in the FSW such that the CMG system momentum is
constant relative to the user-specified frame (LVLH, J2000 or body). For the body reference frame,
the gimbals are locked such that the system momentum is fixed with respect to the body. Optionally,
a target momentum can be specified which is different from the current momentum value.

2. CMG-Only: This mode is useful for full attitude control of the station required for proximity opera-
tions. No thrusters are fired during the CMG-only control mode. The user specifies an attitude hold
command where the station attitude is to be maintained fixed relative to the specified reference frame.
During docking, un-docking and capture scenarios, the mode is transitioned to free drift.

3. CMG Thruster Assist: The station is in full attitude control according to the CMG-Thruster Assist
(TA) mode. During TA mode, the user specifies a desired attitude command where the CMGs per-
form full attitude control of the station (either attitude hold or attitude maneuvers), with RS thruster
assistance for CMG desaturation only.

Therefore, to support these three modes the four CMGs provide the main attitude control of the ISS using
the dynamical model discussed in section (III.). Each CMG consists of an outer gimbal, an inner gimbal
and a heavy spinning wheel. The CMG subsystem accepts the FSW commands and the FSW dictate the
commanded wheel speeds as well as the inner and outer gimbal rates. The FSW generates the commanded
rates using the Kennel’s steering law.11, 12 Therefore, each CMG accepts such commands, processes them
and sends the inputs to the CMG dynamics in Eq. (24). For wheel speed control, a CMG compares the
current speed and the commanded speed coming from the GNC flight software and a voltage controller
generates the required voltage to reach the desired speed. Reference 13 presents more details on the spin
motor controller used in this CMG model. The CMG system keeps track of its state, and, to the FSW,
each CMG provides the telemetry that contains various states updated at a specified rate. CMG command
and telemetry data is communicated through the 1553 Bus interface with the FSW and the FSW interacts
with the PCS to display the telemetry in real time. If necessary, the CMG system has the capability to log
the data for testing and debugging purposes. A preliminary CMG model development plan identified the
ISS GNC subsystem’s requirements with respect to the flight controller issued commands and telemetry
signature expected.

B. User Stories
A user story is a simple, concise description of the end user requirements which can be written on a

small note card. For the first iteration, here are the most important CMG user stories that were selected after
discussions with the customer (project leads and instructors).

7 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

1. Simulate four identical CMGs
2. Provide CMG angular momentum vector and magnitude
3. Provide torques generated by the CMGs to the ISS dynamics
4. Model CMG wheel characteristics
5. Model CMG gimbal characteristics
6. Accept FSW commands
7. Send telemetry to the FSW (e.g., state, status, and health data)
8. Model each CMG’s electronic assembly (EA)
9. Model CMG power characteristics
10. Simulate the CMG startup and shutdown sequences

The next step is to analyze the user stories in detail to figure out how to design and implement them.

C. Use Case Analysis
This section presents the analysis by use cases considering the expected behavior of the CMG system.

A use case is an elaborated user story with details related to requirements, expected behavior, assumptions
and underlying abstractions. The use cases listed below are chosen for the CMG system simulation:

1. Simulate Four Identical CMGs: Use case 1 indicates that the CMG cluster consists of four identical
CMGs. Figure 2 shows the class diagram that represents the GNC simulation interaction with ISSCmgCluster
that has four CMG instances of GenericCmg class type. The ISSCmgCluster object maintains the to-
tal angular momentum and torque generated from all four CMGs in the body frame reference. The cluster
is initialized from an initial configuration data and this data consists of initial gimbal angles, rates, wheel
speeds, inertia of the ISS in the body frame, inertias of the gimbals and wheel in different reference frames,
and rotation matrices from each CMG to the spacecraft body frame. Within the cluster, each CMG specific
data is pushed down to the respective GenericCmg initializers.

GncSimulation

CmgComm

CmgContext

CmgCommand
<<interface>>

<<parameter>>

<
<
cr

ea
te

s>
>

<<creates>>

IssCmgCluster GenericCmg

GncSimulation CmgContext

<<parameter>>

<
<
cr

ea
te

s>
>

<
<
cr

ea
te

s>
>

<<creates>>

CmgWheel

CmgGimbal

1 4

1

1 2

1

<
<

>
>

pa
ra

m
et

er

CmgModelTelemetryData

CmgWheelCommand

CmgGimbalCommand

<
<
cr

ea
te

s>
>

CmgWheelCommand

CmgOuterGimbalCommand

CmgInnerGimbalCommand

CmgGimbalCommand
<<interface>>

+processReceiveData()
+processTransmitData()

-rtAddress
-cmgName
-commandFrame
-telemetryFrames

+update(CmgName, CmgContext&)

+update(CmgContext&)
+getAngularMomentum()
+getTorque()

+
+getAngularMomentum()
+getTorque()

update(CmgName,)CmgContext&

+
+getAngle()
+getRate()

update()GimbalCommand&,dt

+update(
+getSpeed()
+getSpinMotorPowerSupply()

WheelCommand&,dt)

-cmgList
-angularMomentum
-torqueInBodyFrame

-outerGimbal
-innerGimbal
-wheel

-angle
-rate
-inertiaInGimbalFrame

-speed
-powerSupply
-inertiaInWheelFrame

<<parameter>>

Figure 2: ISS Cmg cluster with four GenericCmg instances.

