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Outline 
1.  Where To Land (WTL) 
2.  WTL1 à WTL2 

3.  Engine Out Case 

4.  Aircraft Reachability  

5.  Cost Map Development 

6.  Dynamics Model 

7.  NASA TCM Model 

8.  Optimal Trajectory Generation  

9.  WTL2 C code 

10. Test Cases 

11. Hardware in the Loop (HIL) Simulation 

12. Future Work 
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WTL Team 

www.nasa.gov 3 

UC Berkeley 
-  Algorithm Design 
-  Reachable Sets 
-  Hybrid Mode Switching 

NASA Armstrong 
-  WTL C Code 
-  S/W V&V 
-  HIL Simulation 

U. Tulsa 
-  NYC Cost Map 
-  S/W Requirements  
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Emergency Landings 
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� Commercial  

� General Aviation  
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Where To Land 
•  Where To Land (WTL) is a emergency forced landing algorithm 

developed by UC Berkeley 

•  Inflight emergency à vehicle forced to land 
–  What is the optimal landing location that will minimize loss of life and 

minimize property damage given a set of constraints  
–  What is the optimal trajectory required for the aerial vehicle to reach 

optimal landing location? 

•  WTL attempts to mimic an expert pilot’s decision making and 
land the aircraft  
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WTL Concept of Operations 
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WTL Algorithm 
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Pre-Planning -  pre-compute trajectories using fault 
location, maps and reachable sets 
Real Time Update – adapt emergency trajectory based on 
real time data (weather, occupancy, etc.) 
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Innovation 
•  Simple dynamics model 
•  Assumes aircraft can return to runway 

•  Difficult to apply to autonomous vehicles 

•  Haven’t been flight tested 

www.nasa.gov 7 

•  Provides safety guarantees for S/W V&V 
•  Higher fidelity aircraft model 

•  Fast computation 

•  Manned or unmanned vehicles 

•  Modular design 
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WTL1 Phase 1 Results 
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Emergency Trajectories UC Berkeley Campus 

No Fly Zone 

Emergency Landing Location 

2 1 

3 

Demo: MATLAB sim  
Location: UC Berkeley 
Vehicle: Quadrotor 
Failure: 90% thrust 
2D Trajectory 

Trajectory 
Start Location    o 
Final Location    o 
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Phase 1 à Phase 2 
•  Reduce the scope of WTL 

–  Simplify WTL à Speed up software development 

–  Find “real world” design/implementation issues 

–  Get pilot feedback with HIL simulation  

–  Collect data to improve future versions 

•  WTL1 à WTL2 
–  NASA TCM/B-757 aerodynamics model 

–  No real time update à compute trajectories during fault 

–  No global cost map  à NYC/New Jersey area ~100+ miles 

–  No Fault detection à One predefined fault, dual engine failure 

–  HIL 6DOF nonlinear aircraft simulation  
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PHASE 2 
GOALS 

•  Demonstrate WTL in HIL simulation  
•  Develop tools to generate reachable trajectories 
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WTL Development Plan 
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Demo: MATLAB Sim  
Location: UC Berkeley 
Vehicle: Quadrotor 
Failure: 90% reduction in thrust 
2D Trajectory 

Demo: HIL Sim w/ FLS on embedded H/W 
Location: New York City +/- ~100 miles 
Vehicle: 757 
Failure: Loss of thrust 
2D Trajectory 

Demo: Flight test RC Aircraft w/ Pixhawk 
Location: Edwards, CA 
Vehicle: RC Aircraft 
Failure: Loss of thrust 
2D Trajectory 

Phase 1 – WTL1 

Phase 2 – WTL2 

Future Work 
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WTL2 Architecture 
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WTL2 Algorithm 
1.  Get current aircraft state 

–  Latitude/Longitude 

–  Altitude/Heading/Velocity 

2.  Convert states to local frame 
3.  Compute maximum glide range 

4.  Window cost map with max range 
5.  Get reachable set for altitude 

6.  Scale and project reachable set over map with heading 

7.  Find best reachable landing location using 2D convolution 
8.  Generate trajectory using optimal path planner  

9.  Generate latitude/longitude waypoints  
10.  Generate target headings 
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HIL Simulation Architecture 
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HIL Simulation PC 

