@ https://ntrs.nasa.gov/search.jsp?R=20150023094 2019-08-31T04:59:43+00:00Z

National Aeronautics and Space Administration

SPACE COMMUNICATIONS AND NAVIGATION

SMC: SCENIC MODEL CONTROL

Presented by Priyanka Srivastava and Jeff Kraus Summer Intern Mentor: Robert Murawski, Ph.D. NASA Glenn Research Center Project Manager: Bertsel Golden, Jr.

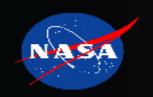
Introduction-Synergy of Students

Presentation Agenda

Strategic Center for Education, Networks Integration, and Communications

- Motivation
 - SCaN
 - SCENIC
 - Model Based Systems Engineering
- Overview of Project SMC
- Modeling
 - About MagicDraw
 - Structural Diagram
 - Functionality
 - Internal Architectural Diagram
- Simulation
 - Interaction between components
 - User Interface inside MagicDraw

Space Communication and Navigation (SCaN)


SCaN manages and directs:

- The ground-based facilities and user services provided by the Near Earth Network (NEN) and Deep Space Network (DSN);
- The ground- and space-based facilities and user services provided by the TDRSS **Space Network (SN)**

<u>Motivation</u>

- ■SCaN
- SCENIC
- Model Based Systems
 Engineering
- Overview of SMC
- Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram
- Simulation
- Interaction betweer
- components
- User Interface insid
- MagicDraw

Space Communications and Navigation (SCaN) (continued)

SCaN future objectives:

- **Motivation**
- ■SCaN
- SCENIC
- Model Based Systems
 Engineering
- Overview of SMC
- Modeling
- About MagicDra
- Structural Diagram
- Functionality
- Internal Architectural Diagram
- Simulation
- Interaction between
- components
- User Interface inside MagicDraw

- Integration of existing NASA SCaN assets, building a single NASAwide space communications and navigation network;
- Implementation of data communication protocols for Space Exploration missions that are internationally interoperable.
- Meets the future needs and commitments to provide space communications and navigation services to missions.

Strategic Center for Education, Networks, Integration and Communications (SCENIC) Lab

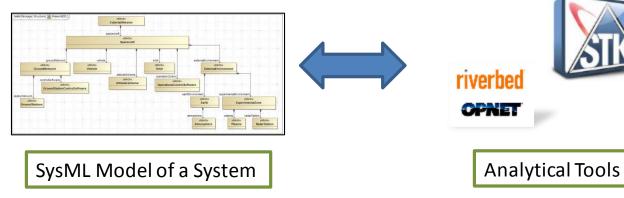
Motivation

- ■SCaN
- SCENIC
- Model Based Systems
 Engineering
- Overview of SMC
- Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram
- Simulation
- Interaction betweer
- components
- User Interface inside
- MagicDraw

SCENIC Mission Statement: Provide a strategic center for education, networks, integration, and communications to collaboratively define and address the needs of future NASA communications.

Modeling and Analysis Goals

- Development of current SCaN Network models that are expandable, verifying proposed future architectures;
- Capacity Modeling of the existing and future SCaN Networks;
- Simulation of the network communication and navigation infrastructure space and ground networks.



Why Model-Based Systems Engineering?

- <u>Motivation</u> ■SCaN ■SCENIC
- Model Based Systems
 Engineering
- Overview of SMC
- Modeling
- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram
- Simulation
- Interaction between
- components
- User Interface insid
- MagicDraw

- Enables system-level model capture
 - Formal, accurate, authoritative single source
 - Contains elements, relationships, interactions
 - Multiple compatible views, e.g. physical/functional
 - Requirements verification and traceability
- Enables integration of models and simulations
 - Connect system-level model to analytical tools (STK, OPNET, MATLAB etc.)
 - Execute dynamic simulation of end-to-end mission
 - Identify failure to satisfy requirements
 - Accommodates re-evaluation when design changes occur

SCENIC Model Control (SMC)