The GenericCmg abstraction has an outer gimbal, an inner gimbal and a heavy spinning wheel. Both the
inner and outer gimbals rotate at a very slow rate and are identical from a functional perspective, there-
fore, there exists a single Gimbal abstraction. A concrete instance of GenericCmg has two instances

8 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

of Gimbal representing an outer and an inner gimbal and one instance of SpinWheel representing the
wheel. The SpinWheel instance supports operations such as spinup or spindown or spin at a specific
speed. Each GenericCmg object has the required reference frames needed for the dynamics (Eqs. 24)
and has its own angular momentum and torque vector states. Each CMG is identified with a string type
and GenericCmg’s update(CmgName, CmgContext&) method is invoked at each time step dt. It
updates the gimbal and wheel dynamics, the transformation matrices, various frame vector directions, the
inertias in body frame, and calculates the angular momentum, torque and power for a CMG. Common data
used across the CMG model are stored and passed in the CmgContext object which will keep the CMG
model class methods’ signature length to a minimum.
The class GenericCmg is named by prefixing ”Generic” to ”Cmg” as it is noticed that its behavior is
generic enough that by controlling the gimbal and wheel speeds the Cmg behaves like a reaction wheel,
or single-gimbaled fixed or variable speed CMG, or as a double-gimbaled fixed or variable speed CMG. A
GenericCmg interface could be reused to simulate different types of Cmgs used on different space vehicle
types.

2. Provide CMG Angular Momentum Vector and Magnitude: A CMG consists of a steel flywheel to
produce its angular momentum and a CMG also has gimbal motors that allow the spin axis of the wheel to
be repositioned in order to change direction of the angular momentum vector. The total angular momentum
of each GenericCmg is a simple summation of the individual angular momentums of the two gimbals and
the wheel. The angular momentum of the outer gimbal is calculated from Eq. (10); for the inner gimbal Eq.
(14) is used; and the wheel’s angular momentum comes from Eq. (16).

3. Provide Torques Generated by the CMGs to the ISS Dynamics: Torques generated by the CMGs can
result in disturbances to ISS attitude that have an impact on properly controlling the station. The torque of
each GenericCmg is a summation of the torques of the two gimbals and the wheel. These torques are
calculated from Ḣ

′
Gi

, ˙H
′
Hi

and ˙H
′
Wi

expressions which are derived in Section III.. For this simulation,
the ISS dynamics treats each CMG torque as an external torque and hence the sign of this torque is flipped
before it is sent to the space station dynamics.

4. Model CMG Wheel Characteristics: This use case clearly indicates a wheel abstraction. The wheel
model should be able to parse a wheel command, handle wheel speed changes depending on the current
mode, provide wheel overspeed/underspeed checks, keep track of wheel bearing temperatures and simulate
random wheel vibrations. There are five modes of operation for a CMG wheel. Nominal mode for normal
operating speeds or changing speeds chosen from a set 16 predefined speeds. The Spin-up mode for spinning
up the wheel from rest. The Braking mode for spinning down from a nominal speed and the CMGs are
powered from the back EMF as long as the wheel speed is above 1300 RPM. Finally, the wheel can be in
Coasting mode, if the wheel is spinning down without any power neither from an external power source
(RPCMs) and an internal power source (back EMF). As shown in Figure 2, the SpinWheel class provides
an interface to handle the CMG wheel functionality. A GenericCmg instance has-a SpinWheel instance.
A valid SpinWheel instance is initialized from its initial speed as well as its inertia given in the wheel
frame.

5. Model CMG Gimbal Characteristics: This use case indicates a gimbal abstraction to represent a
CMG’s outer and inner gimbal frames. The gimbal model should be able to parse a gimbal command,
store the current states such as the gimbal angles, rates, accelerations, inertias and currents. Also, the
model should be able to filter the rates, adjust the angles and rates if they are not in the commanded limits.
The desired gimbal acceleration for its motor servo is determined using a simple proportional control with
feedforward term. As shown in Figure 2, the Gimbal class provides an interface to handle the gimbal
functionality. A GenericCmg instance has-a Gimbal instance. A valid Gimbal object is initialized
from its initial angle and rate, and from its inertia given in gimbal frame.

