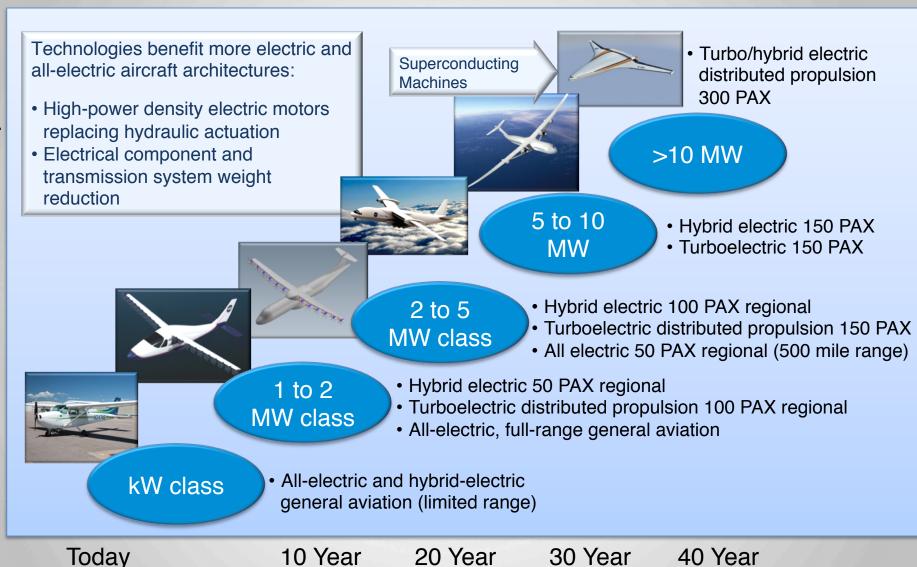
NASA

Next Generation Aircraft Electrical Power Systems & Hybrid/All Electric Aircraft

Dr. Rubén Del Rosario **Project Manager Advanced Air Transport Technologies NASA Advanced Air Vehicles Program** Aerospace Electrical Systems Expo, Long Beach, California May 20, 2015

Hybrid Electric Propulsion (HEP) Vehicles


Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures

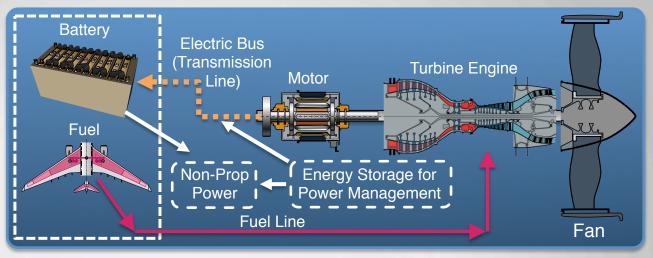
- Why electric?
 - Fewer emissions (cleaner skies)
 - Less atmospheric heat release (less global warming)
 - Quieter flight (community and passenger comfort)
 - Better energy conservation (less dependence on fossil fuels)
 - More reliable systems (more efficiency and fewer delays)
- Considerable success in development of "all-electric" light GA aircraft and UAVs
- Creative ideas and technology advances needed to exploit full potential
- NASA can help accelerate key technologies in collaboration with OGAs, industry, and academia

Electrical Propulsion Power Level for

Projected Timeframe to Tech. Readiness Level

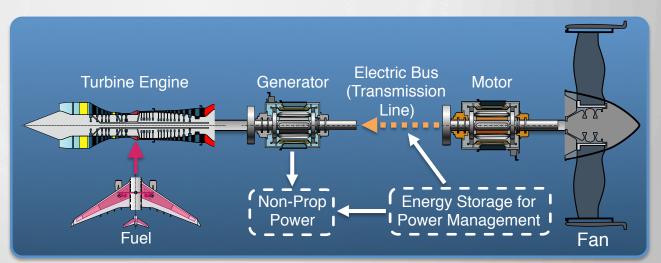
Hybrid Electric Propulsion Vehicles

NASA's Current Investments


- Advanced Air Transport Technology
 - Targets single aisle passenger aircraft
 - Goal of current work is to develop enabling technologies and to validate vehicle concepts
- Convergent Electric Propulsion Technology
 - Targets distributed propulsion vehicle architectures
 - Flight validation of transformational electric propulsion integration capabilities
- Vertical Lift Hybrid Autonomy
 - Targets long range, high endurance rotocraft missions
 - Goal of current work is to demonstrate cryogenic HEP power system to inform propulsion system models