TCP/IP 

Embedded 
Linux Board  

WTL2 

Display Pilot 
Controls 

Nonlinear Aircraft 
Simulation 
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Engine Out Scenario 
•  Complete loss of thrust 
•  Engine out during takeoff is the most critical  

–  WTL2 Operational Range: 1000 ft – 4000 ft  

–  Less than 1000 ft à Can only land straight ahead 

–  Greater than 4000 ft à Can often return to airport 
–  Glide range will vary based on aircraft and configuration (i.e. 

weight, flaps) 

•  During failure à pilots must manage energy  

•  Flying at L/DMAX maximizes aircraft range  

•  L/DMAX à αMAX à gross weight à VGLIDE  

•  Flying at VGLIDE will maximize aircraft range 
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Reachability 
Reachability - Given a dynamic system governed by some 
differential equation and input defined over some bounded 
state space. What are all the states visited by the trajectories 
of the system 
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•  Reachability is a key technology for 
verifying safety critical systems7 

•  Reachability assures that a system 
can reach a target state while 
remaining within a safety envelope7   

•  Level Set Toolbox - computes 
reachable sets of hybrid systems 
with continuous dynamics using 
nonlinear ODE’s3 

•  Grid based computation 
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Aircraft Reachability 
Aircraft Reachability is gliding aircraft model with NASA TCM aerodynamics 
formulated as a PDE (HJ) and solved using the Level Set Toolbox. Aircraft 
trajectory has two modes. The two mode states are stitched together using 
a hybrid system model.  
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Mode 1 - Approach Mode 
•  TCM aerodynamics 
•  Glide equations 
•  Glide velocity 
•  Constant radius turns 
•  State constraints 

Mode 2 – Landing Mode 
•  TCM 30° flap aerodynamics  
•  Landing velocity 
•  State constraints 

States 
•  Aircraft position  
•  Velocity  
•  Flight path and heading angles 

Control 
•  Angle of attack 
•  Bank angle 



National Aeronautics and Space Administration 

Reachable Set 
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Unsafe 
State 

Target 
State 

Initial 
State 

Reachable Set 

State Trajectory 

Reachable sets are a set of initial 
states from which the system is 
guaranteed to remain inside a 
safe region while eventually 
reaching a desired target3 

State Constraints 
V – Stall avoidance  
α, ϕ – Keeps aircraft within 
performance envelope 
Acceleration - structural load limits  
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Discrete Reachable Sets 
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•  Reachable sets generated every 100 ft from 1000 ft - 4000 ft 
•  Grid size 10E4x10E4 ft 
•  Normalized and stored as a binary map 
•  Oriented onto global map using aircraft heading 
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Cost Map 
•  Hazard Map – constructed from population and geographical data 
•  Impact Map – constructed from density maps, land use maps, etc.  

•  Total Loss Map = Hazard Map + Impact Map 

•  Map Size: 7201x5401 pixels (3.5+ million pixels) 
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NYC Hazard Map NYC Impact Map 
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Gliding Aircraft Equations 
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Vglide =

s
2W

⇢S
p

C2
D + C2

L

•  3D motion of gliding aircraft over flat Earth 
•  Model assumes coordinated turns, no sideslip 

Aircraft velocities 

Aircraft acceleration 

Flight path derivative 

Heading derivative 

Optimum glide velocity 
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NASA TCM Model 
•  Nonlinear aircraft model 

developed by NASA Langley for 
NASA’s Aviation Safety Program  

•  Transport Class Model (TCM) 
closely replicates B-757 
aerodynamics  

•  For WTL2, TCM aerodynamics 
tables (CL,CD ) are used 

•  On landing transition to 30° Flap 
aerodynamics   

•  Compute L/DMAX  and αMAX 
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Optimal Landing Location 
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•  Landing footprint is based on aircraft ground roll and impact area 
•  Optimal landing location = smallest total sum cost over landing footprint 
•  Found using 2D Convolution with FFT 

o Reachable Node 

� Searched Node 

n Landing Footprint 



National Aeronautics and Space Administration 

Optimal Trajectory Generation 
•  Dubins trajectory – gives shortest 

path between two points 
–  requires final location and final heading 
–  target heading here is the heading 

required to reach final landing location 

•  Two basic maneuvers  
–  Gliding (maximize glide range) 

–  Turning (final orientation) 

•  Optimal turn radius – minimize 
energy loss with a constant radius 
turn  
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4.4 Basic Maneuvers
We now connect the above-defined trajectory primitives to
form the basic maneuvers, that will be used to connect con-
secutive states (or nodes) in our search graph.
Recall that a state is defined by x = [X, Y, Z, V, �, ⇠]

T .
Suppose we are given two states, x

i

and x

i+1, which we
wish to connect by a basic maneuver. This will be done
under the following terms:

1. A basic maneuver is composed of a sequence of the three
trajectory primitives introduced above.

2. The spatial distance between neighboring states is suf-
ficient to complete the maneuver. Allowing for sufficient
distance between connected states is a key feature in re-
ducing the complexity of the search graph.