Motivation SCaN SCENIC Model Based Systems

Overview of SMC

Modeling

- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural

Diagram

Simulation

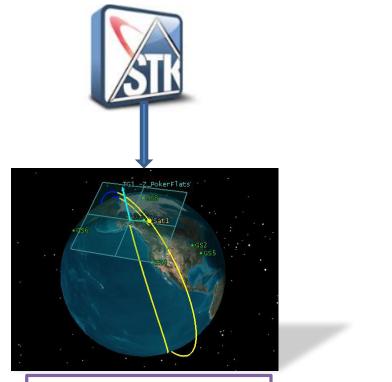

- Interaction betwee components
- User Interface insid MagicDraw

Project Mission:

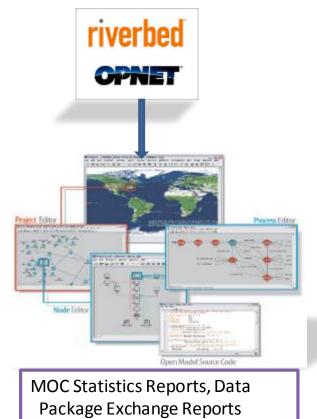
To develop a SCaN network model with its architectural elements in an evolutionary and expandable format. SMC is a framework utilizing a modular approach with MagicDraw as the primary User Interface Software.

SMC Task Objectives:

- Model SCaN ground networks and desired user missions in SysML
- Perform capacity modeling and coverage analysis of SCaN Network assets based on SCaN Mission Loading.
- Integrate the developed tools and wrappers thru a custom MagicDraw User Interface.
- Development of a Control Module which facilitates transfer of model information and generated reports via custom XML communication schema.



SMC Capacity Modeling Tools



End Products of SMC:

- Optimized User Mission Schedule for modeled mission set generated by STK Scheduler
- Link Budget Reports between satellites and a Ground Stations using STK
- Network performance reports between Satellites and Mission Operation Centers (MOC) using OPNET

Coverage Access, Link Budget Reports, Scheduler Reports

Motivation

- SCaN
- ■SCENI
- Model Based Systems
- Engineering

Overview of SMC

Modeling

- About MagicDraw
- Structural Diagram
- Functionality
- Internal Architectural Diagram
- Simulation
- Interaction between
- components
- User Interface inside
- MagicDraw

Modeling SMC

Motivation SCaN SCENIC Model Based Syste

Engineering

Overview of SMC

Modeling

About MagicDraw Structural Diagram Functionality Internal Architectural Dia

Simulation

- Interaction betwee
- components
- User Interface inside

MagicDraw

SIP Project questions:

- How does one integrate the NEN and SN ground station information within a single database?
- How does one seamlessly integrate simulation tools for the purpose of performing future capacity modeling?
- How do changes in the configuration of SCaN networks and spacecraft missions impact future system performance and requirements?

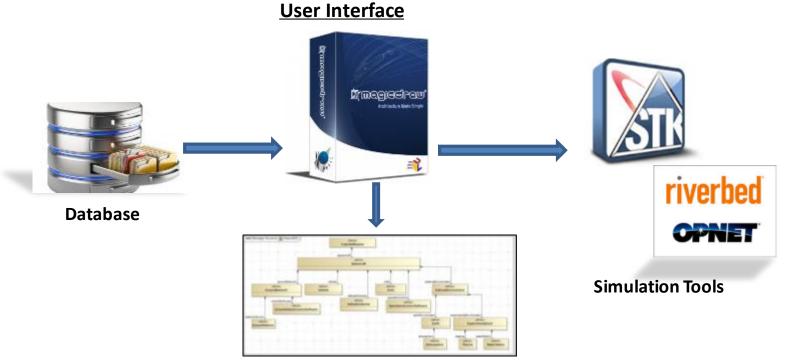
Why MagicDraw?