Possible Future Commercial Large Transport Aircraft Architectures

Hybrid Electric



Both concepts can use either non-superconducting motors or cryogenic superconducting motors

Turboelectric

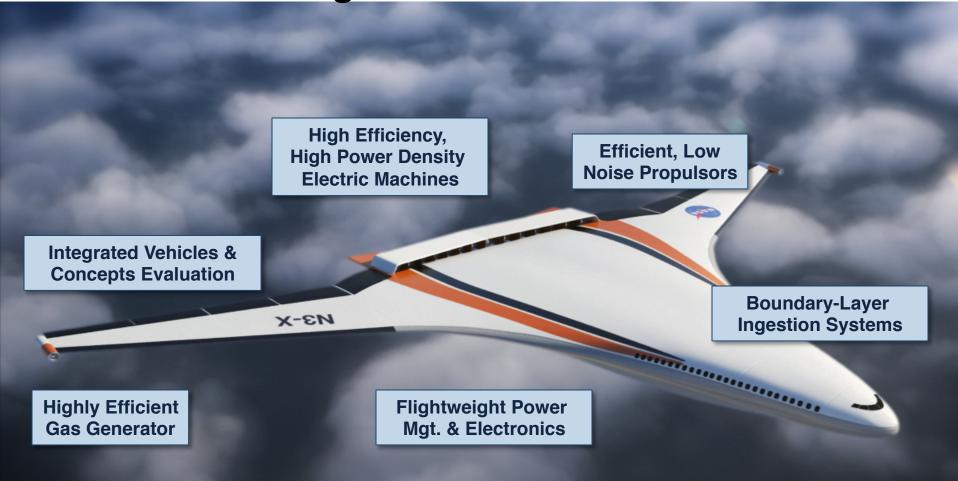
Estimated Benefits From Systems Studies

SUGAR (baseline Boeing 737–800)

- ~60% fuel burn reduction
- ~53% energy use reduction
- 77 to 87% reduction in NOx
- 24-31 EPNdB cum noise reduction

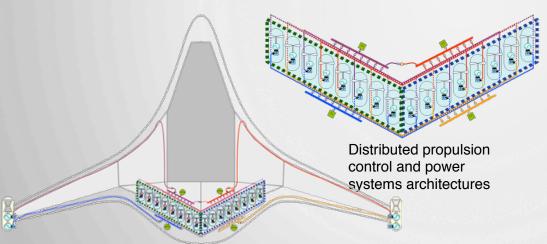
N3-X (baseline Boeing 777-200)

- ~63% energy use reduction
- ~90% NOx reduction
- 32-64 EPNdB cum noise reduction


CEPT (baseline Tecnam P2006T)

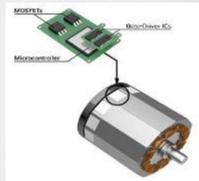
- 5x lower energy use
- 30% DOC Reduction
- 15 dB lower community noise
- Propulsion redundancy, improved ride quality, and control robustness

Investment in Hybrid and Turbo-Electric Aircraft Technologies



Flightweight Power Management and Electronics

- Multi-megawatt aircraft propulsion power system architecture
- Power management, distribution and control at MW and subscale (kW) levels
- Integrated thermal management and motor control schemes
- Flightweight conductors, advanced magnetic materials and insulators

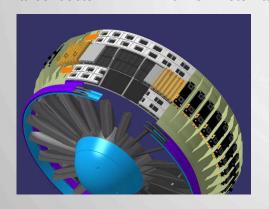

Superconducting transmission line

Lightweight power transmission

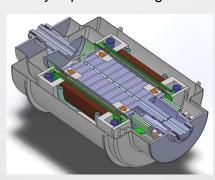
Integrated motor w/ high power density power electronics

Lightweight Cryocooler

Lightweight power electronics



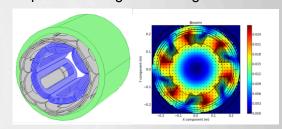
High Efficiency, High Power Density Electric Machines

