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Abstract

The prediction of anomalies or adverse events is a challenging task, and
there are a variety of methods which can be used to address the problem.
In this paper, we introduce a generic framework developed in MATLABr

called ACCEPT (Adverse Condition and Critical Event Prediction Tool-
box). ACCEPT is an architectural framework designed to compare and
contrast the performance of a variety of machine learning and early warn-
ing algorithms, and tests the capability of these algorithms to robustly
predict the onset of adverse events in any time-series data generating
systems or processes.
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Acronyms

ACCEPT Adverse Condition and Critical Event Prediction Toolbox
MSET Multivariate State Estimation Technique
SVR Support Vector Regression
ELM Extreme Learning Machine
BNN Bagged Neural Network
k-NN k-Nearest Neighbor
NMSE Normalized Mean Squared Error
RMS Root Mean Square
KS Kolmogorov-Smirnov
PCA Principal Components Analysis
DBM Deep Boltzmann Machine
DBN Deep Belief Network
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory Network
LDS Linear Dynamical System
EM Expectation-Maximization
N4SID Numerical Algorithms for Subspace State-Space System Identification
AIC Akaike Information Criterion
ROC Receiver Operating Characteristic
AUC Area Under the ROC Curve
SPRT Sequential Probability Ratio Test

Nomenclature

k Time index
T Total number of time indices spanned by data
d Prediction horizon
L Critical threshold
uk Feature vector
ui Support vector
p Number of features/parameters
zk Target parameter
vk Measurement Noise
f(·) Support Vector Regression (SVR) nonlinear mapping function
m Number of support vectors
αi, α̂i Support vector weighting coefficients
ρ SVR bias offset parameter
C SVR user-specified regularization parameter
η SVR regularization parameter
φ(·) SVR image transformation
〈·, ·〉 Kernel function
σ Kernel width
q SVR primal optimization variable
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ξ+
k , ξ

−
k SVR slack variables

yk SVR residual and Linear Dynamical System (LDS) output
ŷk+i|k LDS output value prediction i time steps into the future
ẑk Target parameter estimate
wk Process/input noise
xk State vector
A LDS system matrix
C LDS output matrix
Q Process noise covariance matrix
R Measurement noise variance
x̂k|k State estimate
n State size
‖ · ‖ Euclidean norm
� Positive semi-definite
I Universe of all possible events
(·)′ Not (Set complement)

(·)> Transpose
P (·) Probability
E[·] Expected Value
N (µ,Σ) Gaussian distribution with mean µ and covariance Σ
N (x;µ,Σ) Gaussian distribution evaluated at x with mean µ and covariance Σ

1 Introduction

One of the objectives we planned to achieve in the process of developing
a framework to test adverse event prediction algorithms was to allow for
the prediction to occur within a reasonable time horizon of an actual
adverse event, with low false positive and missed detection rates. Thus,
we introduce a generic framework developed in MATLABr, ACCEPT
(Adverse Condition and Critical Event Prediction Toolbox), which is
explicitly geared to providing a comparative performance assessment of
results from the application of a variety of algorithmic methods.

An initial step towards the goal of developing a new, state-of-the-art
forecasting technology based upon this framework was presented in [1].
It is thus our aim in this paper to document continued steps towards
achieving these goals, but with a broader focus on performance assess-
ment. Here we use a variety of regression techniques in the context of a
rigorous, formal analysis that involves cross validation. The regression
techniques are used within an architectural framework to be described
shortly, which act as a preprocessor for transformation of data into a
form that is amenable to modeling for use in the context of applying
hypothesis tests to the distribution formed by the resulting residual.

The rest of this paper will be organized as follows. Sec. 2 details
ACCEPT’s overall architectural framework. In Sec. 3 we review the ar-
chitecture in the context of signal flow. In Sec. 4 we provide a discussion
of optimization methods used for cross-validation and a detailed back-
ground of all selected regression methods. In Sec. 5, we discuss optimiza-
tion for all detection methods through validation for the best possible
performance in generation of the results. We then offer concluding re-
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marks in Sec. 6. Details on various supplementary toolbox requirements
are provided in Appendices A and B. Configuration and set-up of AC-
CEPT are provided in Appendix C. A developer’s guide is provided in
Appendix D. Finally, demonstration of ACCEPT on a sample problem
is provided in Appendix E.

2 The Architectural Framework for ACCEPT

The architecture we use is patterned after MSET (Multivariate State
Estimation Technique), as documented in [2]. MSET represents the cur-
rent state-of-the-art in prediction technologies and is used ubiquitously
in nuclear applications, as well as aviation and space applications [3].
The architecture of ACCEPT has the same basic structure as MSET (as
shown in Fig. 1), but involves both a regression step and a detection step
(shown in the dotted boxes, respectively). The regression step is typi-
cally implemented with the aid of a machine learning technique and the
detection step tests a set of fixed hypotheses relating to the statistical
properties of the resulting residual.

ACCEPT tests theoretical assumptions that differ from those made
in MSET by appealing to the use of various detection and regression
techniques used to parameterize the underlying models shown in the
framework architecture (see Fig. 1). MSET is restricted to the use of a
set of proprietary nonlinear kernel-based regression operators that yield
specific properties necessary for the statistical hypothesis tests governing
early detection. As such, for MSET, detection or classification which
appeals to hypothesis testing methods is not model-based, nor does it
rely on the use of machine learning techniques. In contrast, our aim is
to consider detection techniques less restrictive in their assumptions.

As shown in Fig. 1, all data will be preprocessed and filtered using
z-score normalization and feature selection, respectively. We employ to
the idea of “boosting” in order to allow for the use of the residual gener-
ated from the base model by the Kalman filter. In Fig. 1, the regression
toolbox shown within the dotted box on the left contains many alterna-
tive methods from which to generate the base model, which processes a
select number of parameters (the “multivariate time series”) and maps
them to a distinct target parameter. This static nonlinear mapping char-
acterizes the basic relationship between the features or input variables
and the target parameter or response variable.

It is important to note that an unsupervised machine learning ap-
proach is employed for this architecture, meaning that no labeled data
is used to supervise the process of model learning. As such, all training
data associated with the regression step is by definition nominal data.
Anomalous data is reserved solely for validation and testing purposes,
and does not influence the model characterized by the regression step
described above. In this way, two distinct classes of machine learning
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algorithms, regression and classification, are employed within ACCEPT.
Classification methods based upon hypothesis tests are used to deter-
mine if any novel, anomalous data is out of family with respect to the
regression model characterizing the nominal training data.

2.1 Step 1: Regression Toolbox

Figure 1: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox)

The residual output from the regression toolbox quantifies the dif-
ference between the actual value of the target parameter and the value
predicted by the base model1. The regression techniques are applied
in the context of a rigorous, formal analysis that involves cross valida-
tion for an objective function that represents regression performance as
quantified by the NMSE (Normalized Mean Squared Error) of resulting
residuals. They also act as a preprocessor for transformation of data
into a form that is amenable to modeling in the context of applying
hypothesis tests to the distribution formed by the resulting residual.

All detection methods will conform to a rigorous process that is based
upon examples of the candidate adverse event contained in validation
datasets. This is followed by alarm system design and final testing with

1This mapping should have a functional basis specific to the adverse event scenario
defined within the context of a particular application, for which any reasonably robust
regression approach can be used.
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a hold out data set, which in theory should be drawn from the same
distribution as the validation data.

A single target parameter that acts as a global health indicator for a
subject system or process rarely exists in reality. In fact, there may be
multiple such indicators for each adverse event or anomalous operation
that is a candidate for prediction. Thus, we may train as many regressors
as there are available to characterize target parameters. It is equally
important to ensure that the regressors are adequate predictors of the
target parameters through a rigorous feature selection process that is
based upon assessing the strength of correlations between these sets of
parameters.

2.2 Step 2: Detection Toolbox

The dotted box on the right of Fig. 1 represents the detection portion of
the architecture, which tests the residuals that are produced from Step 1.
The residual may be distributed in such a way that is amenable to mod-
eling as a Gaussian distribution. It can be used as the basis for learning a
linear dynamical system, which is the first block in the detection portion
of the architecture (labeled as “Kalman filter”), and needed for all but
one of the prediction methods to be tested. The linear dynamical system
implicitly characterizes the unmodeled dynamics unable to be captured
by the regression method, which can subsequently be used for the design
of an alarm system based upon different statistical hypotheses.

The optimal alarm system tests the level-crossing prediction hypoth-
esis, i.e. extreme values associated with the tails of the distribution
formed by the residual. The predictive alarm system also relies on using
the model provided by the linear dynamical system. The other alarm
systems requiring the linear dynamical system belong to the class of de-
tection methods that test shifts in the first and second moments of the
distribution formed by the residual. An empirical variant of the only
other alarm system (the “redline alarm system”) does not require the
linear dynamical system, however, there is a model-based variant which
does rely on it. Both variants are illustrated by two inputs into the block.
Also, two equivalent variants are available for the optimal and predictive
methods, although only one arrow is shown in the diagram for clarity.

3 Signal Flow

Fig. 1 is a functional representation of the architecture, meaning that the
arrows in the diagram represent batch data transfer, rather than signal
flow or real-time signal processing. This paradigm is used to emphasize
the fact that learning takes place in two stages, due to the serial nature
of the architecture. The architecture involves two distinct algorithms
which both involve machine learning, and are necessary to fulfill the

6



desired objective of recasting the adverse event prediction problem into
a form whose solution is accessible as a hypothesis-testing problem.

