Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

R. A. S. Beck¹, M. J. Gasch¹, F. S. Milos¹,
M. M. Stackpoole¹, B. P. Smith¹, M.R.
Switzer¹, E. Venkatapathy¹, M. C. Wilder¹,
T. Boghhozian², J. F. Chavez-Garcia², T.
Gokcen², D. K. Prabhu²,G. T. Swanson², C.
D. Kazemba³, W. Congdon⁴, D.
DePasquale⁵, B. A. Woollard⁶, A. Sidor⁶

¹ NASA Ames Research Center, Moffett Field, CA 94035
 ²ERC @ NASA Ames Research Center, Moffett Field, CA 94035

³STC @ NASA Ames Research Center, Moffett Field, CA 94035

⁴Applied Research Associates (ARA) Ablatives Laboratory (ABL), 14824 E. Hinsdale Ave., Unit C, Centennial, CO 80112

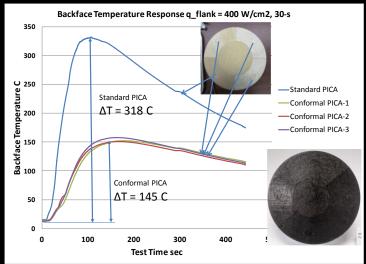
⁵Terminal Velocity Aerospace, LLC, 75 5th Street NW, Suite 244, Atlanta, GA 30308

⁶Georgia Institute of Technology, North Avenue, Atlanta, GA 30332

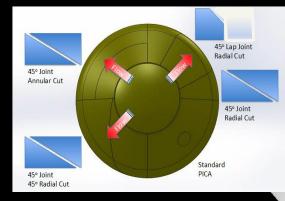
IPPW-12, Cologne, Germany June 2015

www.nasa.gov/directorates/spacetech/game_changing_development

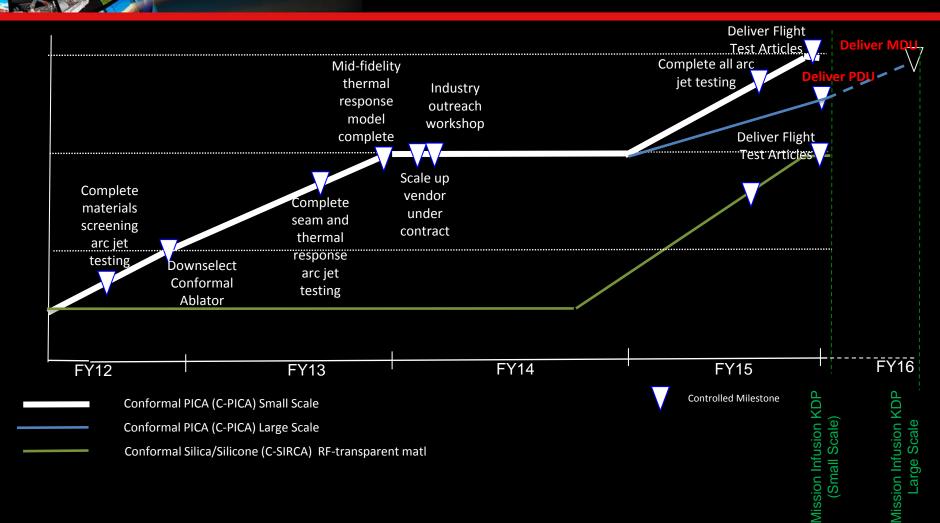
CA-TPS: The Problem – The Solution


Problem: Current SOA materials require complicated installation techniques and/or high touch labor costs (PICA, Avcoat, SLA) and with adequate thermal and poor-to-moderate mechanical performance

Solution: Develop a conformal TPS ablator with a significantly lower areal mass and more compliant for ease of integration (direct bonding, no gap fill)

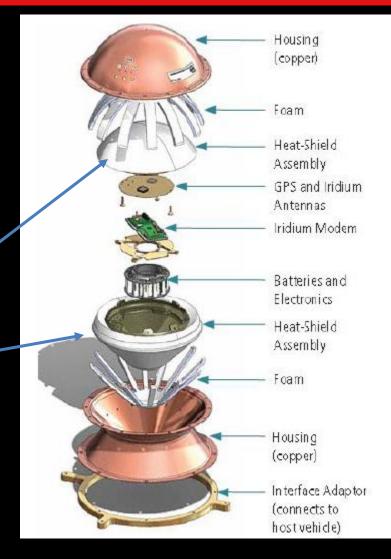


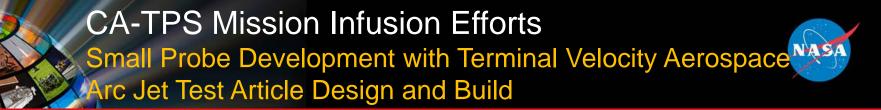
PICA failure <750 lb, ROC ~145" C-PICA no failure at 1500 lb, ROC <65"