Motivation

- ■SCaN
- ■SCENIC
- Model Based Systems
 Engineering

٠

Overview of SMC


Modeling

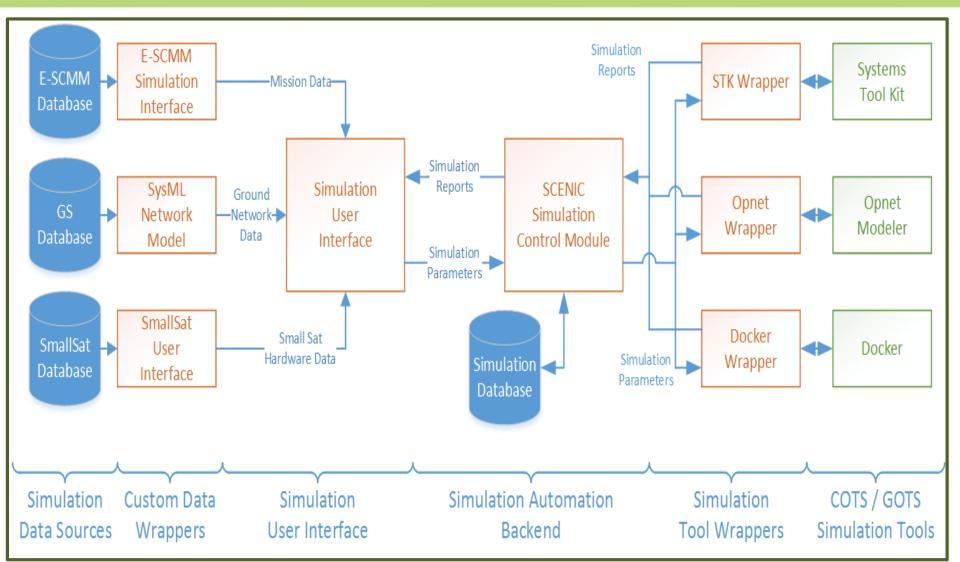
About MagicDraw

- Structural Diagram
 Functionality
 Internal Architectural
 Diagram
- Simulation
- Interaction between components
- User Interface inside
- MagicDraw

Selected MBSE tool: MagicDraw by No Magic Inc.

- Present a high level architectural framework of the system components
- Act as the User Interface to initiate processes inside the system
 - Integrate databases and software such as STK and OPNET via a custom developed plugin.