Fig. 2 depicts a signal flow representation of the problem. The linear
dynamical system shown in the dotted portion of the diagram can loosely
be thought of as an alternate representation of the regression block.
More explicitly, it is trained to mimic the statistical properties of the
regression residual (the unmodeled dynamics), such that yk = zk − ẑk,
where yk represents both the residual and the output at time k, and zk
represents a target parameter that characterizes a specifically designated
adverse event or anomaly. Note that the regression block takes as input
a multivariate vector of features, uk, and outputs an estimate of this
target parameter, ẑk. Note also that the Kalman filter block takes as
input the input or process noise, wk, and measurement noise, vk.

Figure 2: Signal Flow Diagram

The Kalman filter block accepts input from the regression block as yk,
processes these residuals as observables, and computes state estimates,
x̂k|k, based upon these observations during the correction step. These
state estimates can then be used to form forward projected residual value
predictions, ŷk+i|k, spanning the prediction horizon, ∀i ∈ {1, . . . , d}.
These are used either by the predictive or optimal level-crossing alarm
system to initiate an alarm to forewarn of a level-crossing associated
with the threshold value L. The alarm design parameters for both the
predictive and optimal level-crossing alarm systems are the threshold LA
and border probability Pb, respectively. The redline alarm system can
also be designed with the threshold LA as an early warning for the more
consequential level-crossing event associated with the threshold, L. Both
alarm system design parameters are represented with dotted lines in Fig.
2. More detail on these detection methods will be provided in Sec. 5.
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The Kalman filter block also generates an innovation signal, εk, which
represents a secondary residual in the context of “boosting” mentioned
previously. Due to the spectral properties of this innovation signal (i.e.
whiteness), it can also be used for testing various Sequential Probability
Ratio Test (SPRT) hypotheses. This class of prediction methods tests
shifts in the first and second moments of the distribution formed by the
innovation signal, however it requires the residual to exhibit the specific
properties of whiteness and Gaussianity.

The SPRT tests, predictive, and optimal level-crossing event predic-
tors, as well as the Kalman filter and Kalnab predictor all fundamentally
use the LDS parameters, θ, which have been learned during the train-
ing process. The only detection method shown in Fig. 2 not using the
linear dynamical system parameters is an empirical variant of the red-
line alarm system, which uses only the current residual value, yk, and
relies on use of the alarm design threshold LA, similar to the one used
for the predictive alarm system. Note that there are two variants for
the redline, predictive, and optimal alarm systems, and the distinctions
between these two will be provided in further detail in Sec. 5.

4 Regression Toolbox

Recall that there are a variety of regression techniques to be tested in
the context of a rigorous, formal analysis that uses nominal training data
which is partitioned into multiple folds for the purposes of f -fold cross
validation. As previously mentioned, the NMSE will act as the objective
function used for cross validation. It is a traditional metric for assessing
the goodness-of-fit of a regression algorithm via the residual and is often
a better choice than using the RMS (root-mean square) due to the ability
to compare regression algorithms more equitably.

The ability to capture system dynamics is governed by the NMSE
metric. For infinitesimally small NSME values, the spectral character-
istics of the resulting residual should be white, and all of the dynam-
ics embedded in the residual can be explained by the regression model.
Thus, in a sense model fidelity characterizes the ability of the regression
algorithm to learn all system dynamics (both linear and nonlinear). All
prediction methods with the exception of the standard exceedance pre-
diction method attempt to exploit the fact that the regression method
will most likely not be able to explain all of the dynamics embedded in
the residual. The residual itself will most likely contain linear dynamics
that are driven by Gaussian noise. However it is still possible that the
unexplained dynamics may contain nonlinearities which are unable to be
captured, which is one limitation of assuming linear dynamics driven by
Gaussian noise.

The NMSE governs model fidelity, but it has also been empirically ob-
served that it is also heavily correlated to a metric called the Kolmogorov-
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Smirnov (KS) statistic. The KS statistic is fundamentally a measure of
Gaussianity of a distribution, by finding the maximum difference between
an empirical cumulative distribution function based upon the residual
and the normal distribution with mean and standard deviation given by
the same residual data. This empirical observation will be studied in
a more theoretically rigorous manner in a subsequent paper. Since the
KS statistic governs a property assumed by almost all of the prediction
methods to be tested, it is very convenient that it is very well correlated
to the NMSE metric.

Formally, the optimization used for regression can be posed as shown
in Eqn. 1, with the NMSE metric as the objective. The optimization
problem shown here is essentially the result of a f -fold cross validation.
Note that the index i is used for an individual validation time-series
data record, where the index k is the time index, as previously refer-
enced. A standard grid search is used to optimize the NMSE over the
hyperparameter specific to the regression method being evaluated.

minimize J =

∑f
i=1

∑Ti
k=1 y

2
i,k(λ)∑f

i=1

∑Ti
k=1 z̃i,k

(1)

subject to

λ ∈ S

where

f = number of folds used for cross-validation

(number of records in validation dataset)

Ti = number of time points in ith time-series data record

yi,k(λ) = zi,k − ẑi,k(λ)

z̃i,k = zi,k − z̄

z̄ =

∑f
i=1

∑Ti
k=1 zi,k∑f

i=1 Ti

ŷi,k(λ) = f(ui,k, λ)

λ = Regression-specific hyperparameter

S = Regression-specific hyperparameter tuning domain

A review of all the regression methods to be used are provided in the
list below, and is associated with the highlighted block of the architecture
previously shown as Fig. 1, shown again below as Fig. 3.

• Support vector regression (SVR, the technique adopted in [1] in-
troduced by [4])

• k-nearest neighbor regression (k-NN)
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• `2 regularized linear regression (LR)

• Bagged neural nets (BNN)

• Extreme Learning Machines (ELM)

• RANdom SAmple Consensus (RANSAC)

Figure 3: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox), Regression Block Highlighted

4.1 Support Vector Regression (SVR)

In this subsection, we provide a brief description of the η−support vector
regression algorithm that is used for target prediction as documented
in [4]. Recall that MSET contains a proprietary set of kernel-based
nonlinear operators designed to yield residuals with white noise spectral
characteristics. However, support vector regression offers an improved
ability to reduce target value prediction error compared to MSET. It
also offers better built-in controls for complexity and numerical stability.
This was found in a nuclear application studied in [5]. Given a finite set
of multivariate observations, it is possible to reconstruct an input and

target set that takes the form as shown in Eqn. 2, where U
4
= [u0 . . .uT ]>

is an input data matrix of size (T × p) and the corresponding output is

denoted by z
4
= [z0 . . . zT ]>, termed as the target vector. Thus, there are
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p parameters and T observations. Once the η−support vector regression
algorithm is appropriately trained, it is possible to estimate a target
function f(uk) that has at the most a deviation of η from the actual
observed targets {zk}Tk=0 for all the input data {uk ∈ Rp}Tk=0.

z = f(U) (2)

The target function f(·) is basically a linear combination of weighted
similarities between some chosen training points and the test points with
an additional offset which is often known as bias, ρ. The chosen train-
ing instances with m non-zero weights are called support vectors (SVs,
ui) and they are the representatives of the model. This implies that,
given the model, any training points apart from the SVs are of no im-
portance and can be thrown out without changing the performance of
the algorithm. The target function is shown in Eqn. 3.

f(uk) =
m∑
i=1

(αi − α̂i) 〈ui,uk〉+ ρ (3)

The support vectors and their corresponding weights, αi and α̂i result
from the solution of a quadratic programming optimization problem in
dual form. The expression of the primal problem is shown in Eqn. 4.
Further details on the cost function and optimization problem can be
found in [4].

minimize P
(
q, C, ξ+

k , ξ
−
k

)
=

1

2
qq> + C

T∑
k=0

(
ξ+
k + ξ−k

)
subject to

(
zk − q>φ(uk)− ρ

)
≤ η + ξ+

k(
zk − q>φ(uk)− ρ

)
≥ η + ξ−k

ξ+
k , ξ

−
k ≥ 0

C > 0 (4)

C and η are user specified regularization and precision parameters
respectively. They are chosen according to the practical guidelines set
forth in [6]. ξ+, ξ− are non-zero slack variables, q is the weight vector
normal to the separating hyperplane, ρ is the offset parameter, φ(uk)
represents the transformed image of uk ∈ Rp in the same Euclidean
space, and k ∈ [0, . . . , T ]. Throughout this research we have used the
Radial Basis Function (RBF) as the mapping function given in Eqn. 5,
where σ represents the hyperparameter of the Gaussian function.

〈ui,uk〉 = exp

(
−1

2

‖ uk − ui ‖2

σ2

)
(5)
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The parameter σ, also known as the “kernel width” parameter, con-
trols the overall scale in horizontal variations and acts as the hyperpa-
rameter associated with the optimization problem posed in Eqn. 1. The
implementation of SVR in ACCEPT is based on the libsvm package [7]
and the default settings for gaussian kernel parameter is used. The cost
parameter C is considered the only hyper-parameter for SVR, and is
optimized based on cross-validation.

4.2 k-nearest neighbor regression (k-NN)

As described in [8], k-NN, or k-nearest neighbor regression is most useful
for mapping data that is often represented in high-dimensional spaces to
lower dimensional manifolds. As such, it is often used for contrast to
linear dimensionality reduction techniques such as PCA (Principle Com-
ponents Analysis). k-NN regression assumes that points in the data
space that are located in close proximity to each other have similar out-
put values. As such, for novel data presented to the regression algorithm,
the output values must be located in close proximity to those k near-
est points having similar patterns in higher dimensional space, and so
the hyperparameter used for k-NN regression is the number of nearest
neighbors. More details on this regression method can be found in [9].

