https://ntrs.nasa.gov/search.jsp?R=20150022934 2019-08-31T05:06:12+00:00Z

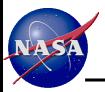
NA SA

Playing Nice Across Time & Space

Tools, Methods and Tech for Multi-Location Multi-Decadal Teams

mike.conroy@nasa.gov

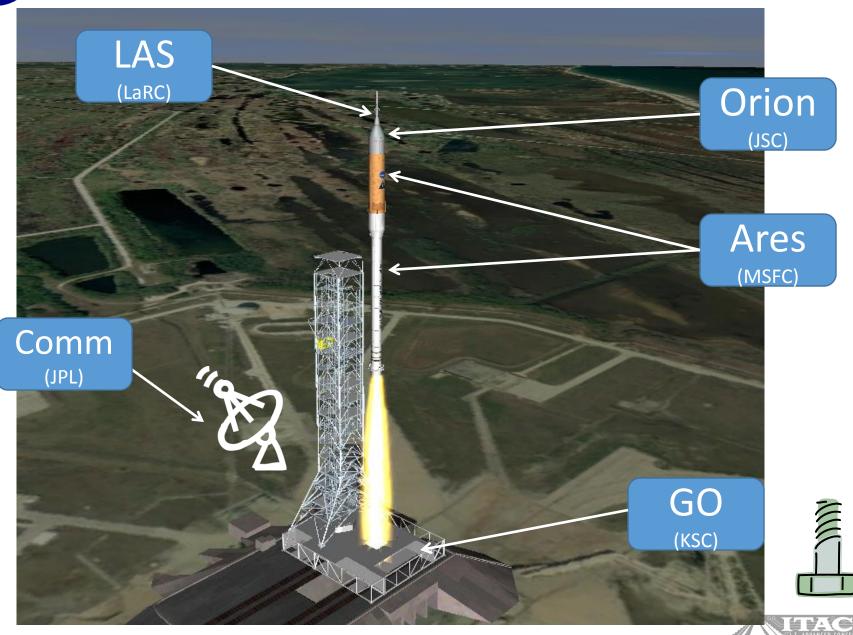
- I have been around the Modeling, Simulation, Visualization and Information Technologies space for over 25 years
 - They are grand, challenging, disruptive, ever changing and incredibly powerful. They grow more so every day.
 - And, like any sharp tool, they have sharp edges.
- I would like to share some "Observations" from those years
 - As in Lessons Observed vs. Lessons Learned
 - And, I would appreciate your thoughts on any that I may have missed



- The Game is:
 - Multi-Decade, Massive, Complex System Conception, Design, Development and Operations
 - Targeted towards a hostile and unforgiving environment
 - With a gifted, diverse and distributed group of friends
 - With the goal of getting as far off the planet as possible

- The Rules Come From:
 - Physics / Teams / Process / Science / Story
 - Time / Distance / Culture / Goals / Generations

- We Model
 - We represent the **thing** we want to study
 - With as much detail as is necessary for that study
- We Simulate
 - We represent **<u>behavior</u>** of the thing(s) we want to study
 - With as much detail as is necessary for that study
- We Decide
 - We look at the thing(s), their behavior(s), <u>determine</u> the next step(s) and <u>communicate</u> the results of the study
 - With enough detail for that study to be used or re-used


Communications Observation

Very Large Bolts

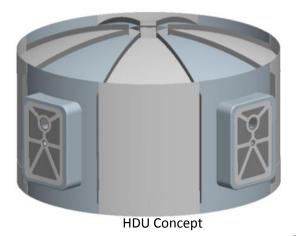
Ares 1 Launch Sim (HLA, Trick, 5 sites)



- It is non-threatening ('ish).
- Leadership is not wrong, I just need their help to get the simulation right.
- Or, everyone is wrong, and we need to know now.
- Imagine 3 people vigorously discussing what turns out to be 3 different concepts
 - The worst thing that can happen is that they come to an agreement and leave happy
 - Simulation can help ensure everyone is at least in the same argument, and it leaves a record