6. Accept FSW Commands: A CMG command frame from the FSW is communicated through the 1553

9 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

Bus interface. Most of the commands in the command frame are directed to the wheel, the outer gimbal
or the inner gimbal. Both the gimbals have commands that turn-on the torquer, the power supplies and
the rate over-ride capability. The wheel has commands to turn-on the spin motor, the power supply and
the temperature over-ride capability. Also, the wheel can be commanded to change to a different speed.
Furthermore, there are a few generic commands such as enable fault isolation, reset telemetry bit history
and enable loss of 1553 communication over-ride. As shown in Figure 3, the CmgCommand class hierarchy
provides an interface to support different kinds of commands. The generic commands go in the base class
CmgCommand and wheel commands are handled by the class CmgWheelCommand. In spite of having a
single Gimbal class, there are two types of the gimbal commands in the hierarchy because each is unique
to a gimbal type (inner gimbal or outer gimbal).

CmgHealthSummaryTelemetry

CmgTelemetry
<<interface>>

CmgCommand

CmgWheelCommand

CmgInnerGimbalCommand CmgOuterGimbalCommand

<<interface>>

CmgGimbalCommand
<<interface>>

CmgCommandStatusTelemetry CmgMalfunctionTelemetry CmgBitStackTelemetry

CmgCommContext

<<creates>>

+update(CmgName, CmgContext&)

+update(CmgName, CmgContext&)
+isTorquerOn()
+isPowerSupplyOn()

+update(CmgName, CmgContext&)

+update(CmgName, CmgContext&)
+isTorquerOn()
+isPowerSupplyOn()

#rateIsInRange(rate)
#adjustRate(rate)

#isInhibited()

#speed
#spinMotorOn
#powerSupplyOn

+update(CmgName, CmgContext&)
+getSpeed()
+isSpinMotorOn()
+isPowerSupplyOn()
+

+update(CmgName, CmgContext&)
+isTorquerOn()
+isPowerSupplyOn()

#igIsInhibited #ogIsInhibited

+update(CmgName,CmgContext&) +update(CmgName,CmgContext&) +update(CmgName,CmgContext&)+update(CmgName,CmgContext&)

Figure 3: Cmg Command class hierarchy.

7. Send Telemetry to the FSW: A set of 4 CMG telemetry frames are sent to the FSW via the 1553
Bus interface. The telemetry sent captures the CMG data characteristics (e.g., state, status, and health data)
which are necessary for training the crew/flight controllers in correct CMG signatures, parameters and limits.
The four types of CMG telemetry sent to the FSW are
(a) Command Status Information: This is the normal status of each CMG’s response to a command frame.
Basic information about a CMG is sent as part of the telemetry, i.e. is the CMG powered, are the gimbals
and the spin motor powered, what are the current gimbal locations and rates, is a CMG thermally at the right
temperature, what about the electrical assembly temperature, and more information such as the commanded
vs current wheel speeds, the total system current usage, spin motor heater status, wheel vibration information
etc. The class CmgCommandStatusTelemetry encapsulates all this information.
(b) Malfunction Status: The class CmgMalfunctionTelemetry captures the results of a series of bit
tests performed on the CMG states to verify if the states are within the tolerance range. Startup and periodic
bit functions perform test of functional paths of both mechanical and electrical assembly models. The bit
status words indicate if a CMG detected a fault. For the most part, they are warnings to the end user that

10 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

a parameter is out of range. Most of these bits toggle, meaning if they return to within the tolerance range
the bit will reset automatically. There are a few situations in the CMG model when bits will remain latched
and will take action on the bit set. For instance, if the voltage is greater than the upper limit the high bit will
be set and if the voltage is lesser then the lower limit the low bit will be set. The bit summary telemetry is
eventually displayed on the user displays for users to monitor the fault states of each CMG.
(c) Health Summary: The class CmgHealthSummaryTelemetry captures the current state of each
CMG which includes time tag, various power supply values of the SM, IG, and OG (5 V, 10 V, +15 V
and -15 V), analog wheel speed in RPM updated every 15 seconds, SM sine and cosine currents, and, IG
and OG information (rates, voltages, current commands, 6.2 V power supply values, torquer currents and
temperatures). Health monitoring telemetry is eventually displayed on the user displays for users to monitor
the health of each CMG and to troubleshoot in case of malfunctions.
(d) Bit Stack History: The contents of the bit history are used to track the last five reported bit changes.
Each bit change is reported with five pieces of information about it; time tag at the time the change was
reported, the bit number and to which word it belongs to, and identify whether the fault has appeared or
disappeared. A BitEvent object that stores five of these fields is pushed onto a bit queue that can hold up
to five BitEvent objects. The class CmgBitStackTelemetry encapsulates this bit history telemetry.