4.3 `2 regularized linear ridge regression (LR)

One of the regression methods in ACCEPT’s regression toolbox is linear
ridge regression. Tikhonov regularization is used, and the associated
regularization coefficient is used as a hyperparameter to optimize the
NMSE as a function of how well conditioned the solution should be.
A well-posed or well-conditioned problem is one that yields a solution
that meets the criteria of existence, uniqueness, and robustness (e.g.
low sensitivity to natural variation in the data). The linear regression
techniques to be evaluated are linear in the parameters to be estimated
only, however basis functions for the regressors themselves to be studied
will involve both affine and quadratic regressors in the same vein as was
presented in [8], [10], and [11]. Let ui represent a vector of regressors
for observation i, then scalar elements of the vector can represent linear
regressors, ui, and/or quadratic regressors, u2

i . Note that the use of
quadratic regressors include the u2

i regressors as well as the product of
all
(
N
2

)
quadratic pairs of parameters, ui and uj .

4.4 Bagged neural nets (BNN)

In this study we only consider traditional neural networks with a sin-
gle layer perceptron as distinct from “deep learning” techniques which
exploit the use of multiple hidden layers2. In this work, a single layer

2In future releases of our regression toolbox within ACCEPT, many variants of deep
learning will be considered, including e.g. DBMs (Deep Boltzmann Machines), DBNs
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perceptron refers to a network architecture that contains a single hid-
den layer in addition to separate input and output layers, similar to the
structure illustrated in the subsequent subsection (cf. Fig. 4). Funda-
mentally, neural networks offer the ability to capture nonlinearities in
data by learning weights associated with nodes in a network that are
linearly combined and ultimately transformed through a nonlinear map-
ping.

More details on neural networks and the “bagging” process which
aims to aggregate ensembles of neural networks trained on datasets gen-
erated from the same source can be found in other work [12]. “Bagging,”
or bootstrap aggregation, is meant to address deficiencies in stability
and accuracy of the neural net performance and also reduces variance
to help prevent overfitting. However, due to the lack of complexity for
this particular dataset, a single base model was used and no bagging was
necessary. The hyperparameter used for neural nets (NN) regression is
the number of hidden neurons in a single layer perceptron.

4.5 Extreme Learning Machines (ELM)

Extreme Learning Machines (ELMs) are emerging as an alternate learn-
ing paradigm for multi-class classification and regression problems [13,
14], and have outperformed some state of the art algorithms such as
backpropagation neural nets, support vector machines, etc. ELMs have
a basic architecture similar to that of a single layer feedforward neural
network, but the input layer parameters are assigned randomly (sampled
from any continuous random distribution). In such a setup, the output
layer parameters are the only unknowns of the model, and can be ana-
lytically determined using a linear least squares approach (See Fig. 4),
making ELM training extremely fast. Some of the attractive features of
ELM include the universal approximation capability, better generaliza-
tion, the convex optimization problem of ELM resulting in the smallest
training error without getting trapped in local minima, and availability
of a closed form solution eliminating iterative training [13].

Consider the following data set

{(x1, y1), ..., (xN , yN )} ∈
(
X ,Y

)
, (6)

where N denotes the number of training samples, X denotes the space
of the input features and Y denotes labels whose nature differentiate
the learning problem in hand. For instance, if Y takes integer values
{1,2,3,..} then the problem is referred to as classification and if Y takes
real values, it becomes a regression problem. ELMs are well suited for
solving both regression and classification problems and training is faster
than state of the art algorithms [14]. ELM has been applied to several

(Deep Belief Networks), DNNs (Deep Neural Networks), CNNs (Convolutional Neural
Networks), RNNs (Recurrent Neural Networks - AR/ARMA-style), and LSTMs (Long
Short Term Memory Network - AR/ARMA-style)
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Figure 4: Extreme learning machine model structure.

benchmark problems [13,14] , system identification [15], diagnostics [16,
17] and control problems [18] with good success. When training data
is available and a model is required to be learned using all the training
data, a batch training approach is adopted which involves solving the
following optimization problem

min
W

{
‖HW − Y ‖2 + λ‖W‖2

}
(7)

φ = HT = ψ(W T
r x(k) + br) ∈ Rnh×1, (8)

where λ represents the regularization coefficient, Y represents the vec-
tor of outputs or targets, ψ represents the hidden layer activation func-
tion (sigmoidal, sinusoidal, radial basis etc [14]) and Wr ∈ Rni×nh ,W ∈
Rnh×yd represents the input and output layer parameters respectively.
Here, ni represents the dimension of inputs x(k), nh represents the num-
ber of hidden neurons of the ELM model, H represents the hidden layer
output matrix and yd represents the dimension of outputs Y . The matrix
Wr consists of randomly assigned elements that maps the input vector
to a high dimensional feature space while br ∈ Rnh is a bias component
assigned in a random manner similar to Wr. The number of hidden neu-
rons determines the expressive power of the transformed feature space.
The elements can be assigned based on any continuous random distribu-
tion [14] and remains fixed during the training process. Hence, training
reduces to a single step calculation given by equation (9). The ELM
decision rule can be expressed as in equation (10) for classification and
equation (11) for regression.

W ∗ =
(
HTH + λI

)−1
HTY (9)
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f(x) = sign
(
W T [ψ(W T

r x+ br)]
)
. (10)

f(x) = W T [ψ(W T
r x+ br)] (11)

Since training involves a linear least squares solution with a convex
objective function, the solution obtained by ELM is extremely fast and is
a global optimum for the chosen nh, Wr and br. The number of hidden
neurons nh is considered the only hyper-parameter that is optimized
based on cross-validation. The other parameters of ELM such as the
regression coefficient λ, random parametersWr and br are fixed to default
values. The user is free to modify these values to adapt to the data in
ACCEPT.

4.6 RANdom SAmple Consensus (RANSAC)

Typical regression methods are based on assumptions which meet with
success if they hold true. However, if these fundamental assumptions
no longer hold, they can lead to misleading results as a consequence of
the fragility of a particular regression method. RANSAC is a robust
regression method that is not excessively affected when gross errors and
outliers exist in the data [19]. These outliers may be introduced as a
result of incorrect measurements or excessive noise. These errors should
be rejected since they do not fit the model and can cause improper
parameter estimation, and is a technique that the RANSAC regression
algorithm employs. The RANSAC algorithm is iterative and comprised
of two main steps which are repeated until a sufficient model is generated
[19].

1. Create a Hypothesis

RANSAC randomly selects N data points from a uniform distri-
bution to instantiate a subset, S1, from the input data set U , de-
fined as U = {u1, . . . ,uN}. Elements of the the input vector uk
are defined as ujk, and each individual element is distributed as

ujk ∼ U[0, 1]. Contrary to orthodox sampling methods, RANSAC
uses the smallest subset of data (Minimal Sample Set (MSS)) pos-
sible to construct a model M1 by calculating the model parameters
using the subset S1. For example, using a simple deterministic lin-
ear model representation, ujk = ax1 + bx2 + c, M1 = [a, b, c]T and
N = 3 since three data points are required to uniquely determine
the parameters of a linear model [20].

2. Evaluate the Hypothesis

A point is considered an inlier if it agrees with the hypothetical
model within an error threshold, δ. Using more data points than
the MSS for this model would decrease the probability that the
chosen points are all inliers. A new subset(consensus set), S∗1 , is
produced by computing all the points that agree with the current
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model, M1. RANSAC now assess the value of the model created
on the complete data set using a cost function. RANSAC seeks to
minimize the cost function [20] [21]:

CΛ(U ;θ) =
N∑
i=1

ρ(ui,Λ(θ)) (12)

using

ρ(u,Λ(θ)) =

{
0 |z̃Λ(u,θ)| ≤ δ
constant otherwise

(13)

where

Λ = the model space

N = number of data points

U = input data set {u1, . . . ,uN}
θ = ({u1, . . . ,uh}), estimated parameter vector

h ≥ the cardinality of the MSS

z̃Λ(u, θ) = the error associated with a data point u

If the cost is below a predefined value, δ, i.e., the current model
comprises a sufficient number of inliers, then a new model M∗1 is
generated using the new subset, S∗1 . If the consensus set has the
lowest cost, CΛ(U ;θ), it is used as the leading candidate for this
iteration of the algorithm. This process is repeated for a certain
number of iterations, I. Given that ϕ is the probability that the
algorithm will fail at least once, ω is the probability a point is an
inlier and M is the number of points required to generate hypoth-
esis [20] [19]:

I =
logϕ

log(1− ωM )
(14)

After I iterations, the model with the lowest cost out of all leading
candidates is selected as the final model. The hyperparameter used
for RANSAC is the error threshold, δ.

5 Detection Toolbox

As distinct from regression, all detection methods will conform to a rig-
orous validation process that involve both nominal training data and
validation data containing examples of the adverse event in question.
The detection methods can be split into the three types listed below.
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1. Methods that use a Monte-Carlo style implementation to empiri-
cally generate relevant alarm system statistics

2. Methods that rely on a model-based approach to generate these
same performance metrics

3. A method that uses an optimal stopping rule based upon the test
of hypotheses associated with abrupt changes in residuals of the
modeled process output

For the detection methods that fall into one of the first two cate-
gories listed above, ROC curve analysis will be used to enable the de-
sign of tradeoffs between false alarm and missed detection probabilities.
A user-specified condition of acceptance based upon missed detection
and/or false alarm rates will be established, and it will be used to de-
sign an alarm system based on the training or validation ROC curve.
The resulting threshold will be used to implement the detection method
using the test data, illustrating all observed false positives and missed
detections. These methods are based upon the use of a decision rule
or hypothesis test which involves level-crossing behavior of the modeled
process (see Sec. 5.3 for further detail). Strict definitions for the detec-
tion performance metrics are provided in the list below. These definitions
may vary slightly from standard definitions that are provided in the con-
text of single time points alone. The definitions provided are based upon
ground truth that spans a prediction horizon with multiple time points.