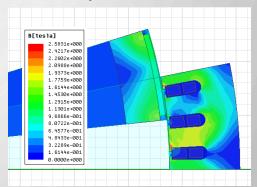


- Develop High efficiency, high specific power electric machines
 - Cryogenic, superconducting motors for farther term
 - Non-superconducting motors for near and intermediate term
- Advance Materials and manufacturing technologies
- Design and test 1 MW non-superconducting electric motors starting in FY2015

Normal conductor 1-MW rim-driven motor/fan

Fully superconducting motor

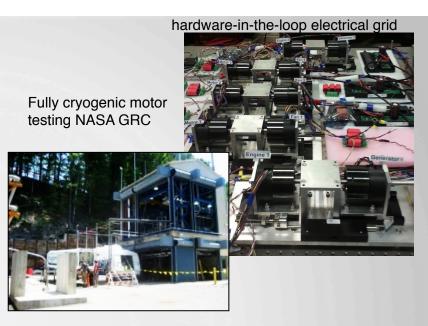

Low A/C loss superconducting filament

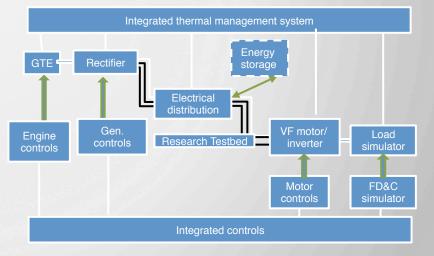

High thermal conductivity stator coil insulation

Superconducting electromagnetic model

Flux density for rim-driven motor

Enabling System Testing & Validation

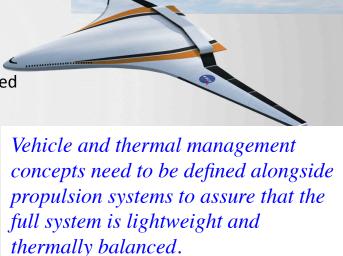

- Develop Megawatt Power System Testbed and Modeling Capability
- Key Performance Parameter-driven requirements definition and portfolio management
- Technology demonstration at multiple scales
- Identification of system-level issues early
- Develop validated tools and data that industry and future government projects can use for

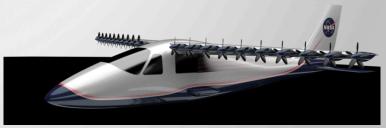

further development

Eventual flight simulation testing at NASA Armstrong Flight Research Center

Technologies that can enable or accelerate hybrid, turbo- and all electric Aircraft

Electric Machine Topologies:


- Higher efficiency designs: reduce the losses in the motor through better topologies without sacrificing power density
- Ironless or low magnetic loss
- Concepts which allow motor to be integrated into the existing rotating machinery (shared structure)
- Concepts which decouple motor speed and compressor speed


Electric Machine Components and Materials

- Flux diverters or shielding to reduce AC loss or increase performance
- Composite support structures
- Improvements in superconducting wire: especially wire systems designed for lower AC losses
- Rotating Cryogenic seals
- Bearings: cold ball bearings, active & passive magnetic bearings;
 hydrostatic or hydrodynamic or foil for systems w/ a pressurized LH2 source
- Flight qualification of new components

Cryocoolers

 Flight weight systems for superconducting and cryogenic machines, converters and transmission lines

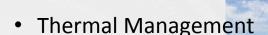
Technologies that can enable or accelerate hybrid, turbo- and all electric Aircraft

Power electronics

- More efficient topologies
- Compact, highly integrated controller electronics
- Flight certifiable, high voltage devices
- Cryogenic compatible devices

Power transmission

- Light weight, low-loss power transmission
- Light-weight, low-loss protection and switching components


Better conductors

- Carbon nano-tube or graphene augmented wires
- Robust, high temperature superconducting wires

Energy storage

- increased battery energy density
- multifunctional energy storage
- rapidly charging and/or rapidly swapable

Transport class HE aircraft will need to reject 50 to 800 kW of heat in flight

- Cooling for electric machines with integrated power electronics
- Advanced lightweight cold plates for power electronics cooling
- High performance light-weight heat exchangers
- Lightweight, low aerodynamic loss, low drag heat rejection systems
- Materials for improved thermal performance

System-level enablers

- Flight-weight, air cooled, direct shaft coupled turboelectric generation in the above 500kW range
- Regenerative power absorbing propeller and ducted fan designs (efficient wind-milling)