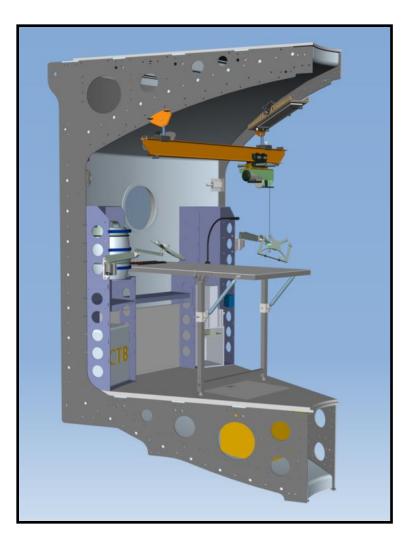
Concurrent Design Observation

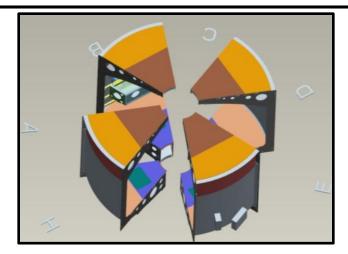
Habitat Demonstration Unit

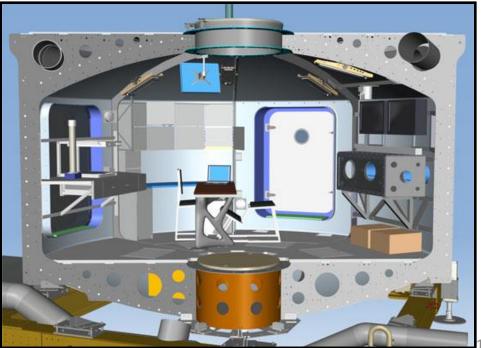

CONVR 2015

HDU Overview

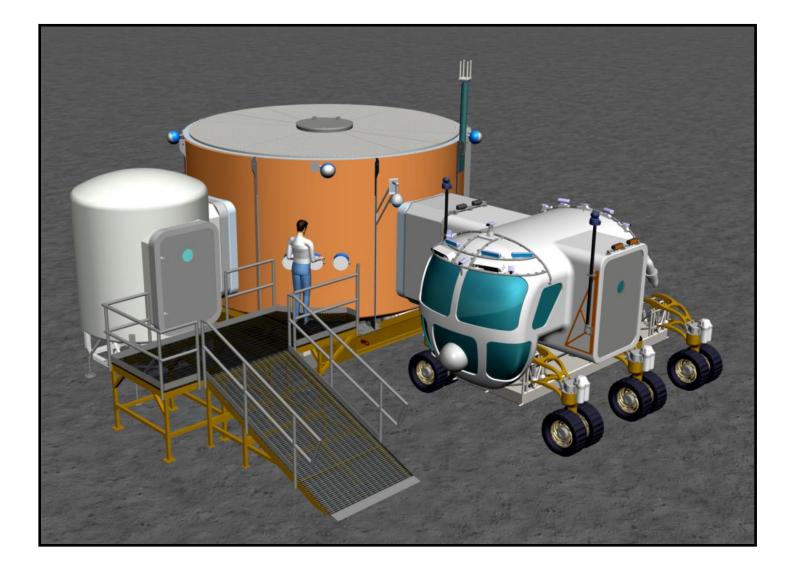
- Vision
 - Develop, integrate, test, and evaluate a Habitation prototype to better understand mission architectures, requirements and operational concepts
- Timeline
 - Project Kick-off: June 2009
 - Shell: October 2009 April 2010
 - Systems Integration: April August 2010
 - 10 Month Build, 4 Month Integration
 - Field Test at Desert RATS September 2010
- Participation
 - Jointly managed and built across 3 Time Zones with subsystems from 7 Centers


Lunar Reference Concept (PEM)