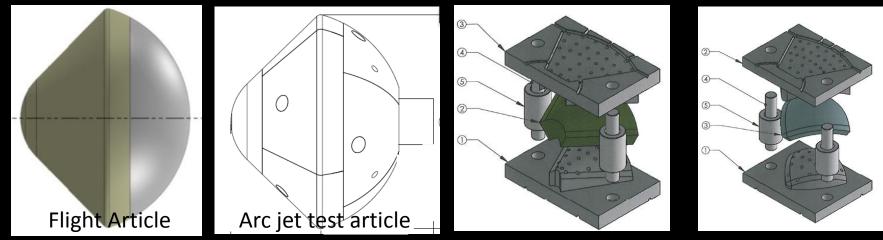
Materials response models tested – $\Delta T = \Delta T_{PICA}/2$ Seam development models tested – no gap filler

CA-TPS TRL Progression

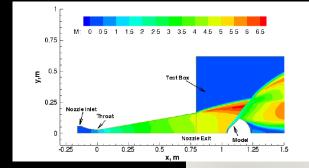


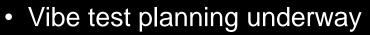


3

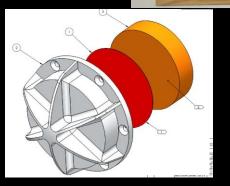

CA-TPS Mission Infusion Efforts Small Probe Development with Terminal Velocity Aerospace Design and Hardware Roles and Responsibilities

- Small probe vehicle designed for break-up evaluation
- TVA responsible for entire design
 - Ames responsible for TPS selection and sizing
- Ames hardware
 - Backshell TPS bonded to carrier structure
 - RF transparent Silica/silicone (C-SIRCA)
 - In-depth instrumentation included
 - Heatshield TPS bonded to carrier structure
 - C-PICA
 - In-depth instrumentation included
- Remaining hardware is TVA's responsibility


- Vehicle and arc jet test article configuration iterations completed
 - Trajectory analyses performed, environments defined, TPS sizing completed
- TPS parts designed
- TPS processing molds designed and manufactured
- Segments processed and machined



- TVA tested their mock-up in balloon-drop out of Tillamook, Oregon
 - Charred RF transparent conformal ablator flew

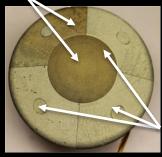

CA-TPS Mission Infusion Efforts Small Probe Development with Terminal Velocity Aerospace Arc Jet and Vibe Testing Efforts

- Arc jet test planning completed
 - Arc jet environments defined
 - Arc jet aeroshells received from TVA
 - Test article assembly nearly complete
 - Testing scheduled Aug 3-7

- Testing PICA, C-PICA and C-SIRCA
- Test fixture
- Fixtures and specimens in manufacturing
- Testing scheduled in July

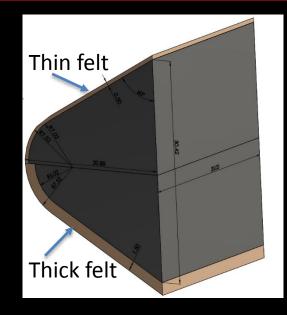
TVA RED-Data2 has a flight manifest – late CY17

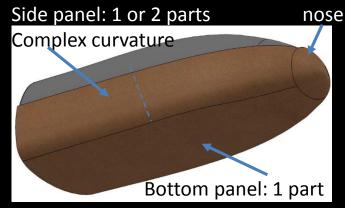
CA-TPS Scale-Up – Step 1


Vendor Demonstration of C-PICA Processing (Small articles)

- Material processing duplicated on small scale by Applied Research Associates, Ablative Laboratory (ARA-ABL)
- NASA provided molds and process descriptions used and first parts produced
 - Flat panels for characterization
 - Molded parts for use on arc jet test models
- NASA process duplicated with no changes provided delivered parts
- Testing to occur June 24-25

NASA C-PICA




Vendor

CA-TPS Scale-Up – Step 2 C-PICA Pathfinder Unit Leading to a MDU

- Pathfinder Demonstration Unit for delivery this year
 - Design new metallic molds for large-scale parts
 - Infiltrate thin and thick felt to demonstrate uniform infiltration and evaluate extent of warping (parts ~0.6m x 0.7m)
 - Install on foam "body"
- Manufacturing Demonstration Unit for delivery mid FY16 (if funded)
 - ~1-m length mid L/D vehicle design
 - Build 3-4 panels
 - Side panel(s) demonstrates complex curvature
 - Install on foam "body"