False Alarm An alarm is triggered at a time point that does not con-
tain an example of a confirmed anomalous event in at least one
time point in the next d time steps, in a manner similar to the
level-crossing definition provided in Sec. 5.3.

Missed Detection No alarm is triggered at a time point where an ex-
ample of a confirmed anomalous event exists in at least one time
point in the next d time steps, in a manner similar to the level-
crossing definition provided in Sec. 5.3.

For the detection methods that involve level-crossing prediction of
the modeled process, it is important to select the threshold associated
with those level-crossings according to some quantifiable metric. For-
mulating an optimization problem emerges as a natural way to address
the need to “tune” the threshold associated with the level-crossing event
to the adverse events found in the validation data. Furthermore, both
the prediction horizon associated with the level-crossing event and the
dimension of the state-space, where applicable, are parameterized as an
implicit function of the objective function associated with this optimiza-
tion problem. In that way, design of the alarm system can be based
upon LDS model parameters derived from training data and the level-
crossings that provide the best representation of violations. Alternately,

17



these level-crossings be identified in advance, and act as adverse events
to be derived from validation data.

A formal representation of the objective function is provided in Eqn.
15, which is based upon the existence or absence of anomalous events,
and accompanying alarms associated with the level-crossing threshold
L, both encoded as binary vectors for all records in the entire validation
data set.

Note that the objective function in Eqn. 15 involves the AUC and is
optimized over a countably finite two dimensional grid n, d ∈ Z+. The
AUC is based upon using validation data as the ground truth and values
of |yk| as a source of candidate thresholds to yield L. It is also important
to note that the AUC optimization procedure is only the first step in the
threshold selection process, and involves only finding the state dimension
and prediction horizon that yield the highest AUC value. Ultimately the
goal is to select a threshold which yields the most accurate representation
of the ground truth. Thus, the second step is to use the respective ROC
curve as the basis of this selection process. There are many different
criteria which can be used in the context of ROC curve analysis, however
we employ the EER (equal error rate, where Pfa = Pmd) as the criterion
for acceptance.

maximize AUC
subject to

n, d ∈ Z+ ≡ [1, 2, . . .]
(15)

A summary of all the prediction methods to be discussed in this
section are provided in the list below, and can be referenced in the high-
lighted block of Fig. 5.

• Standard exceedance

• Redline alarm system

• Predictive alarm system (Monte Carlo simulation)

• Predictive alarm system (Numerical integration)

• Optimal alarm system (Monte Carlo simulation)

• Optimal alarm system (Numerical integration)

• SPRT tests

5.1 Standard Exceedance and Predictive Alarm System

The objective of the simplest standard exceedance detection method
is to obtain a threshold, LA from alarm system design based upon a
Monte-Carlo style implementation to empirically generate relevant alarm
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Figure 5: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox), Detection Block Highlighted

system statistics (first from the preceding categorical list) to use for final
testing. The standard exceedance method is also the only detection
method not using LDS parameters, but shares a similar alarm design
threshold, LA, with the predictive alarm system that does require them.
As such, the predictive alarm system requires the optimization problem
posed in Eqn. 15. Both the standard exceedance and predictive detection
methods also share a common alarm system design philosophy. Their
design is based upon a Monte-Carlo simulation to empirically generate
relevant alarm system statistics from realizations that use real validation
in the attempt to define an envelope, [−LA, LA], outside of which an
alarm will be triggered to forewarn of the impending level-crossing event.
Formally, the predictive alarm system is given by {|ŷk+d|k| > LA}, such
that it is based upon a predicted future process value, and the standard
exceedance method is given by |yk| > LA.

A “redline” alarm system can also be designed using the same alarm
rule: |yk| > LA. However, the distinction between the redline alarm
system and the standard exceedance method is that the former relies
on sufficient statistics used to estimate the LDS parameters that come
strictly from training data. In this case, an alarm design threshold, LA, is
used as a predictor of a second more critical threshold, L. Here, L is the
same threshold tuned to the observed adverse event via the optimization
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Figure 6: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox), Redline and Predictive Block High-
lighted

problem shown in Eqn. 153. Similarly, the predictive alarm system can
also be based on sufficient statistics used to estimate the LDS parameters
that come strictly from training data. More detail on both these redline
and predictive alarm system variants is provided in [22].

5.2 Linear Dynamical System

With one exception all detection methods in the detection toolbox re-
quire the use of the linear dynamical system. Linear dynamical systems
evolve according to Eqns. 16 - 18, demonstrating propagation of the
state, xk ∈ Rn which is corrupted by process noise wk ∈ Rn. For conve-
nience of presentation, it will be assumed that propagation of all state
covariance matrices can reasonably well be approximated by their steady-
state counterparts. This approximation, while it introduces error with
regards to the probability of a level-crossing event at a specific point in
time, is ostensibly negligible and will provide for a great computational
advantage in the design of an alarm system. Instead of designing an
alarm system for each time step, a single alarm system can be designed
for all time steps. The approximation is based upon the limiting statis-

3Note that the standard exceedance method uses LA for tuning rather than L. For
the redline alarm system, LA is used solely for alarm system design.
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Figure 7: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox), Kalman Filter Block Highlighted

tics that are reached at steady-state, which greatly reduces the compu-
tational burden, as previously identified [22]. As such, the solution of
the steady-state Lyapunov function, Pxx, suffices for evolution of the
unconditional state covariance matrix. The output, yk ∈ R is univariate,
and is corrupted by measurement noise vk ∈ R.

xk+1 = Axk + wk (16)

yk = Cxk + vk (17)

Pxx = APxxA> + Q (18)

where

wk ∼ N (0,Q), Q � 0

vk ∼ N (0, R), R > 0

Implementation of the optimal alarm system hinges on use of stan-
dard Kalman filter and predictor equations which are omitted for the
sake of brevity. However it is important to introduce relevant predicted
future process output values, covariances and cross-covariances, given
below as Eqns. 19- 21, respectively. These equations rely on Kalman
filter formalisms, and will be used in subsequent formulae. Px̂x̂ is the
solution to the discrete algebraic Riccati equation (Eqn. 22), and P̄x̂x̂ is
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the steady-state a posteriori covariance matrix given in Eqn. 23, which
both rely on the Kalman gain defined in Eqn. 24. The approximations
shown in Eqns. 20 and 21 will provide for a great computational ad-
vantage in design of the optimal alarm system and its corresponding
approximations for reasons stated previously. The assumption of sta-
tionarity is also required for the design of an optimal alarm system using
this modeling paradigm (cf. Theorem from [22]), and holds here as well.

ŷk+j|k = CAjx̂k+j|k (19)

Pk+j|k ≈ Aj(P̄x̂x̂ −Pxx)(A>)j + Pxx (20)

Pk+i,k+j|k ≈ Aj(P̄x̂x̂ −Pxx)(A>)i + Aj−iPxx (21)

Px̂x̂ = A (Px̂x̂ − FxxCPx̂x̂) A> + Q (22)

P̄x̂x̂
4
= Px̂x̂ − FxxCPx̂x̂ (23)

Fxx
4
= Px̂x̂C>(CPx̂x̂C> +R)−1 (24)

The parameters to be learned are specified in Eqn. 25, as the param-
eter θ.

θ = (µx,P0,A,C,Q, R) (25)

where

Pk = E[(xk − µx)(xk − µx)>]

There are three important considerations in learning θ. The first
consideration relates to the method used for learning these parameters.
One such data-driven approach incorporates the use of the Expectation-
Maximization (EM) algorithm, which is an iterative maximum likelihood
estimation-based approach that is ultimately an alternating nonlinear
optimization problem. As such, it is possible to arrive at a solution
which is only a local optimum, and there may be better solutions based
upon the location of the initial parameters.

In previous work [23], the EM algorithm was used to learn the model
parameters using a variety of initialization techniques. Furthermore, the
fidelity of resulting models was assessed via a derivative of the Akaike
Information Criteria (AIC), such as one presented by Bengtsson and Ca-
vanaugh [24], in addition to being used for model order selection.4 In
this paper we consider alternative approaches to initialization of the EM
algorithm, based in part by a method known as Numerical Algorithms
for Subspace State-Space System Identification (N4SID), documented in
Overschee and De Moor [26–28] and Favoreel et al. [29]. However, us-
ing this approach for initialization does not guarantee a globally optimal

4Note that here, the model order selection problem is handled entirely by the
detection algorithm optimization problem cited in [25].
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solution. It is often suggested to use “random restarts” as a strategy
for overcoming this limitation to find a near global optimum. Further-
more, any of the methods listed as candidates for global optimization
in [25] would work just as well to overcome this limitation. These will
be studied in earnest in future papers. N4SID will be the approach used
for initialization here, as it is often advocated to avoid undesirable local
minima [30], even though there is no guarantee of achieving a globally
optimal solution.