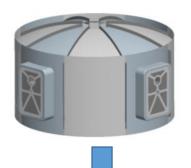




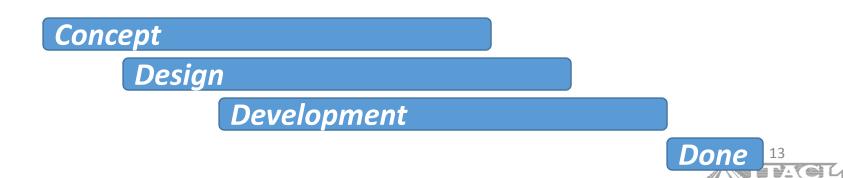
CAD Based Integration - Interior



CAD Based Integration - Exterior

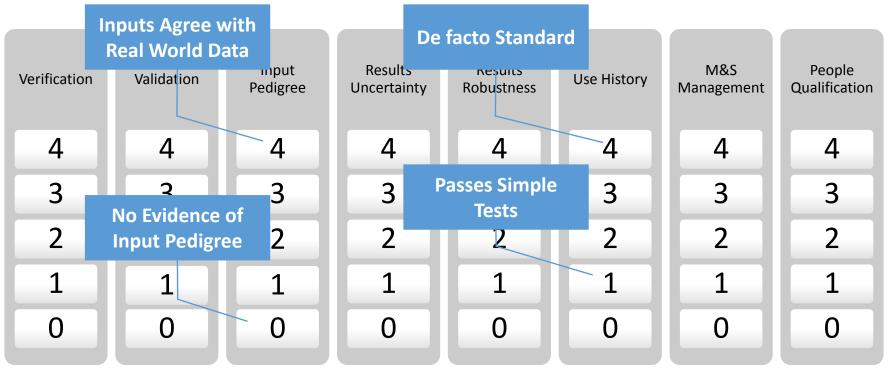


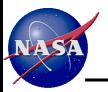
Concept Realization (15 Months to Field)



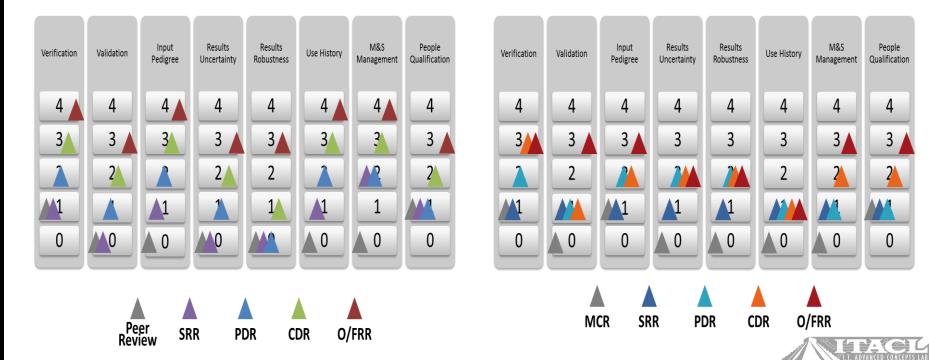
- CAD integration rapidly grew to system simulation, then concurrent development
 - Concepts were matured in design sessions
 - Concept developed, "model" updated, package base lined
 - Design completed, "model" updated, systems built
 - Multiple Centers, Teams, Projects, Time Zones and Budgets
- Success not just because of Simulation
 - HDU leadership prioritized decisions such that time critical elements were decided on first
 - Even if only allocations
 - Simulation Screen Shots became a key communication path
 - Timely, Enhanced Understanding, Converged Ideas

Self Grading Observation


NASA Standard 7009, Modeling and Simulation



The Numbers on the Score Sheet


- To communicate the rigor, fidelity and pedigree of our work (Credibility), across distance and years
- We used NASA Standard 7009
 - 8 categories, 5 levels per category
 - Range from "No Evidence" to "Best Possible" Credibility

CONVR 2015

- Compare the planned Constellation (crewed) maturation with a flight experiment (no crew)
 - The experiment first pass has higher credibility, but the end result is only 2's and 3's.
 - They do more work up front before commitment, but do not need the later, expensive, high fidelity simulations.

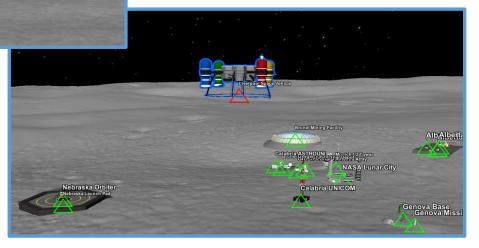
- This lets engineers, scientists, analysts and others identify what they created, and what it could be used for.
- It also lets leadership understand what something should NOT be used for.

This Might Work Observation

SEE 2015, a template for integrated exploration

- Cooperative Student Event
 - US, Canada, Europe so far
 - Simulate a Lunar Base with NASA Tools
 - HLA (MAK, Pitch, Forward Sim)
 - Trick (NASA Open Source)
 - Federations (rovers, flyers, surveyors, buildings, terrain)
 - DON, Distributed Observer Network (Game Based Visualizer)
 - Model Process Control data, creates persistent simulations

• We would welcomes others...