3. The transitions between trajectory primitives are con-
tinuous in the state variables (X, Y, Z, ⇠, V ). However,
we do allow instantaneous changes in the vertical flight-
path angle �. This assumption is also used in Rogers [14].
This variable can be modified relatively quickly by the pi-
lot within its range, with negligible effect on the aircraft
energy. Naturally, in the actual trajectory flown, this vari-
able is smoothed by the pilot.

4. The altitude coordinate Z

i+1 of the goal state will be
ignored. Instead, we will match the (X, Y, ⇠, V ) goal coor-
dinates, while maximizing the terminal altitude Z

i+1. Note
that this is equivalent to minimizing the energy loss during
the transition, as both velocities are specified. This choice
follows the rationale discussed in Section 3.3.

5. Each trajectory primitive will use the optimal parameters
that were selected for energy efficiency, as specified above
for each primitive.

Given the last assumption, the geometry of the path in the
horizontal plane is composed of turns at a given radius
R

⇤, and straight line segments (the gliding and velocity
adjustments primitives). We will essentially construct the
required basic maneuver by choosing the shortest path in
the vertical plane, using these path primitives. As is well
known, the solution to this shortest-path problem (under
constant velocity and altitude conditions) is obtained by
the Dubins curve arc-line-arc construction [7]. Once the
initial arc-line-arc curve for the horizonal path has been
computed, it needs to be complemented and possibly mod-
ified to account for the velocity profile along the path. The
straight line segments constitute optimal glide. The arcs
consist of the turn primitive, with optimal turn speed. Evi-
dently, some speed adjustment between these different ve-
locities is needed (see Figure 2). For that purpose we will
employ the Velocity-Adjustment Straight Flight Primitive.
There are two kinds of velocity adjustments:
1. Internal velocity adjustments, from an arc to straight
glide and vice versa. Here the required velocity adjustment
maneuver are simply inserted at the initial and final parts
of the straight-line segment of the path.
2. Boundary velocity adjustments: These are required to
match the speed of the initial state V

i

to the first turn or
gliding primitive, and conversely to match the speed of the
last turn or gliding primitive to that of the terminal state,

V

i+1. If such speed adjustments are required, the veloc-
ity adjustment primitives are first inserted, adding an initial
and terminal straight-line segments to the horizontal path,
and the optimal arc-line-arc Dubins curve is recalculated
with the new start and end points induced by these seg-
ments.

Figure 2: Top view of the primitive-connection scheme –
transition x

i

! x

i+1.

The complete primitive-connection scheme is presented in
Figure 2. The transition is divided into seven segments (at
most):

1. Velocity adjustment V

i

! V

⇤
turn.

2. Turning at V

⇤
turn.

3. Velocity adjustment V

⇤
turn ! V(L/D)max.

4. Gliding at V(L/D)max (using the (L/D)max ratio).

5. Velocity adjustment V(L/D)max ! V

⇤
turn.

6. Turning at V

⇤
turn.

7. Velocity adjustment V

⇤
turn ! V

i+1.

Once fixed, the cost (i.e., altitude loss) of the complete ma-
neuver may easily be calculated by adding up the costs of
all segments.
Clearly, some of these seven segments may not be needed,
depending on the initial and final states - e.g., if there is no
need for turning, only segments 1,4 and 7 are required.

