

Development of a US Gravitational Wave Laser System for LISA

Jordan Camp Kenji Numata* NASA Goddard Space Flight Center * University of Maryland, College Park

> APS April Meeting 2015 Apr. 13, 2015

View metadata, citation and similar papers at core.ac.uk

eLISA laser program at GSFC

- Provide TRL 5 laser system by 2016
 - Modern, fiber-based design
 - Technical details to be made available to all LISA members
- Funding
 - SBIR (Small Business Innovative Research)
 - Internal GSFC R&D
 - LISA project funds
 - Strategic Astrophysics Technology award
 - ~ \$3.5M over 6 years

MOPA design External Cavity Laser, fiber preamp, fiber amplifier 1064 nm wavelength 2 Watt output

Oscillator: External Cavity Laser

Numata, Camp, Krainak, Stolpner, OE 18, 22781

Simple, compact, low mass, highly reliable laser (butterfly package)

NPRO: \$25K

ECL: \$5K

2 ECLs 2 Preamp Diodes

10 cm x 5 cm x 1 cm 50 mW output

Redundant ECL and Preamplifier package

Fig. 5 Reliability testing of ECL a) thermal cycling b) proton irradiation

Other tests:

- Hermiticity
- Gamma-ray exposure
- Accelerated aging

→ Robust design suitable for space operation

Conversion of ECL wavelength to 1064 nm

Gain Chip		
	RWG (1064nm)	BH (1550nm)
1	Complex epi design	epi design is decoupled from mode size converter
a	Use special design to expand beam size	Beam defined by BH and mode size converter
2	Waveguide defined by RWG	Waveguide defined by BH
а	Weak index guiding	Strong index guiding
b	Thermal and carrier lensing affect beam profile	No thermal and carrier lensing
С	Beam profile dependes on operating current	Beam profile does not depend on operating current
d	Excitation of TEM ₀₁ could degrade noise	Only TEM ₀₀
f	High ellipticity	Almost circular
g	High GC-PLC coupling loss	Low GC-PLC coupling loss
h	Requires facet passivation	Does not require facet passivation
i	One-step growth	Two-step growth

PLC = Planar linear cavity
GC = gain chip
BFM = back facet monitor

Numata, Alalusi, Stolpner, Camp, Krainak, OL 39, 2101 (2014)

GODDARD SPACE FLIGHT CEN

GC BFM Mount

Frequency noise of world's 1st 1064 nm ECL (in Butterfly package)

Lowering phase noise: 1) optimize optical cavity reflectivity slope → strong feedback→ low noise 2) optimize gain chip for low loss → low noise 3) select gain chip for lowest 1/f noise

• 1064nm PW-ECL + Yb fiber amp + Waveguide doubler

Satisfies the freq. noise requirement for eLISA at low frequency

External AOM as frequency actuator to suppress frequency noise at high frequency

Frequency Modulation of ECL on laser chip (to be implemented)

- Modulation of the effective refractive index inside the cavity, results in frequency modulation of the external wavelength up to 100 MHz
- □ FM section on the gain chip, separated from gain section by etching

Power Amplifier

- Design
 - All fiber coupled
 - Large mode area, double-clad Yb fiber
 - Forward pump to avoid risk and noise sources
- Noise performance
 - No additional frequency noise
 - eLISA requirement level
 - Differential phase noise (@2GHz)
 - Stabilized low frequency RIN with feedback to pump diode

MM Pump LD

Redundant LD

Isolato

90/10

coupler

From seed

>40mW

 \rightarrow

99/1

coupler

>1.4W

Output mon.

Yb LMA DC fiber

TFB

Input mon.

1064 nm ECL oscillator, rebuilt power amplifier Temperature stabilized environment Tests: noise, accelerated aging, etc.

Laser Development Schedule

- FY 2014 2015
 - Iterate design of 1064 nm ECL gain chip, planar cavity
- FY 2015
 - Laser system testing with 1064 nm ECL
 - Achieve final frequency noise performance
- FY 2016
 - Reliability testing of 1064 nm ECL
 - Low risk since same packaging as 1550 nm, also Eagleyard data indicates reliable 1064 nm gain chips
 - Implement on-chip frequency modulation