Data from SEE 2015 Event

<object id="UoL Space Vehicle"> <pos>-815681.8256345909 -296766.0468345342 -1499649.7534911816</pos> <quat>0.5796094794186682 0.7726450948750871 -0.2166842183987196 -0.14184624855957192</quat> <parent>MoonCentricFixed</parent> <vis>1</vis></object

Mission Metadata

- Just wanting to meet huge new challenges is not enough
 - We must learn how to start meeting them today
 - With our partners, wherever they are
 - We must enable our children to finish tomorrow
 - Simple and persistent mechanisms to communicate with them <u>whenever they are</u>
- We must Learn how to Play Nice Across Space and Time

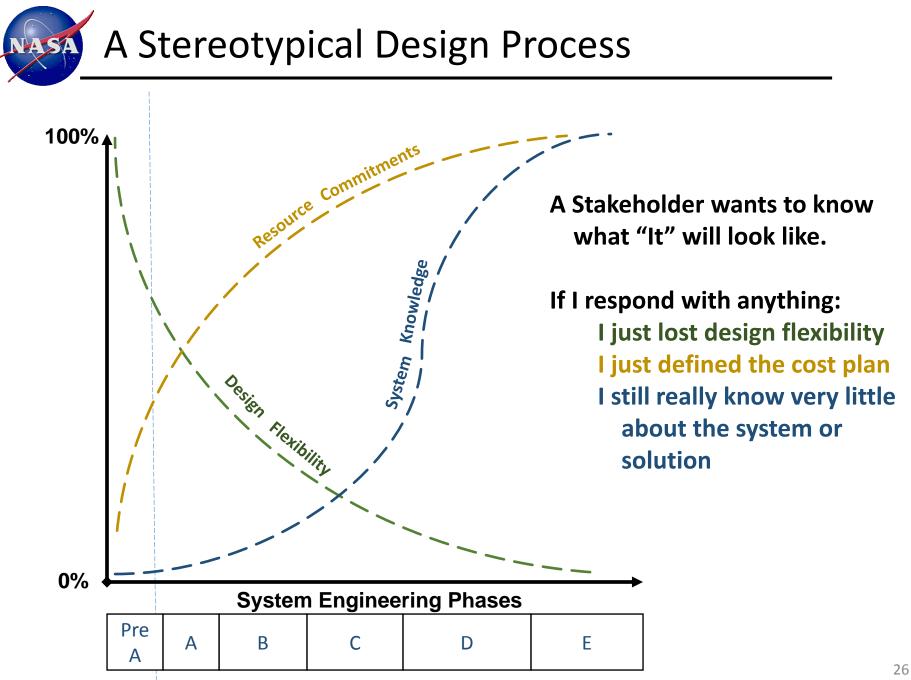
Questions?

More Observations?

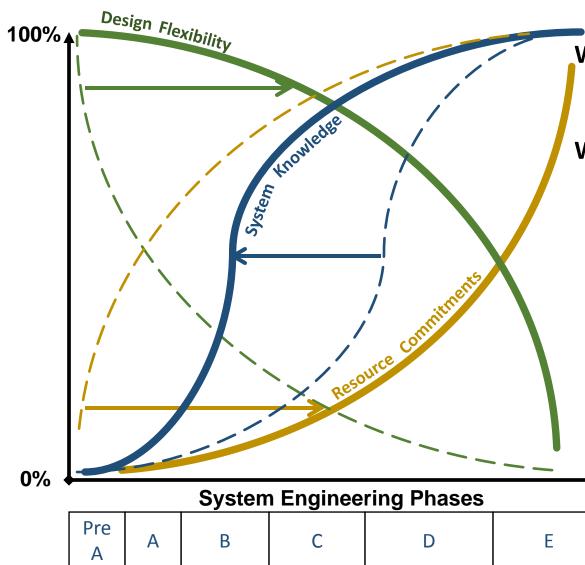
Backup Stuff

SEE 7009 CAS Score = 0-1-0-0-0-1-1-1

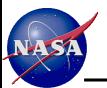
Verification	Validation	Input Pedigree	Results Uncertainty	Results Robustness	Use History	M&S Management	People Qualification
Reliable error estimates used, small errors across key elements	Results compare favorably to real-world system	Inputs agree with real-world data or from > 3.5 summary M&S	Quantitative and based on Non- deterministic & numerical analysis	Sensitivity known for most parameters (all of the most sensitive cases)	De facto standard	Continual process improvement to improve result repeatability	Extensive experience and use of recommended M&S practices & tool
Formal method is used to assess unit testing errors	Results agree with experimental data for problems of interest	Inputs agree with exp. data for problems of interest or from > 3.0 summary M&S	Quantitative and based on Non- deterministic analysis	Sensitivity known for many parameters	Previous predictions were later validated by mission data	Process measured for repeatability	Adv. degree or extensive experience, recommended practice knowledge
Favorable results from key feature unit / regression testing	Results agree with experimental data or other M&S on unit problems	Inputs traceable to formal doc., or from >2.0 summary M&S	Based on deterministic analysis or expert opinion	Sensitivity known for a few parameters	Used before for critical decisions	Established process for development and operations	Formal M&S training and experience + recommended practice training
Favorable evidence of verification for concept & math models	Concept and math models agree with general and textbook referents	Inputs traceable to informal doc., or from > 1.0 summary M&S	Based on qualitative estimates	Sensitivity estimated, qualitative, based on analogy	Passes simple tests comparing with other similar tools	Roles and Responsibilities defined and managed	Engineering or science degree
No Evidence	No Evidence	No Evidence	No Evidence	No Evidence	No Evidence	No Evidence	No Evidence 24