The second consideration relates to the enforcement of constraints
for certain parameters in θ. For any useful linear dynamical system
model, an important constraint on system stability is required, which is
not guaranteed by any of the methods described in this section. Thus,
the M-step of the EM algorithm must include a constraint such that the
eigenvalues of A fall within the open unit disk, which can also be repre-
sented as a constraint on the spectral radius, such that ρ(A) < 1. Recent
work by Boots [31] will allow for enforcement of stability throughout the
entire identification and learning procedure in the context of the EM
algorithm, as originally suggested by Siddiqi et al. [32]. The constraint
is enforced by the use of cvx [33], [34], a package for specifying and solv-
ing convex programs, in the context of solving a quadratic optimization
problem as posed in [31]. In some cases the data used for initialization
of the EM algorithm may also yield an unstable linear dynamical sys-
tem model such that ρ(A) < 1. As such, using N4SID for initialization
will fail, and as an alternative the method by Siddiqi et al. [32] will be
implemented.

In a practical application on learning linear dynamical system pa-
rameters by Derek et al. [35] it was found that numerical instabilities
cause convergence problems when obtaining M-step estimates for all co-
variance matrices θcv = (P0,Q, R). This can in part be assisted by

enforcing symmetry with the approximation X ≈ X+X>

2 . However, in
addition to enforcement of symmetry and stability constraints, numeri-
cal issues can also be addressed by enforcing constraints on the positive
definiteness of these matrices (θcv), which is also a requirement for im-
portant control theoretic properties to hold true. This is easily achieved
by using the following generic convex optimization formulation in Eqn.
26 below, also using cvx. The constraint is enforced only at the final step
of the EM algorithm, following the recommendation of [31], which cited
no observed additional increase in model fidelity or accuracy by perform-
ing this often computationally intensive computation at each iteration
of the EM algorithm.

minimize tr(SX)− log det(X) (26)

X � O

where for P0
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X = P−1
0

S = P0|T

and for R

X = R−1

S = S =
Γy − ΓxyΓ−1

xxΓ>xy
T + 1

and finally for Q−1

X = Q−1

S =
Γxx −

[(
P0|T + x̂k|T x̂>k|T

)
+ Γxx′Γ̂xxΓ>xx′

]
T

where

Γy
4
=

T∑
k=0

yky
>
k

Γxy
4
=

T∑
k=0

ykx̂
>
k|T

Γxx
4
=

T∑
k=0

Pk|T + x̂k|T x̂>k|T

and

Γxx′
4
=

T−1∑
k=0

Pk+1,k|T + x̂k+1|T x̂>k|T

Γ̂xx
4
= Γ−1

xx + Γ−1
xx(PT |T + x̂T |T x̂>T |T )Γ−1

xx

where

x̂k|T
4
= E[xk|y0, . . . , yT ]

Pk|T = E[(xk − µx)(xk − µx)>|y0, . . . , yT ]

The third consideration relates to scalability and computational com-
plexity of the E-step within the EM algorithm. Machine learning tech-
niques used for adverse event prediction should be highly scalable and
capable of supporting a fleetwide analysis for future deployment. This
is important when considering the vast quantities of fleet data that can
be used to train a linear dynamical system model. However, it is equally
important when training a model based upon a smaller representative
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sample from the fleet. Both sample sizes are used in the context of the
optimization problem for detection algorithms that rely on this mathe-
matical construct.

The optimization requires the pre-computation of LDS parameters
with as many different model orders, n, d ∈ Z+ ≡ [1, 2, . . .] as are practi-
cal to learn. Practically, constraints are often applied such that n ≤ 10.
The optimization problem (cf [25]) can then be performed without hav-
ing to learn LDS parameters redundantly, since many iterations are of-
ten required to arrive at a near global optimum as a function of model
order in addition to other relevant tuning parameters, as previously sug-
gested.5 However, finding LDS parameters for model orders ranging from
n ∈ [2, . . . , 10] is still a computationally burdensome task, and as such
complexity is important here as well.

Martens [36] developed a novel algorithm to specifically address this
issue, by making approximations based upon rigorous statistical and con-
trol theoretic principles. These approximations are enabled in part by a
set of recursions established for the aggregate sufficient statistics that are
used as part of the M-step in the EM algorithm. Per iteration compu-
tational complexity is consequently reduced from O(n3T ) to O(n3klim),
where klim � T and klim is a user selected value. This provides an
extremely valuable tool in surmounting an otherwise intractable com-
putational bottleneck for very large datasets, and where applicable the
approach can be used for this study.

5.3 Optimal Level-Crossing Prediction

As with the redline and predictive methods, the optimal alarm system
also requires parametric tuning of n, L, and d using Eqn. 15 to find the
best final outcome. The ultimate goal of these optimizations is to close
the gap between the level-crossing prediction hypothesis being tested and
prediction of the actual adverse event. Details on alarm system design
have been given in [22], and are based upon appropriate threshold selec-
tion of Pb, given pre-established user-specified conditions of acceptance
based upon missed detection and/or false alarm rates, and the resulting
ROC curve. Just as with the predictive alarm system, the optimal alarm
system can either use a Monte-Carlo style implementation to empirically
generate relevant alarm system statistics or use the estimated LDS pa-
rameters that come strictly from training data as a function of sufficient
statistics to compute those alarm system statistics numerically without
relying on Monte Carlo simulations.

Recall that the adverse event detection problem can be cast as an
optimal level-crossing prediction problem. In this section, we provide an
overview of some of the fundamental theoretical and implementation de-
tails of this method. A level-crossing event, Ck, is defined with a critical

5See footnote 4.
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Figure 8: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox), Optimal Alarm System Block High-
lighted

level, L, that is assumed to have a fixed, static value. The level defines an
envelope outside of which a critical parameter, yk may experience several
excursions. This parameter can be represented by a dynamic process,
and is modeled as a zero-mean stationary linear dynamic system driven
by Gaussian noise. The theoretical underpinnings of this approach are
based upon this standard representation of the optimal level-crossing
problem.

The essence of the optimal alarm system is derived from the use of the
likelihood ratio resulting in the conditional inequality: P (Ck|y0, . . . , yk) ≥
Pb. This basically says “give alarm when the conditional probability of
the event, Ck, exceeds the level Pb.” Here, Pb represents some optimally
chosen border or threshold probability with respect to a relevant alarm
system metric. Pb is an extremely important parameter, as it effectively
defines the space spanned by the alarm region and therefore controls the
tradeoff between false alarms and missed detections. It is thus chosen
with respect to these metrics and is the key parameter used for design
of an optimal alarm system.

It is necessary to find the alarm regions in order to design the alarm
system. The event, Ck, can be chosen arbitrarily, and is usually defined
with respect to a prediction window, d, as well as the critical threshold,
L. In this paper, the event of interest is shown in Eqn. 27, and repre-
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sents at least one exceedance outside of the threshold envelope specified
by [−L,L] of the process yk within the specified look-ahead prediction
window, d. Mathematically, it can also be represented as the union of
disjoint subevents,

⋃d
j=1 Sk+j , or as the union of overlapping subevents,⋃d

j=1E
′
k+j .

Ek+j represents an exceedance at the jth time step, and Sk+j is a se-
quence of such subevents, of which only the jth represents an exceedance.

Ck
4
=

d⋃
j=1

Sk+j (27)

=
d⋃
j=1

E′k+j (28)

= I \
d⋂
j=1

Ek+j (29)

where

Ek+j
4
= {|yk+j | < L}, ∀j ≥ 1

Sk+j
4
=

{
E′k+j j = 1⋂j−1

i=1 Ek+i, E
′
k+j ∀j > 1

Previous work [22] provides the mathematical underpinnings for the
optimal alarm condition corresponding to the level-crossing event, shown
here as Eqn. 30. Alternatively, the optimal alarm condition derived
in [22] can be expressed in terms of the subevents Ek+j , as shown in
Eqn. 31.

P (Ck|y0, . . . , yk) ≥ Pb (30)

P (
d⋂
j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb (31)

As was discussed in [22], it is not possible to obtain a closed-form rep-
resentation of the parametrization for the optimal alarm region resulting
from Eqn. 30. Monte Carlo simulation is thus often used to generate
alarm system design statistics to be estimated empirically. These es-
timates are generated by using validation data consisting of example
adverse events and the conditional probability expressed in Eqn. 30.
However, alarm system design statistics can also be obtained by com-
puting relevant multivariate normal probabilities which approximate the
optimal alarm region, evaluated by numerically integrating expressions
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as provided in [22]. Although there were two such approximations stud-
ied in [22], using the one requiring the least computational effort was
shown not to lose any appreciable accuracy as compared to the other
approximation. We refer the interested reader to [1], [22], or [37] for
further detail.

5.4 SPRT Hypothesis Tests

Figure 9: Functional Architecture, ACCEPT (Adverse Condition and
Critical Event Prediction Toolbox), SPRT Block Highlighted

As mentioned in Sec. 1, SPRT tests are a central part of MSET, and
have met with quite favorable results. Here we provide more detail on
SPRT, but full details on SPRT can be found in [38]. The SPRT test
statistic is a cumulative log-likelihood ratio between the probability dis-
tributions characterizing anomalous and nominal behavior. The SPRT
test represents the last item in the preceding categorical list, represent-
ing the method using an optimal stopping rule based upon the test of
hypotheses associated with abrupt changes in residuals of the modeled
process output.

There are four distinct alternative hypotheses shown as Eqns. 34-
37, which are tested using the SPRT statistics that are computed with
MSET to provide comprehensive coverage. These statistics test the hy-
potheses for both positive and negative mean drifts, as well as nominal
and inverse variance shifts. The denominator represents the null hypoth-
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esis, H0 shown as Eqn. 33 and characterizes nominal behavior, while the
numerator represents the alternative hypothesis, Hj and characterizes
anomalous behavior.