CmgHealthSummaryTelemetry

CmgTelemetry
<<interface>>

CmgCommand

CmgWheelCommand

CmgInnerGimbalCommand CmgOuterGimbalCommand

<<interface>>

CmgGimbalCommand
<<interface>>

CmgCommandStatusTelemetry CmgMalfunctionTelemetry CmgBitStackTelemetry

CmgCommContext

<<creates>>

+update(CmgName, CmgContext&)

+update(CmgName, CmgContext&)
+isTorquerOn()
+isPowerSupplyOn()

+update(CmgName, CmgContext&)

+update(CmgName, CmgContext&)
+isTorquerOn()
+isPowerSupplyOn()

#rateIsInRange(rate)
#adjustRate(rate)

#isInhibited()

#speed
#spinMotorOn
#powerSupplyOn

+update(CmgName, CmgContext&)
+getSpeed()
+isSpinMotorOn()
+isPowerSupplyOn()
+

+update(CmgName, CmgContext&)
+isTorquerOn()
+isPowerSupplyOn()

#igIsInhibited #ogIsInhibited

+update(CmgName,CmgContext&) +update(CmgName,CmgContext&) +update(CmgName,CmgContext&)+update(CmgName,CmgContext&)

Figure 4: Cmg Telemetry class hierarchy.

Figure 4 shows the hierarchy of 4 Cmg telemetry classes where each telemetry type fits into its own class.
Any telemetry common to the four classes is abstracted into the base CmgTelemetry class.

8. Model Each CMG’s Electronic Assembly (EA): This use case points out an abstraction to represent
a CMG’s electrical assembly (EA). The EA contains the majority of the electronics needed to operate the
CMG. A real CMG contains circuit card assemblies, a microprocessor and analog controller electronics. An
EA box determines the source of the power: is it the external power supply from the RPCMs or the internal
power from the spin wheel when it is in breaking mode. This power is used in powering up the various
EA cards of a CMG’s IG, OG and SM. All three components support 5 V, 10 V, +15 V and -15 V power
supplies and the gimbals support an additional 6.2 V power supply. Apart from the fixed power supplies, all
three components to run their motors consume power dynamically. This variable power is further divided
into electrical and thermal power sinks. The circuit boards driving each of the motors is inside the EA but
each gimbal and wheel calculate their respective power consumptions. Assuming that only little heat goes
in to the EA circuit board (efficiency factor), the total EA power (electrical or thermal) is calculated from
the fixed and variable power consumptions. The heat generated ends up in the thermal control subsystem

11 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

(TCS) and the electrical power consumed goes to the electrical power subsystem (EPS) for effective (aver-
age) calculations of CMG power consumption. Essentially, the total power consumed in the motor is turned
into a simple resistor and its value sent to the EPS system. The EPS solves for current and powers in the
CMG as part of the solution for the whole ISS system. The class CmgElectricalAssembly encap-
sulates the various fixed power supply data and an update interface receives the variable power supplies
from the three instances (IG, OG and SM). The total electrical and thermal power are calculated within the
CmgElectricalAssembly::update method. If the wheel is on internal power i.e., in braking mode,
then the resistive load is not calculated as there is no external power to the CMG.

9. Model CMG Power Characteristics: This use case discusses the total power consumption by the
wheel and the two gimbals. The total power is obtained from the mechanical and thermal power consumption
(electrical losses/drag). The mechanical power is calculated from Jω, where J is the inertia in kg m2 and ω
in rad/s. The thermal power is calculated from the familiar expression, I2R, where I is the current in Amp
and R is the resistance in Ohms. If the drag component of the thermal power becomes dominant then the
Bω2 expression is used, where B is the viscous drag constant. Detailed mathematical models involved in
power calculations for the spin-motor are presented in Reference 13. The parameters of this use case are
used by the EA abstraction for power calculations. Furthermore, spin bearing heater power calculations are
also to be considered as part of the CMG power characteristics. This behavior is specific to Gimbal and
SpinWheel classes and should be part of the respective classes discussed in use cases 4 and 5. Finally,
a resistive load (resistance) for each CMG is calculated from the power consumed and the external power
source voltage. This resistive load goes to the electrical power subsystem (EPS) so that the EPS solves for
current and powers in the CMG as part of the solution for the whole ISS system.