4.5 Wind Effects
Inclusion of the effect of wind in our dynamic model (equa-
tions 1)–(3) is standard. The magnitude and azimuth of the
wind velocity w, assuming a steady wind front, may be es-
timated on board – e.g., using TAS and GPS data to obtain
ground speed, or from available meteorological data. In the
presence of wind, we retain the same trajectory primitives,
developed above for the no-wind case. However, these tra-
jectories are now computed relative to the wind motion, so
that a drift of size w�t must be added to obtain the actual
position, where �t is the flight duration. The basic ma-
neuver connection scheme is modified by an iterative algo-
rithm, so that the destination point is reached despite this
positional drift.
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WTL2 C Code 
•  Dependencies 

–  GSL (Numerical Library)  

–  GDAL (GIS Library) 

•  Makefile  
–  generates executable for ARM, x86 processors 

–  ccompcert à safety critical C compiler 

•  V&V 
–  Use JPL Flight S/W Best Practices (JPL DOCID D-60411) 

–  Run code coverage tool 

–  Memory debugging tool 

–  Unit tests for critical functions  

–  Test Cases 
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Test Cases 

www.nasa.gov 25 

Test # Altitude (ft) Latitude Longitude Initial Heading 
1 1000 40.70° -73.8726° 270° 
2 1000 40.70° -73.8726° 15° 
3 1000 40.85° -73.70° 270° 
4 4000 40.70° -73.8726° 270° 
5 4000 40.70° -73.8726° 15° 
6 4000 40.85° -73.70° 270° 
7 4000 40.85° -73.70° 15° 
8 3026 40.865 -73.88° 220 

•  Altitude variation – Bounded by two altitudes  
-  Altitude < 1000 ft à Can only land straight ahead 
-  Altitude > 4000 ft à Should be able to return to airport 

•  Heading variation – Show effects of initial heading on trajectory 
•  Position variation – Show effects of initial position on trajectory 
•  Case #8 replicates US Airways 1549 failure 
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Results: Test Case 1 
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Altitude 1000 ft 

Heading 270° 

Latitude 40.7000° 

Longitude -73.8726° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 2 
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Altitude 1000 ft 

Heading 15° 

Latitude 40.7000° 

Longitude -73.8726° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 3 
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Altitude 1000 ft 

Heading 270° 

Latitude 40.85° 

Longitude -73.70° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 4 
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Altitude 4000 ft 

Heading 270° 

Latitude 40.7000° 

Longitude -73.8726° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 5 
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Altitude 4000 ft 

Heading 15° 

Latitude 40.7000° 

Longitude -73.8726° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 6 
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Altitude 4000 ft 

Heading 270° 

Latitude 40.85° 

Longitude -73.70° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 7 
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Altitude 4000 ft 

Heading 15° 

Latitude 40.85° 

Longitude -73.70° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

Cost 

1.0 

0.5 

0.0 
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Results: Test Case 8 
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Altitude 3026 ft 

Heading 220° 

Latitude 40.86679° 

Longitude -73.9298° 

o Reachable location 

+ Current location 

n Landing location 

---- Landing trajectory 

US Airways 1549 

Cost 

1.0 

0.5 

0.0 
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Figure 9:  2D Trajectory Profile (from Flight Data). 

 

 
 

Figure 10:  3D Trajectory Profile (from Flight Data). 
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WTL2 HIL Simulation 
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HIL Simulation Data Overlay 

WTL State On/Off  

Target V (kts) ### 

Target Heading ### 

Waypoint # #/# 
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Future Work 
•  “Online” WTL à Fast Estimator/Online Reachable Set 
•  “Adaptive” WTL à Dynamic trajectories  

•  WTL on Smartphones, Linux, PixHawk 

•  WTL + RTA (Run Time Assurance) framework  
•  WTL + Backward Reachable Controllers 
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WTL2 (current)  

Loss of Thrust 

TCM/B-757 

Linux 

WTL3+ (future)  

Common A/C 
Faults 

Any aerial vehicle 

Linux, Mobile, 
PixHawk 

Global Dynamic 
Cost Map 

Local Static Cost 
Map 
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Impact 
•  General Aviation  

–  Pilots tend to less experienced 

–  Mostly single engine aircraft  

•  Commercial  
–  Pilots are experienced and well trained 

–  Multi engine aircraft  

•  Unmanned Vehicles 
–  Flight Termination Systems 

–  Lost Link Mode 
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General Aviation Can improve odds of survival 
Commercial Gives pilots more options 
Unmanned Vehicles Can enable expanded UAS in the NAS 
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Distribution 
1.  WTL Design: AIAA Conference Paper  
2.  WTL2 Implementation: AIAA Conference Paper 

3.  WTL2 NASA Technical Memo  

4.  NASA NARI Presentation  
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