SMC Structure

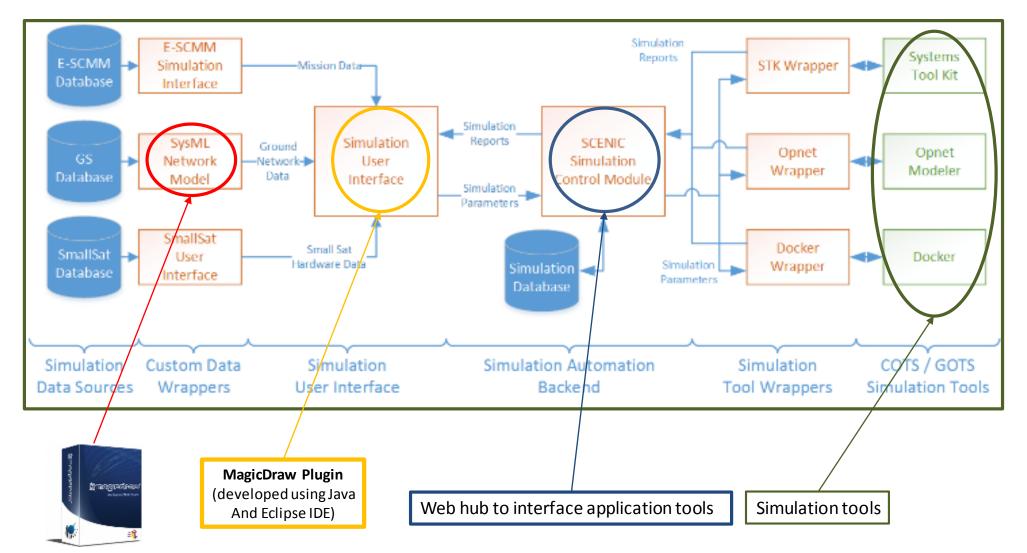

Motivation

- SCaN
- ■SCENI(
- Model Based System
- Engineering
- Overview of SMC

Modeling

About MagicDrawStructural Diagram

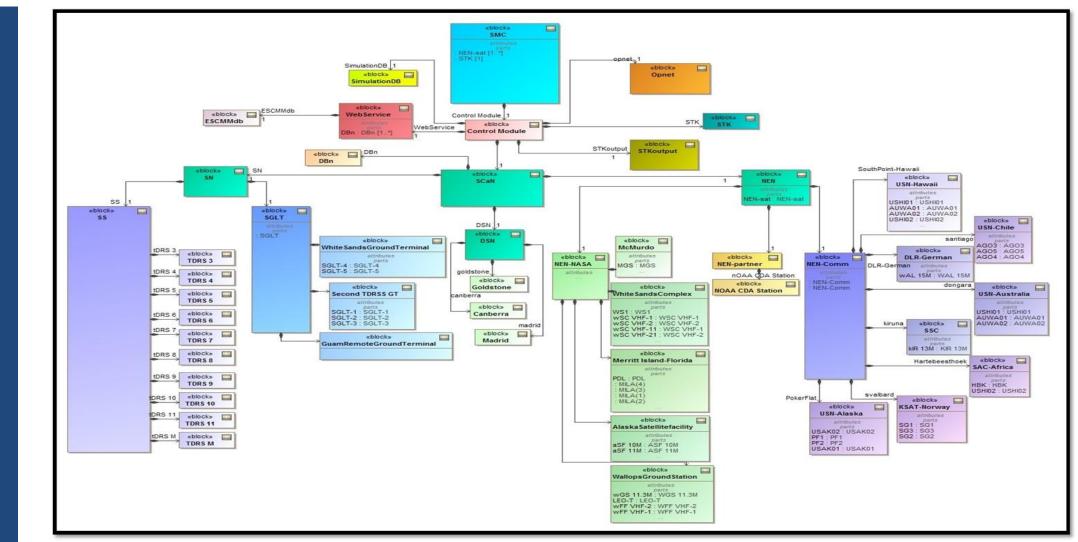
- Functionality
 Internal Architectur
- Diagram
- Simulation
- Interaction betweer
- User Interface inside
- MagicDraw


Functionality of SMC

- Motivation SCaN
- ■SCENIC
- Model Based Systems
- Engineering
- Overview of SM(

Modeling

- About MagicDraw
 Structural Diagram
 Functionality
 Internal Architectur
- Simulation
- Interaction between components
- User Interface inside
- MagicDraw


Overview of SM(

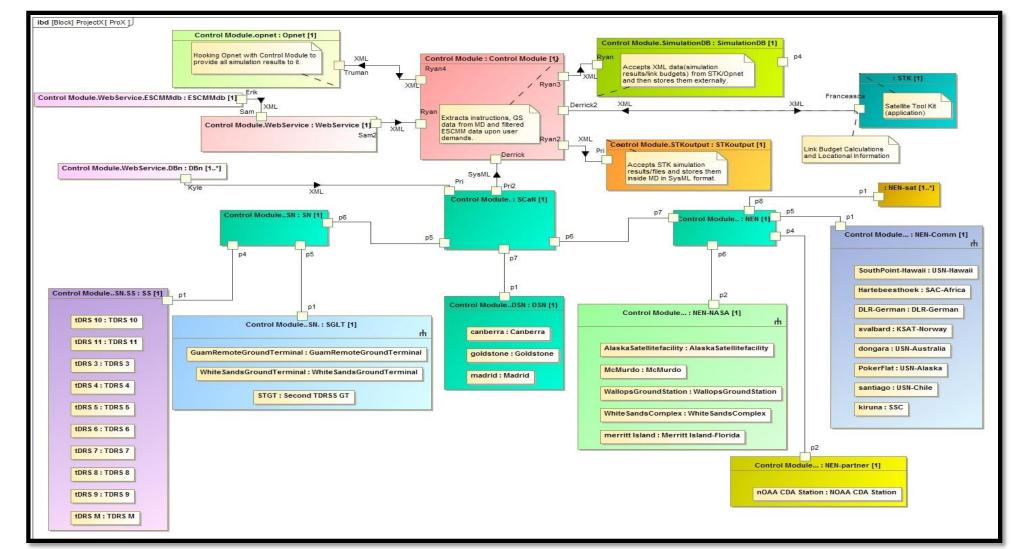
Modeling

About MagicDraw
Structural Diagram
Functionality
Internal Architectural
Diagram

Simulation

 Interaction between components
 User Interface inside
 Magic Draw

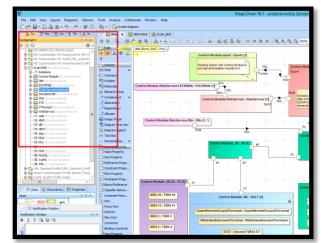
SMC Block Diagram as viewed by the SMC project user