10. Simulate the CMG Startup and Shutdown Sequences: The startup sequence clearly indicates the
construction and initialization of a valid GenericCMG instance which is typically part of an object’s con-
structor or an initialization method. Similarly, the shutdown sequence indicates the destruction and clean-up
of a valid GenericCMG instance which is typically part of an object’s destructor. A list of operations to
consider for each sequence are discussed below.
(a) Startup Sequence: A CMG needs to self-test at start-up: set first pass flags, initialize all the constants
used in the simulation, the wheel and gimbal parameters and states, default power power characteristics i.e.,
low-power standby, drive standby power, start-up power (IG, OG and SM) and heater power, and finally set
up the closed-loop control gains and any filter coefficients.
(b) Shutdown Sequence. Once the command for CMG shutdown is given the FSW will send a command
bits to the gimbals and the wheel. The gimbals’ torquer is turned off and the rates and accelerations are
set to 0 (angles are freezed). The wheel command changes the wheel mode from the nominal mode to the
braking mode. Then the wheel starts to spin-down and when the speed falls below a specified speed, the
mode changes to coasting. The EA starts to drive on internal power generated from the spinning wheel when
it is in braking mode. The wheel takes more than 10 hours for a complete spin down.
The behaviors discussed in this use case should be pushed out to the classes discussed in use cases 4 through
8.

D. Underlying Abstractions and Design Patterns
A use case analysis expresses the roles of the underlying abstractions, defines various design patterns,

principles and insights gained from the CMG simulation design. The use cases also define the interaction
of some of the abstractions with the GNC FSW. The 10 use cases clearly define that for each CMG in the
cluster there exists an outer gimbal, an inner gimbal, a spin wheel and an electrical assembly box.

For FSW communication, each CMG’s interaction with a remote terminal (RT) is abstracted in CmgComm
as shown in Figure 5. The CmgComm interface receives the incoming commands and passes them along
to the CmgContext to distribute the incoming commands for individual processing. All the commands
have a common interface (an update method) and they’re all invoked in the same way. The CmgContext

12 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

processes the command information and sets the necessary command flags for the subsequent model ab-
stractions to decipher. For instance, the Gimbal and SpinWheel classes receive the respective concrete
commands to access the processed command information. The Command pattern9 is used to create an
abstract CmgCommand with two derivatives: CmgGimbalCommand and CmgWheelCommand. Though
both outer and inner gimbals share the same behavior, the commands from the FSWs are unique to each
gimbal. Therefore, the commonality is abstracted in CmgGimbalCommand and the specific behavior is
pushed into the two derivatives: CmgOuterGimbalCommand and CmgInnerGimbalCommand. Fig-
ure 5 display each of these derivative classes wherein each class is responsible for its own job conforming
to the Single-Responsibility Principle (SRP).8 SRP states that a class should have only one reason to change
which also means that each abstraction should have one responsibility. If a class has coupled responsibilities,
then there’ll be more than one reason for it to change.

Furthermore, once the CMG model processes the commands from the FSWs, the model’s response is
captured in the telemetry and CmgComm sends back this information to the FSWs. Therefore, the Com-
mand pattern is used once again to create an abstract base class CmgTelemetry with four derivatives:
CmgCommandStatusTelemetry, CmgMalfunctionTelemetry, CmgHealthSummaryTelemetry
and CmgBitStackTelemetry. Figure 4 shows a simple hierarchy of CmgTelemetry classes. The
Figure also shows that the CmgContext not only creates these telemetry classes but also the CmgContext
type is used as an argument to the telemetry update methods so that the methods have access to all the states
needed to pack the telemetry.

Figure 5 shows the GNC simulation interaction with IssCmgCluster, CmgComm and CmgContext
classes. IssCmgCluster and CmgComm instances invoke their respective update methods and CmgCon-
text instance is passed as an argument to CmgComm update method. CmgContext class abstraction is
designed based on Monostate and Encapsulated Context patterns.8 From Monostate pattern perspective, all
data members of CmgContext are static, so all instances of the CmgContext use the same (static) data.
Any of the Cmg instances using CmgContext do not create multiple instances of it as each CmgContext
instance uses the same data all through the application. From an Encapsulated Context pattern perspective,
divergent parts of the Cmg system can access necessary common data contained in the CmgContext elim-
inating long parameter lists and global data. Therefore, any access to common data is restricted through
CmgContext object which is passed as an argument from one object type to the other. Enforcing const
correctness for CmgContext object within other object types prevents from inadvertent modification of
CmgContext’s state.