Sjk = Sjk−1 +
k∑
i=1

log
p(εi|Hj)
p(εi|H0)

, j ∈ {1, . . . , 4} (32)

p(εi|H0) = N (εi; 0,CPx̂x̂C> +R) (33)

p(εi|H1) = N (εi;Mpos,CPx̂x̂C> +R) (34)

p(εi|H2) = N (εi;−Mneg,CPx̂x̂C> +R) (35)

p(εi|H3) = N (εi; 0, Vnom(CPx̂x̂C> +R)) (36)

p(εi|H4) = N
(
εi; 0,

CPx̂x̂C> +R

Vinv

)
(37)

Px̂x̂ ∈ Rn×n(solution to DARE) (38)

A theoretically optimal stopping rule, Sjk > log 1−Pmd
Pfa

provides the

best threshold, given user-specified tolerances as established targets for
both missed detection and false alarm probabilities (as Pmd, Pfa respec-
tively). This class of prediction methods tests shifts in the first and
second moments of the distribution formed by the innovation signal.
Positive or negative shifts in the first moment or mean are given by
parameter Mpos and Mneg, respectively, and increases or decreases in
the second moment or variance are given by parameters Vnom and Vinv,
respectively.

As with the other detection methods, alarm systems based upon
testing the SPRT hypotheses will require parametric tuning given by
the modified objective function in Eqn. 39.

minimize

∑f
i=1

∑Ti
k=1 G(i,k)

∧⋃4
j=1

{
Sjk>log

1−Pmd
Pfa

}
∑f
i=1 Ti

subject to
s ∈ R4

n ∈ Z+ ≡ [1, 2, . . .]

(39)

where

G(i, k) = Ground truth classification for the kth

time point in the ith validation record

s
4
=


Mpos

Mneg

Vnom
Vinv


Note here that the optimization function is now based upon a mod-

ified Hamming distance metric and expressed as a function of n, Mpos,
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Mneg, Vnom, Vinv as distinct from AUC expressed as a function of n and d
in Eqn. 15. Any number of optimization techniques can be used to solve
this problem, however in an attempt to find a near global optimum, a
number of different approaches have been tested, which are provided in
the list below.

• Simulated Annealing

• Genetic Algorithm

• Multi Start - choosing multiple local initial starting points uni-
formly, followed by running local optimizations from each of the
points

• Global Search - use a serial scatter-search method to find initial
starting points from which to run local optimizations, followed by
elimination of the unlikely candidates

• Pattern Search - gradient-free pattern search via direct objective
function evaluation

In order to allow for a fair comparison of all prediction methods,
we will implement a prewhitening filter for the SPRT-based hypothe-
ses. This is required in order to meet the assumptions implicit in using
the SPRT, which is that the residuals are white (i.e. not serially corre-
lated), and Gaussian. The Gaussian nature of the residuals has already
been accounted for in part, based upon the discussion of the relation-
ship between the KS statistic and optimization of the NMSE metric that
takes place by applying the f -fold cross validation procedure discussed
in Sec. 1. Since we are not using the same state estimation procedure as
MSET, which are specifically designed to yield residuals that are white
as discussed in [2], this prewhitening step is compulsory. Conveniently,
prewhitening occurs naturally via the Kalman filter residual. Thus, the
associated filter parameters are based upon the same parameters sub-
sequently used for testing the level-crossing prediction hypothesis. This
lends itself nicely to a well balanced basis for comparison.

Appropriately tuned parameter values can be selected by solving the
constrained optimization problems posed in either Eqn. 15 or Eqn. 39
for all relevant detection methods, given the appropriate set of optimiza-
tion arguments. After this step, the corresponding optimized parameter
values6 can be used for final testing and implementation. This step
is seeded by a disjoint hold out dataset which was not used for either
training or validation, and presumably contains real examples of adverse
events that are similar in nature to those used for validation, or more
formally, derived from the same distribution and data-generating pro-
cess. The same testing regimen is applied for all selected regression and

6and where applicable, alarm design thresholds
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prediction methods for comparison. From this we can ascertain the best
combination of regression and detection algorithms to use as dictated by
the given performance metrics.

Table 3: Tunable Regression Hyper-parameters

Regression
Method

Regression Description Hyper-parameter Hyper-parameter
description

SVR Support Vector Regression σ or C Kernel Width or cost
parameter

k-NN k-NN Regression k Number of nearest
neighbors

LR1 Ridge (linear) regression using
linear regressors

λ `2 regularization
coefficient

LR2 Ridge (linear) regression using
quadratic regressors

λ `2 regularization
coefficient

ELM Extreme Learning Machines nh number of hidden
neurons

BNN Bagged Neural Networks nh number of hidden
neurons

RANSAC RANdom SAmple Consensus δ cost threshold

6 Conclusions

We have introduced a new architectural framework that can be run in
MATLABr called ACCEPT (Adverse Condition and Critical Event Pre-
diction Toolbox). An open source release of this package will be made
publicly available before the summer of 20157. The fundamental purpose
of releasing this software package is to provide a tool which can be used
specifically for the prediction or forecasting of adverse events in time
series data. It offers a single, unifying framework in which to compare a
variety of combinations of algorithmic approaches, and provides a plat-
form to act as a catalyst in advancing the state of the art in technologies
related to this problem.

7Source code will be posted at the DASHlink URL:
https://c3.nasa.gov/dashlink/projects/10/resources/.
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In future work we will also extend the scope of the software to incor-
porate alternate classes of regression methods (e.g. streaming, AR/ARMA-
based, etc.) in the context of the same architectural framework. As such,
the framework has been designed with flexibility and modular extensi-
bility to accommodate future innovations. Appendix D provides a de-
veloper’s guide which will provide a way forward towards that end. We
will also augment the architectural framework to more seamlessly test a
variety of explanatory feature sets, which will aid in event localization
and isolation efforts.
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Appendix A

MATLAB Toolboxes Required for Full
Functionality

• Statistics Toolbox (MATLAB)

– Basic requirement

• Optimization Toolbox (MATLAB)

– Basic requirement

• Parallel Computing Toolbox (MATLAB)

– Required for running distributed jobs on cluster (if available)
to reduce processing time

• MATLAB Compiler (MATLAB)

– Required for running distributed jobs on cluster (if available)
to reduce processing time, if Parallel Computing Toolbox is
not available
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• Global Optimization Toolbox (MATLAB)

– Option to run global optimization routines in support of re-
gression or SPRT detection optimization

• Control Systems Toolbox (MATLAB)

– Required for any detection method using an LDS

• Neural Network Toolbox (MATLAB)

– Required for testing BNN (Bagged neural networks) as one
the regression methods

Appendix B

Auxiliary Toolboxes Required for Full
Functionality

Please note that all of these package folders must be installed according
to these directions:

• Third Party Toolboxes

– KPMstats and KPMtools Toolboxes (Kevin Murphy, MIT/GPL:
http://code.google.com/p/bnt/source/browse/trunk/?r=

36)

∗ Basic requirement, place anywhere on your Matlab path

– SMO code for SVR routine

∗ Place the files listed below under
$ACCEPT DIR/regressopt/svropt

∗ The following files are required for running SVR as one
of the regression methods

· gsmo.m (and also equivalent mex-compiled version for
your OS, e.g. gsmo mex.mexa64, link:
https://searchcode.com/codesearch/view/29473653/)

· kernel.m (and also equivalent mex-compiled version
for your OS, e.g. kernel.mexa64, link: http://cmp.
felk.cvut.cz/cmp/software/stprtool/)

– LibSVRcode for SVR routine (Chih-Chung Chang and Chih-
Jen Lin, https://github.com/cjlin1/libsvm)

∗ Install in $ACCEPT DIR/regressopt/libsvropt
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– RANSAC code for regression (Marco Zulianis RANSAC tool-
box, released under GNU LGPL at https://github.com/

RANSAC/RANSAC-Toolbox, and Laurens van der Maatens Mat-
lab Toolbox for Dimensionality Reduction released under the
FreeBSD License at http://lvdmaaten.github.io/drtoolbox/)

∗ Install RANSAC toolbox in $ACCEPT DIR/regressopt/ransac

∗ In the Matlab Toolbox for Dimensionality Reduction, lo-
cate /drtoolbox/techniques/pca.m, place in
$ACCEPT DIR/regressopt/ransac, and rename it RANSACpca.m.