CONVR 2015

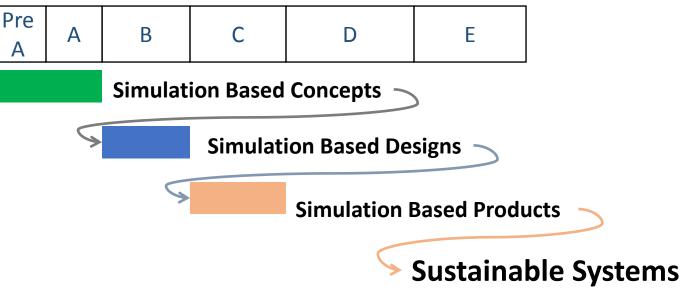
Design Process Observation


"The" System Engineering Chart

J

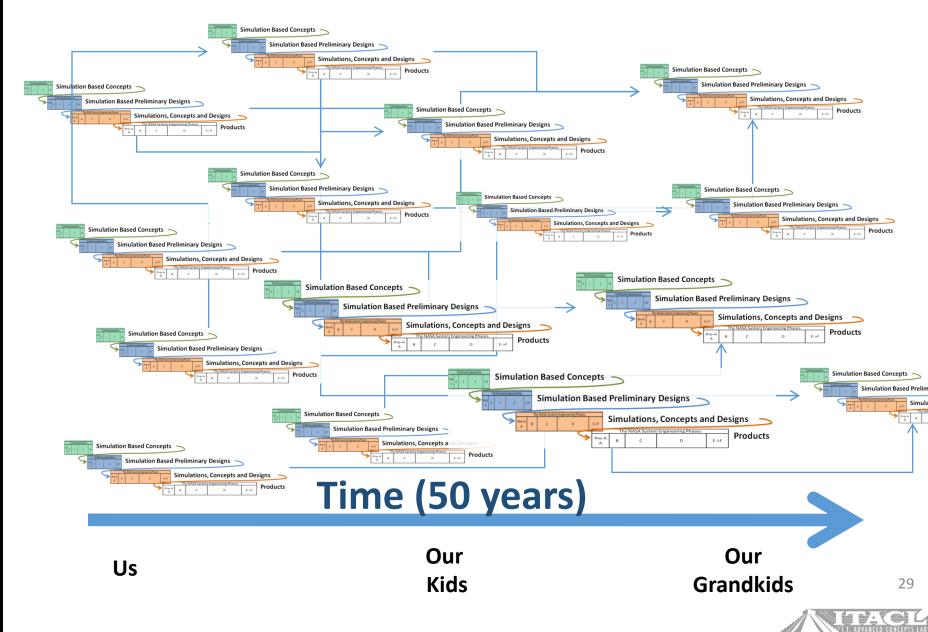

When Stakeholder asks "What will it look like?"

What "We" Really Want: 1. I can show you in a few months, not years (Early System Knowledge)


- 2. Then you can help steer me (Design Flexibility Preserved)
- 3. And we can look at the financial burn (Delayed
 Resource

Commitments)

NASA / INCOSE System Engineering Phases


<u>And</u>, along the way we create artifacts that we can share, that increase understanding and allow us to access additional expertise

Multi-Decadal and Interdependent are Hard

- Persistent Simulation for Multi-Decadal Teams
 - Or, Playing Nice Across Time and Space
- Bio Mike Conroy / Modeling, Simulation, IT Technology Manager / Kennedy Space Center
 - Experience from Expendable Launch Vehicles, Space Shuttle, a multi-year sentence in financial management, computer networks and data systems, engineering environments, contracts, group management and Modeling and Simulation for the Constellation Program.
 - Now leading Kennedy Simulation and IT Research management while building simulators and game based tools for NASA Exploration efforts.