GncSimulation

CmgComm

CmgContext

CmgCommand
<<interface>>

<<parameter>>

<
<
cr

ea
te

s>
>

<<creates>>

IssCmgCluster GenericCmg

GncSimulation CmgContext

<<parameter>>

<
<
cr

ea
te

s>
>

<
<
cr

ea
te

s>
>

<<creates>>

CmgWheel

CmgGimbal

1 4

1

1 2

1

<
<

>
>

pa
ra

m
et

er

CmgModelTelemetryData

CmgWheelCommand

CmgGimbalCommand

<
<
cr

ea
te

s>
>

CmgWheelCommand

CmgOuterGimbalCommand

CmgInnerGimbalCommand

CmgGimbalCommand
<<interface>>

+processReceiveData()
+processTransmitData()

-rtAddress
-cmgName
-commandFrame
-telemetryFrames

+update(CmgName, CmgContext&)

+update(CmgContext&)
+getAngularMomentum()
+getTorque()

+
+getAngularMomentum()
+getTorque()

update(CmgName,)CmgContext&

+
+getAngle()
+getRate()

update()GimbalCommand&,dt

+update(
+getSpeed()
+getSpinMotorPowerSupply()

WheelCommand&,dt)

-cmgList
-angularMomentum
-torqueInBodyFrame

-outerGimbal
-innerGimbal
-wheel

-angle
-rate
-inertiaInGimbalFrame

-speed
-powerSupply
-inertiaInWheelFrame

<<parameter>>

Figure 5: GNC simulation interaction with CmgComm and CmgContext classes.

13 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

V. CMG Simulation Development
This section discusses how the design and development together evolved incrementally from the math-

ematical models, various TDD scenarios, and the simulation results and analysis. One of the key aspects
of the CMG simulation is to thoroughly understand the mathematical models developed in section III. The
next challenge was to incrementally start writing the code that supports and verifies the designs discussed in
section IV. The unit tests are developed concurrently with the production code but there exists a dependency
of the unit tests on the production code. The production code doesn’t know anything about the unit tests and
the tests are a powerful mechanism to develop, re-factor and maintain the production code.

The CMG unit test framework consists of more than hundred independent test cases that are created
at every stage of software design and development, testing and debugging, re-factoring and performance
optimization. In this paper only the most important scenarios are presented starting with tests of the most
basic functionality, then gradually building tests of complex behaviors; a few of the test case scenarios are

1. Verify Modeling Parameters
2. A Simple Bicycle Wheel Gyroscope Model
3. Zero Commanded Gimbal Rates - ISS in Free-drift
4. Non-zero Commanded Gimbal Rates
5. Hold ISS Attitude - Regulator Operation
6. Control Station Attitude - Trajectory Tracking Operation
7. Spin-motor Voltage Controller
8. Power Consumption - Electrical, Mechanical and Thermal
9. Malfunctions
10. Integrated GNC Test with FSW
The test case scenarios are elaborated next to provide just enough details that support and fulfill the user

stories discussed in section IV.
1. Verify Modeling Parameters: The purpose of this test is to verify the constants associated with the

CMG models. All units are metric (SI) (unless otherwise noted). This example test case runs at the beginning
and end of the unit test runs, and the constants should be logged at the beginning and end of the simulation
runs to verify their values and that those values remain constant across the simulation execution.

2. A Simple Bicycle Wheel Gyroscope Model: For this test, the simplest gyroscope rotational equations
of motion are derived assuming that a frictionless spinning bicycle wheel is suspended from one end of
its axis by a rope where the wheel’s axle is horizontal and the free end of the axle precessed about the
supported end. The gyroscope seems to defy gravity because the torque created by the spinning wheel
counteracts the torque due to gravity. Torque expressions for the simplest spinning wheel are compared
with the dynamics presented in section III.. With simplified initial conditions, the complicated dynamics
collapsed into simple scalar expressions consistent with the bicycle wheel gyroscope’s dynamics. This test
gave insight on verifying several states states such as wheel speed and inertia, angular momentum and
torque, and also on applying transport theorem to develop the expressions for torque.

3. Zero Commanded Gimbal Rates - ISS in Free-drift: The wheel is spinning at a fixed RPM but the
inner and outer gimbal commanded rates are zero. To keep it simple all the gimbal angles are initialized to
zero. This test specifically checks for the system momentum in the body reference frame to remain constant
with respect to the ISS body. It also checks for the speed, torque and simple flags whether the CMG is
powered. The test results are checked after two time cycles.

4. Non-zero Commanded Gimbal Rates: The next logical test is to start with nonzero commanded gim-
bal rates and the wheel spinning at a constant speed. At this stage, the CMG model is not connected to
the FSW; therefore, a realistic FSW command frame is obtained with the standard command bits set in it
such as the commanded gimbal rates, the commanded wheel speed, spin motor status, the gimbal torquer
information etc. A series of tests are developed further changing only one variable at a time keeping all the

14 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

others fixed. Also, the tests are run for one time step, a few time steps and then for several thousand time
steps.