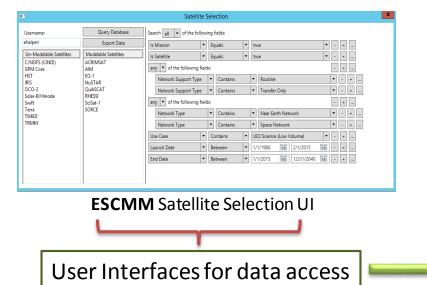

Internal Block Diagram

- Motivation •SCaN
- ■SCENI(
- Model Based System
- Engineering
- Overview of SM0

Modeling

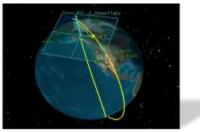
- About MagicDraw
 Structural Diagram
 Functionality
 Internal Architectural Diagram
- Simulation
- Interaction between
- components
- User Interface inside
 MagicDraw


IBD captures the structure, behaviors and interactions between the elements

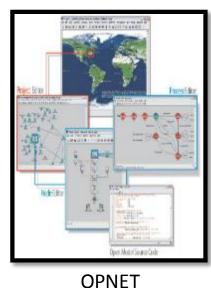

SMC Element Interaction

- Motivation •SCaN •SCENIC •Model Pass
- IVIODEL Based Sys
- Overview of SMC
- Modeling
- About MagicDraw
 Structural Diagram
 Functionality
 Internal Architectu
 Diagram
- **Simulation**
- Interaction between components
- User Interface inside
 MagicDraw

MAGICDRAW INTERFACE


PLUGIN •Pulls data from model •Presents real-time updates •User toggled simulation components •Receives generated reports

CONTROL


MODULE WEB

INTERFACE

Plugins and Interfaces

STK

Analytical Tools

STK Scenario Generation Using Satellite and Ground **Station Data**

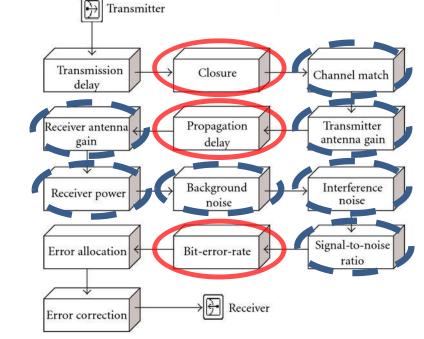
Simulation

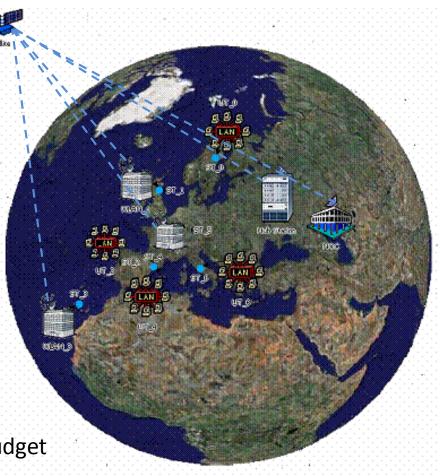
User Interface inside MagicDraw

AGI's Systems Tool Kit (STK) simulates:

Orbital Dynamics | Link Access | Propagation Delay | Bit Error Rate | Noise Interference

Link Budget Calculations and other reports sent to OPNET via XML for further Analysis 17


OPNET Radio Transceiver Pipeline


- **Motivation**
- SCal
- ■SCENI(
- Model Based Systems
- Engineering
- Overview of SMC
- Modeling
- About MagicDrav
 Structural Diagra
 Functionality
- Internal Architectura
 Diagram

Simulation

 Interaction between components
 User Interface inside MagicDraw

- Builds network simulation model
- Generates network model based on ground network and mission simulation parameters
- Schedules tasks provided by STK to simulate networking between modeled objects
- Modified OPNET radio transceiver pipeline to utilize link budget reports from STK, rather than OPNET calculations, for propagation delay and bit error rate (BER) parameters

THANK YOU IAC