– Kalman Filter Toolbox (Kevin Murphy, MIT/GPL http://

code.google.com/p/bnt/source/browse/trunk/?r=36), re-
quired for any detection method using an LDS, the following
files need to be placed under $ACCEPT DIR/ldslearn

∗ smooth update.m

∗ kalman update.m

∗ kalman filter.m

∗ kalman smoother.m

– ASOS Toolbox (James Martens, Apache 2.0, obtained here:
http://www.cs.toronto.edu/~jmartens/ASOS/)

∗ Option for any detection method using an LDS

∗ Should be installed under $ACCEPT DIR/ASOS

– CVX toolbox (Michael Grant & Stephen Boyd, GNU General
Public License 2.0, obtained here: http://cvxr.com/cvx/)

∗ Option for any detection method using an LDS

∗ Should be installed under $ACCEPT DIR/cvx, using cvx
installation directions

∗ Follow directions in Readme.docx for additional installa-
tion instructions

• Toolboxes developed in-house at NASA Ames Research Center

– Regression Wrapper Code (released w/ACCEPT)

∗ Basic requirement

– SMO code for SVR routine

∗ svmregSMO.m is released w/ACCEPT under
$ACCEPT DIR/regressopt/svropt (required for running
SVR as one of the regression methods)

– Kalman filter augmentation ARC 17528-1 (Rodney Martin,
not released w/ACCEPT and can be accessed here: https://
c3.nasa.gov/dashlink/members/10/resources/?type=al)

(required for any detection method using an LDS, the follow-
ing files need to be placed under $ACCEPT DIR/ldslearn)
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∗ learn kalman.m (use modified version released separately)

∗ em converged.m (use modified version released separately)

– CAMCOS LDS Initialization script (SJSU released to NASA
w/ ACCEPT)

∗ Option for any detection method using an LDS

– Stanford cvx utility calls (Eric Chu, released to NASA under
NRA NNX07AE11A)

∗ Option for positive definite matrix constraint enforcement

– ROC Curve Augmentation ARC 17529-1 (Rodney Martin, not
released w/ACCEPT and can be accessed here: https://c3.
nasa.gov/dashlink/members/10/resources/?type=al)

∗ Required for all detection methods except for SPRT

∗ Install in $ACCEPT DIR/detectopt

– Optimal Alarm Toolbox (Rodney Martin, NOSA, released w/
ACCEPT, but can be accessed here:
https://c3.nasa.gov/dashlink/resources/119/)

∗ Required for running Optimal Alarm System as one of
the detection methods

∗ If not already part of package, extract under
$ACCEPT DIR/optalarm osrelease

– MCR Scheduler toolbox to set up distributed computing w/
Matlab compiler (released w/ACCEPT). Option for distributed
computing only if a computing cluster is available. Set the
following fields of the sched struct in createJobsNew.m ac-
cordingly

∗ sched.Type=‘’;

∗ sched.JobFolder=‘’;

∗ sched.MCRRoot=‘../MATLAB Compiler Runtime/v713/’;

∗ sched.ServerName=‘’;

∗ sched.SubmitArguments=

‘-l walltime=168:00:00 -l nodes=1:ppn=1’;

∗ sched.ResourceTemplate=‘-l nodes=N’;

• Uncategorized Toolboxes

– LDS stability constraint toolbox (Siddiqi et al. [32], no formal
license other than a requirement to acknowledge researchers
by citation of corresponding paper, obtain here: http://www.
select.cs.cmu.edu/projects/stableLDS/) (required for any
detection method using an LDS, extract package into existing
folder $ACCEPT DIR/stablelds

∗ Keep learnCGModelEM.m ! (modified version which should
already be included in $ACCEPT DIR/stablelds)
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∗ Keep learnCGModelSS.m ! (modified version which should
already be included in $ACCEPT DIR/stablelds)

– N4SID Toolbox (Overschee & DeMoor, International, no for-
mal license, obtained here: http://homes.esat.kuleuven.

be/~smc/sysid/software/)

∗ Required for any detection method using an LDS

∗ Install in $ACCEPT DIR/subfun

∗ Use existing modified version of subid.m included in AC-
CEPT package

Appendix C

ACCEPT set-up and configuration guide

Dependent open sourced packages are not included with ACCEPT.
Instructions for installing the relevant packages and files for all auxiliary
packages can be found in Appendix B.

1. ACCEPT set-up

(a) Environment variables to set

i. DATA DIR = local path containing data repository

ii. ACCEPT DIR = local path where you’ve checked out the
ACCEPT package

(b) Add entire repository to matlab path (exercise caution with
the cvx branch: you should only add the root and /functions

folders)

(c) Follow directions for installation of auxiliary packages in Ap-
pendix B.

2. Customized functions (auxiliary files to edit and create). In the file
User input accept generic.m you will find the following lines -
modify as follows and save as User input accept.m (without the
“ generic” suffix):

(a) params.acceptpath=getenv(‘ACCEPT DIR’); % No modifi-
cation necessary

(b) params.datapath=[getenv(‘DATA DIR’) ‘/Data’]; % En-
ter location (path) of data corresponding to adverse events
and their nominal data counterparts

i. Partition these datafiles into /Training, /Validation,
and /Testing sub-directory structures.

ii. There must be as many training files as there are valida-
tion files.
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iii. These datafiles should be in *.mat format.

iv. The *.mat file must contain a struct with the following
fields at the very minimum: data, header.

v. The data field must represent a matrix of numerical ele-
ments, with columns corresponding to the header fields,
and rows corresponding to the time index.

vi. The header field must be a cell array containing the names
of all parameters.

(c) params.anomalytype=‘Adverse Event 1’,‘Adverse Event

2’,‘Adverse Event 3’; % Contains the names of the ad-
verse events to predict

(d) params.loadfcn={‘Function 1’,‘Function 2’,

‘Function 3’}; % Contains names of the loading functions
for data corresponding to a particular scenario (e.g. operating
regime)

i. These functions partition the datasets provided at the lo-
cation(s) provided in params.datapath according to the
corresponding scenario.

ii. Example call:
[header,data,message] =

Function 1(‘nomdatafile.mat’);

iii. The function must take in as its sole argument the file-
name of the *.mat file (e.g. nomdatafile.mat)

iv. The function must return as output arguments header,
data, and message. The first two outputs are self-
explanatory, and the last argument can be used to report
errors.

v. The body of the function must include the logic necessary
to temporally partition out the specific section of the data
file that corresponds to the scenario of interest.

vi. Please note that there is no need to partition based upon
the parameters, partitioning here is only time-based.

(e) params.truthfcn={‘GTFunc 1’,‘GTFunc 2’,‘GTFunc 3’};
% Contains names of the functions used to establish the ground
truth for a specific adverse event that occurs within the sce-
nario

i. Example call:
subevent =

GTFunc 1(Idx,params,obsval,rawdata val);

ii. The input arguments are as follows:

A. Idx - integer index of the type of file being loaded
(either validation or test), i.e. File # Idx out of X
total validation or Y total test files
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B. params - a struct containing all relevant fields for the
specific run configuration. It needs to be passed in as
the second argument and named exactly as “params.”

C. obsval - indexed structure containing all validation
or test files, created by an auxiliary ACCEPT func-
tion. It needs to be passed in as the second argument
and named exactly as “obsval.” It contains the un-
normalized residual formed by the regression stage,
contained in the field obsval.data. The other two
fields contain ground truth data. obsval.subevent

contains the “raw” ground truth derived from the
logical construction of this function. obsval.event

contains the ground truth vector that is constructed
based upon the given prediction horizon.

D. rawdata val - cell array containing all validation or
test files, also created by an auxiliary ACCEPT func-
tion. It needs to be passed in as the fourth and last
argument and named exactly as “rawdata val.” It
contains the raw parametric data in engineering units,
prior to normalization. The first argument, Idx, in-
dexes the rawdata val cell array.

iii. The output argument is a binary vector representing the
ground truth status for each time step (0 - adverse event
absent, 1 - adverse event present).

iv. The body of the function must include the logic necessary
to establish the ground truth for a given validation or test
data file.

(f) In the file User input ressarch generic.m, you will find
only the first section needs to be modified if desired, which
should be clearly demarcated. Modify the paths accordingly
and save as User input ressarch.m (without the “ generic”
suffix):

(g) Use the following format and rules for creating the file
Adverse Event X Parameterlist.txt:

i. All parameter names must be encapsulated with double
quotes as such “Parameter 1”

ii. Each line of the file should only contain a single parameter
name, followed by a carriage return.

iii. The listed parameter name must match the name of a
parameter in the *.mat data file.

3. Running ACCEPT

(a) Matlab session

i. >> ressarch (runs ACCEPT)
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ii. >> combine ressarch (combines results from previous
ACCEPT runs)

Appendix D

ACCEPT developer’s guide

Steps to add a new regression method in ACCEPT using local re-
sources:

1. In the regressopt folder

• Create new folder for the regression method in the regressopt
folder, $FOLDERNAME (the convention for naming is all common
letters).

• There should be at least two functions in this new regression
methods folder. They should be named buildTEMP.m and
evalTEMP.m where you exchange ’TEMP’ for the name of your
regression method e.g buildELM, evalELM (the convention is
all capital letters).

• buildTEMP should take in trainData and runOptions as pa-
rameters and return’s a variable that stores the model which
was produced by the regression method.

• evalTEMP should take in the model (the variable that was
returned from the buildTEMP function above) and tst as pa-
rameters and return the predicted value(s).

2. In mainREGcode ressarch.m

• Add the name of the regression method to the end of the
algo name cell array (the convention is all common letters,
no spaces).

• Add a new case block for the new regression method in the
switch statement. It should follow the pattern of the oth-
ers changing the names to be the new regression method
where appropriate. Here is where you would place a hyper-
parameter to tune (see Step 3) and also where to include the
buildTEMP and evalTEMP functions.

3. In aux input.m

• Add the name of the new regression method to the algotypes
cell array, it should be the same name as in the algo name

array in Step 2.
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• Add the name of the hyper-parameter that you want to tune
into the tuneparamtypes cell array (the convention is all com-
mon letters WITH spaces as necessary).

• Add all the other regression’s hyper-parameters at the end
of the last if statement (if any). You must create an if

statement that follows the pattern of the previous regression
methods to add the hyper-parameters. To add the hyper-
parameters it should be of the form params.temp hyper where
you replace temp hyper with the actual name of the hyper-
parameter.

4. In test loop ressarch.m

• Add the name of the new regression method (same name in
algo name and algotypes) to the appropriate if or elseif

statement in the if block if params.regress.optIdx==7

5. In reg ranges.m

• Add a value to the end of the tuneminrange array (this the
minimum value for the hyper-parameter that you want to
tune)

• Add a value to the end of the tunemaxrange array (this the
maximum value for the hyper-parameter that you want to
tune)

• Add a value to the end of the tunevals array (this is a default
value that ACCEPT would use when necessary)

To add a new regression method in ACCEPT using a distributed pro-
cessing configuration, include the following steps:

1. $CONFIG.Values.job.FileDependencies = ‘regressopt’,

‘regressopt$FOLDERNAME’.