5. Hold ISS Attitude - Regulator Operation: This test case verifies a regulator operation where the
CMGs are utilized to control station attitude for proximity operations. In this mode, each CMG gimbal
rate is commanded such that the station attitude is maintained constant relative to inertial frame (J2000).
When this test was written, the ISS simulation was not interacting with the FSW and the FSW has the
control algorithm to generate the commanded gimbal rates. Therefore, the commanded rates are generated
based of a nonlinear control algorithm presented in Reference 3. These commanded rates are packed into
a FSW command frame which are parsed by the CMG model. This test checks for the net CMG torque
and the ISS attitude states returned from propagating the attitude dynamics to verify that the station is in
attitude hold mode. The CMG control torques and the ISS attitude states for a 60 min simulation run are
collected and presented to the customer to confirm that the CMG model when hooked to the FSW will
perform correctly. The unit tests not only generated the data to plot the results but also verified simulation
run’s initial conditions, intermediate and final results.

6. Control Station Attitude - Trajectory Tracking Operation: In a trajectory tracking test case, each CMG
gimbal rate is commanded such that full station attitude control (either attitude hold or attitude maneuver) is
performed. Similar to the regulator operation, the commanded rates are generated from a nonlinear control
algorithm to track a reference trajectory presented in Reference 3. This test checks for a 60 min simulation
run for the net CMG torque and the ISS attitude error states to verify that the station is tracking an attitude
maneuver.

7. Spin-motor Voltage Controller: This test verifies a pulse-width modulated (PWM) voltage drive
model to control the flywheel speed of a CMG. Also, an adaptive proportional voltage controller is tested
where in a controller model adjusts the voltages depending on several control modes for speed, current, and
torque. The test verifies the CMG model’s interaction with the electrical system and the load dynamics and
its overall performance of the system. The CMG spin motor model can directly provide electrical power use
and thermal power output to spacecraft subsystems for effective (average) calculations of CMG power con-
sumption. Detailed mathematical models involved in simulating the spin motor model and voltage controller
are presented in Reference 13.

8. EA Power Consumption: The goal of this test is to verify that the behavior of a CmgElectricalAssembly
abstraction. The most important variable to check for the total power consumption by the electrical assembly.
The EA box consumes power to drive the control cards for the IG, OG and SM and the heater components
which is typically the standby power. The electrical power is due to thermal losses and drag(especially for
the wheel) and the mechanical power is used to drive the gimbals and the wheel. The total power consump-
tion is the summation of all these individual powers and the EA model uses an efficiency factor as part of
the calculation.

9. Malfunctions: There are a series of unit tests to verify the simulation of malfunctions of the Control
Moment Gyroscope (CMG). The CMG malfunctions are grouped under mechanical, thermal and electrical
categories. A malfunction can be as simple as one which only affects the telemetry or a complex one that
changes the state and behavior of the CMG model. Detailed malfunction models and the general simulation
results are presented in Reference 14. The results presented in Reference 14 are obtained from running the
unit tests.

10. Integrated GNC Test with FSW: Once the unit tests are passed, the CMG model code is integrated
into the main ISS simulation and then the integration tests are performed where the GNC subsystem and
its interaction with other subsystems is tested. Finally, the GNC subsystem code is checked in to a source
control repository for the users to perform the final acceptance tests who execute the GNC flight procedures
to verify and validate the ISS GNC simulation.

15 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

VI. Simulation
This section presents the main results from numerical simulations which illustrate a CMG’s behavior un-

der different wheel speed modes i.e, nominal, spin-up, braking and coasting. For each mode, how the wheel
speed changes with time is shown. The nominal speed mode tests the voltage controller’s performance by
increasing the speed from 6600 RPM to 6810 RPM. Figure 6 shows the speed increase which the controller
achieved in 17 min. The spin-up test is the most critical and sets up the conditions to speed up from rest (0

Figure 6: Nominal Speed Increase Test

RPM) to 6600 RPM. As shown in Figure 7, the controller performed well spinning up to 6600 RPM in 7 hrs
(the real CMGs spin up in 6-8 hrs), which also implies that the RMS assumption is reasonable. The braking

Figure 7: Spin-up Test

test turns off the spin motor power supply which sets the simulation mode to braking. Figure 8 shows that
the spin-down to 1300 RPM happens in 7.8 hours during which CMGs are also powering the SM, IG and
OG control cards using the back EMF. When the speed drops below 1300 RPM, the CMGs transition to
coasting mode and turn off the power to the SM, IG and OG control cards which results in slower spinning
down of the wheel. Figure 9 shows the results for the coasting mode only which is set by turning off the
voltage supplies to the CMGs and disconnecting the spin motor. Coasting is a slow operation which can

16 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

Figure 8: Braking Test

take up to 200 hours for the CMG to completely spin-down to rest.

Figure 9: Coasting Test

VII. Conclusion
A new method of simulating a cluster of 4 CMGs on the ISS is used so that the simulation is developed

on time and within budget. The agile development method is a natural approach for efficient and effective
management of the software development. The CMG simulation work turned out to be enjoyable and fruit-
ful to the development team, and flexible and maintainable for future support and maintenance. All the user
stories discussed in this paper are unit tested in a standalone setting and they are verified in the integrated
simulation environment. Following the agile principles of development allowed the team to write working
software from the beginning of the TS21 project with constant feedback from the customer. An interesting
aspect of this work is that object oriented design and analysis, and design principles and patterns greatly
enhanced the ability to design and write clean code. For engineering systems, mathematical modeling (dy-
namics and control) and understanding the underlying principles is of utmost importance before attempting
to write code. Several practices of efficient programming are utilized such as discussing the user stories
with the customer, keeping short development cycles, pair programming, test driven development, contin-

17 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

uous integration and acceptance tests, re-factoring, and constantly strive to keep the design simple. Three
technical papers evolved from documentation of the work at each iteration of the development. The CMG
model development and testing is completed and is part of the TS21 simulation for the users to verify the
customer’s user stories. The simple design principles used in this paper can be reused in other engineering
applications which use a model-view-controller paradigm with command and telemetry capability. For ex-
ample, applications that use dynamics and control such as visiting vehicle simulations and flight simulators
have similar software architecture.

VIII. Acknowledgments
The author of this paper would like to thank the Johnson Space Center engineering directorate under the

Training Systems 21 contract.

References
1The Simulation and Graphics Branch, ER7, NASA, JSC, Houston, TX, http://er.jsc.nasa.gov/ER7/.
2”ADCO Console Handbook,” International Space Station Attitude Determination and Control Officer (ADCO), Mission

Operations Directorate Systems Division, JSC-36410, Johnson Space Center, NASA, Houston, TX, March 15, 2013.
3Stevenson, D., and Schaub, H., ”Nonlinear Control Analysis of a Double-Gimbal Variable-Speed Control Moment Gyro-

scope,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 3, May-June 2012.
4Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems, 2nd ed., AIAA Education Series, AIAA, Reston,

VA, Oct. 2009, pp. 178-188, 408-430.
5Collier, Ken W., Agile Analytics: A Value-Driven Approach to Business Intelligence and Data Warehousing, Pearson Edu-

cation, ff. ISBN 9780321669544, pp. 121, 2011.
6Kent, B., et al., Principles behind the Agile Manifesto, Agile Alliance. Archived from the original on 14 June 2010. Retrieved

6 June 2010.
7Hamill, P., Unit Test Frameworks, O’Reilly Media, Inc., Sebastopol, CA, 2005, pp. 1-6.
8Martin, R. C., Agile Software Development, Principles, Patterns, and Practices, Prentice Hall, Upper Saddle River, 2003,

pp. 95-98, 193-250.
9Gamma, E., R. Helm, R Johnson and J. Vlissides., Design Patterns, Addison-Wesley, Reading, MA, Oct. 2009.

10Software Requirements Specification for the Guidance, Navigation and Control Multiplexer/Demultiplexer Computer Soft-
ware Configuration Item, International Space Station Program, NASA, JSC, Houston, TX, April 2009.

11Kennel, H. F., A Control Law for Double-Gimbaled Control Moment Gyros Used for Space Vehicle Attitude Control,
NASATM X-64536, 7 Aug. 1970.

12Kennel, H. F., Steering Law for Parallel Mounted Double-Gimbaled Control Moment Gyros, NASATM X-64930, Feb. 1975.
13Inampudi, R., and Gordeuk, J. ”Simulation of an Electromechanical Spin Motor System of a Control Moment Gyroscope,”

AAS/AIAA SciTech 2016 Conference, San Diego, CA, 2016.
14Inampudi, R., and Gordeuk, J. ”Simulation of Malfunctions for the ISS Double-Gimbal Control Moment Gyroscope,”

AAS/AIAA SciTech 2016 Conference, San Diego, CA, 2016.

18 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

	Introduction
	ISS Non-propulsive Attitude Control
	CMG
	Environmental Torques
	Torque Equilibrium Attitude

	Double-Gimbal Variable-Speed Control Moment Gyroscope Equations Of Motion
	CMG Simulation Design
	Preliminary Design
	User Stories
	Use Case Analysis
	Underlying Abstractions and Design Patterns

	CMG Simulation Development
	Simulation
	Conclusion
	Acknowledgments
	References