2. Save as *.mat (R2011b or earlier) or *.settings (R2012a or later)
in $ACCEPT DIR/ACCEPT/Distributed Processing/PCTconfigs

Appendix E

Demo of ACCEPT on a sample problem

E.1 Sample Problem Description

Sustainability Base is a 50,000 square foot LEED Platinum certified
building located at NASA Ames Research Center. It seeks to expand the
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possibilities of building sustainably on Earth by utilizing NASA’s own
innovations and technology. Sustainability Base generates data from
many systems in the building via sensors and power ports. The data
being used as the basis for the example problem in this tutorial is mo-
tivated by a scenario devoted to anomalous drops in room temperature
in Sustainability Base, and can be found at the DaSHlink website here
https://c3.nasa.gov/dashlink/resources/936/.

E.2 Tutorial

Preprocessing
As stated in Appendix C, ensure that the DATA DIR and ACCEPT DIR

environment variables are set to the directories where you have
stored the data and ACCEPT code respectively, e.g.

> setenv(’DATA DIR’,’/home/username/ACCEPT data’)

> setenv(’ACCEPT DIR’,’/home/username/ACCEPT’)

Next, create params.txt and place it in the data directory. All
sensors, including both target and input parameters, need to be
separated by a carriage return (i.e. the enter/return button on the
keyboard). The sensor names should not be separated by a space.
For example:

DC114T

DCRCS103

DCTN240T

In this introductory example we only use continuous-valued data
from two randomly selected sensors to predict the target (room
temperature) sensor. The two parameters are used to predict
the air temperature outside of a conference room on the second
floor (sensor label: DCTN240T, Room 227). One of the two pa-
rameters corresponds to a sensor measuring the CO2 concentra-
tion for a large conference room on the first floor (sensor label:
DCRCS103, Room 103), which is served by a traditional HVAC
system. The other parameter corresponds to a sensor measuring
the room temperature of an electrical closet on the first floor (sen-
sor label: DC114T, Room 114).

Next, create a name for the ground truth function, e.g. ground truth.m

and specify that any temperature value falling below 68.1 degF for
the target sensor is anomalous. For example:

temp col = strmatch(’DCTN240T ’, ...

params.header,’exact’);

data = rawdataVal{idx};
truth = data(:,temp col) < 68.1;

anomIdx = find(truth==1,1); %find the first anomaly
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Lastly, create a name for the load function, e.g. load function.m.
Each *.mat file contains a structure called Info. Info contains
two fields: one “header” fields containing all sensor names stored
in a cell array called colheaders, and another field called data,
containing all the sensor data in a matrix format.

load(filelist);

header = Info.colheaders();

data = Info.data();

message = true;

Running ACCEPT
Ensure that the correct paths are added to MATLAB’s path and
run the ressarch.m function.

> ressarch

A dialog box will appear; select No so that new results can be
created.

Figure E10: Loading Previous Results

Next, select Yes to create a new configuration file.

Figure E11: New Configuration File

When asked to pick an anomaly candidate, select Cold Complaints,
and when asked to select a target parameter, select DCTN240T.
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When asked to either use the system’s local resources or distributed
processing via a cluster, select your system’s local resources for the
purposes of this tutorial (input 2).

> 1- Use cluster scheduler 2 - Use local resources : 2

When asked to perform regression only, select No (2).

> Use regression only ? 1 - Yes, 2 - No : 2

When prompted to select the optimization method, select fixed
point in order to set pre-optimized values. Selecting any other
option would require a great deal more computational effort, and
the purpose of this simple example is primarily to get the user up
and running with an example that will complete in a short period
of time.

Figure E12: Optimization Methods

When prompted to select regression methods, choose ’lin’ and
’elm’.

Figure E13: Regression Methods in ACCEPT

When asked to select the type of detection methods to use, choose
both ‘redline” methods, e.g. “Redline-Training” and ”Redline-
Validtion.”

A prompt will appear to allow for entering the optimized values
for the selected regression methods; for ‘lin’ enter 0.00001 and for
‘ELM’ enter 481 (refer to section 4 for further explanation of these
hyperparameters). A series of questions based on the detection

46



Figure E14: Detection Methods in ACCEPT

methods that were selected will then follow. Use the inputs shown
in Figure E15 to answer these questions. See section 5 for details
on the context of the first four questions shown in Fig. E15. The
remaining two questions can be addressed as follows:

1. Enter resolution (number of points) for Monte Carlo-based
integration (smoothness factor): This option is used for ROC
curve construction based upon methods that rely on a model-
based approach to generate the relevant ROC curve statis-
tics/performance metrics (labeled X-Training and discussed
in Sec. 5). A good default setting for this value has been found
to be 3600, however in general smaller values yield a trade-off
between less accurate results and less time for the integration
to complete. Similarly, higher values yield more accurate re-
sults and take more time to complete. The purpose of Monte
Carlo integration has been discussed in Sec. 5.

2. Resolution of ROC curve: Construction of an ROC curve us-
ing “training data only” means that it does not rely on any
ground truth labels, and typical computational shortcuts can-
not be employed. As such, we must find an alternate way to
create the ROC curve (please see Algorithm 1 for a procedural
summary to accompany the subsequent narrative). A heuris-
tic approach is taken by splitting the domain of Pb ∈ [0, 1]
or La ∈ [0, Lamax ] into two distinct subdivisions. Indepen-
dent grids are then established for each subdivision, and false
alarm/detection probabilities will be computed for each of the
points in the grid. Pre-specified tolerance criteria associated
with these probabilities will be used to terminate the process
before continuing on to create twice as many new subdivisions
as the last time. The final result will yield an ROC curve
with sufficient resolution meeting the specific tolerance crite-
ria. Refer to Algorithm 1 for the pseudo-algorithmic procedure
employed in this process. Clearly, creation of these subdivi-
sions has exponential complexity, so the user should be cau-
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tious about using too high of an integer value. We have found
that a value of 10 typically provides sufficient resolution.

Algorithm 1 ROC Curve Construction

1: function ROC(ε, tol)
2: ε← Dom1([ε0, εmax])
3: stop← N > 3600

∨
max |∆(Pfa)| < .01

∨
max |∆(Pmd)| < .01

4: while not(stop) do
5: if i < tol + 1 then
6: Domi+1 ←

⋃2i

m=1Domm([εm−1,
εm
2 ]
⋃

[ εm2 , εm]))
7: else
8: Domi+1 ←

⋃i
m=1Domm([arg minε ¬stop, arg maxε ¬stop])

9: fa← getFalseAlarms(Domi+1)
10: fd← getFalseDetections(Domi+1)
11: i← i+ 1

12: fa← cleanFalseAlarms(Domend)
13: fd← cleanFalseDetections(Domend)
14: fa← sortFalseAlarms(Domend)
15: fd← sortFalseDetections(Domend)

Provide a descriptive name after being prompted to save the con-
figuration. Now ACCEPT will run and produce the desired results.

Figure E15: Inputs for ACCEPT
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E.3 ACCEPT Results

The following table shows various runtimes for the most computation-
ally intensive elements of ACCEPT. The values are in seconds, and are
approximated to the nearest second.

Method

Linear ELM

Regression 1.8 1.1
LDS Parameters 90 206
Detection 5.8 5.9

Total 97.6 213

Table E4: Time to Run (seconds)

Learning the linear dynamical system is where most of the compu-
tation lies for this problem. This is due to the fact that there are O(n2)
parameters in θ to learn that are associated with the LDS learning pro-
cess. This stands in distinction to the regression and detection parts of
the pipeline which do not suffer from the same level of computational
complexity. For more detail on the complexity associated with LDS
learning, refer to [28] and [30].

Results
Method

Linear ELM

Regression
Global Optimum 1.1e-05 481
Optimized Values 0.0000 0.0001

Missed Detection
Redline - Training 0.0000 0.0088
Redline - Validation 0.0088 0.0088

False Alarm
Redline - Training 0.0476 0.0108
Redline - Validation 0.0022 0.0108

Detection Time
Redline - Training 2.0000 0.0000
Redline - Validation 0.0000 0.0000

Table E5: Results From ACCEPT

From Table E5, it is clear that the performance of using either linear
regression or ELM regression is very similar, and the small differences
are negligible with respect to system performance. As such, Figs. E16
and Fig. E17 illustrate only the results for linear regression.

The reproduction of similar results should be possible by following the
step-by-step instructions provided for this same exercise. Please contact
the authors if dramatically different results were generated, which may
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(a) Redline - Training (b) Redline - Training

(c) Redline - Validation (d) Redline - Validation

Figure E16: Detection Results for Linear Regression (LR1), Nominal
Realizations

(a) Redline - Training (b) Redline - Training

(c) Redline - Validation (d) Redline - Validation

Figure E17: Detection Results for Linear Regression (LR1), Anomalous
Realizations

be possibly be due to inconsistencies between the version of the code
posted to DaSHlink and the ones used to generated the results shown
here. Although highly accurate and robust advance prediction capability
was demonstrated here with “toy” scenario that relies on real data, it
can also be employed for more realistic scenarios relating to safety and
even for other types of mission critical systems. Ultimately, ACCEPT
will not only enable real-time advance prediction of critical events, but
will also allow for an enhanced ability to choose the best combination
of algorithms to address the needs of application-specific performance
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requirements.
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