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Abstract. Despite the wide usage of hollow retroreflectors, there is limited literature involving their fabrication 
techniques and only two documented construction methods could be found.  One consists of an adjustable fixture 
that allows for the independent alignment of each mirror, while the other consists of a modified solid retroreflector 
that is used as a mandrel.  Although both methods were shown to produce hollow retroreflectors with arcsecond 
dihedral angle errors, a comparison and analysis of each method could not be found which makes it difficult to 
ascertain which method would be better suited to use for precision-aligned retroreflectors.  Although epoxy bonding 
is generally the preferred method to adhere the three mirrors, a relatively new method known as hydroxide-catalysis 
bonding (HCB) presents several potential advantages over epoxy bonding.  HCB has been used to bond several 
optical components for space-based missions, but has never been applied for construction of hollow retroreflectors.  
In this paper we examine the benefits and limitations of each bonding fixture as well as present results and analysis 
of hollow retroreflectors made using both epoxy and HCB techniques. 
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1 Introduction 

A retroreflector is an optical component that uses three mutually perpendicular surfaces to reflect 

light back to its source such that the incoming beam is parallel to the reflected beam.  For the 

typical retroreflector with mutually perpendicular surfaces, light is reflected back to the source in 

a parallel manner regardless of the orientation of the retroreflector.  This property makes 

retroreflectors extremely useful for alignment, metrology, laser ranging, and other systems in 

which the light source or other optics are in motion1.   

     Retroreflectors are often referred to as “corner cubes” and come in the solid and hollow 

variety.  In the case of the solid corner cube, light passes through a piece of glass and is reflected 

at the back surfaces by either total internal reflection or through reflective coatings.  For hollow 

retroreflectors the light simply reflects off the cube surfaces and does not typically pass through 
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any solid material.  This configuration presents many advantages over its solid counterpart 

including eliminating chromatic aberration and material absorption, the potential for a lighter 

weight optic, and the ability to be constructed out of a variety of materials.   

     Although hollow retroreflectors are used in a variety of applications, the literature containing 

their construction methods is minimal and only two methods could be found1-4.  Although Ref. 4 

is the most complete reference that could be found pertaining to both the optical fabrication and 

mirror mounting techniques, it lacked the specific details needed to fabricate a hollow 

retroreflector (such as what epoxy to use, details about the bonding fixture, the hydroxide 

bonding technique, and the construction method to name a few) that are presented here.  One 

method uses a fixture that allows for the independent adjustment of each mirror, while the other 

method relies upon using a solid corner cube as a mandrel that the mirrors are placed on top of 

and then bonded into place.  Each method has its advantages and disadvantages although a 

comparison of the two methods could not be found making it difficult to know which method 

would be potentially better to use for precision-aligned corner cubes.  Here we bridge this 

knowledge gap by comparing corner cubes made using both types of bonding fixture. 

     While epoxy is generally the preferred method to adhere the mirrors, a relatively new bonding 

technique known as hydroxide-catalysis bonding (HCB) has potential advantages over epoxy 

bonding.  HCB was originally developed for the Gravity Probe B mission to bond the star 

tracking telescope but has since found use in several other materials and applications5-8.  Its high 

strength, thin bond, and low coefficient of thermal expansion (CTE) make it ideal for a wide 

range of precision-bonded applications, especially for space based missions and optical 

components that will operate at low temperatures9-11.  For this reason, both epoxy and HCB 
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methods were used to construct hollow corner cubes and an analysis of both techniques is 

presented in this paper. 

 

2 Bonding Fixtures 

Two types of bonding fixtures were investigated and built for constructing hollow retroreflectors: 

an adjustable fixture and a solid corner cube used as a mandrel.  In this section we provide an 

overview of these two approaches. 

2.1 Adjustable Fixture 

The adjustable fixture consists of three panels that allow one axis of each panel to be adjusted 

through the use of a threaded screw or micrometer (see Fig. 1a).  These panels are held in place 

using springs and ball bearings that are mounted on a rigid backing structure similar to a 

common mirror mount.  The fixture used in this paper is similar to the fixture used in Ref. 1, but 

instead of two mirror mounts being used, three mutually perpendicular mirror mounts were 

attached to a backing/support structure.  In this manner the entire fixture could be picked up and 

moved while still being able to independently adjust each of the fixture panels. 

 

 (a) (b) 
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Fig. 1 (a) Concept of the adjustable fixture, and (b) an illustration of the bonding seam when epoxy was used as a 

bonding agent. 

There is a gap approximately 1.3 mm between adjacent panels that allow the independent 

movement of each panel while still allowing shims to be placed between panels if necessary.  

The shims were rectangular aluminum bars that had the square dimension equal to the thickness 

of the mirror minus the thickness of the bonding seam (12.7 mm minus 1.27 mm with machining 

tolerances of 0.127 mm), and had a length of approximately 76.2 mm.  These shims were used to 

control the overlap of the bonding seam.  Glass spacers can also be epoxied to the panels if the 

full thickness of the mirror needed to be used. Our initial fixture was made out of aluminum and 

stainless steel, but other materials such as ULE or Zerodur were considered to provide added 

dimensional stability to the fixture. 

     To bond the mirrors together, the fixture, shims, and the back of the mirrors were cleaned 

with acetone.  The shims were then put in the corners of the fixture and the mirrors placed on 

top.  The mirrors were orientated such that the bonding face of one mirror sat on the mirrored 

surface of the next mirror (see Fig. 1b). An initial alignment of the mirrors was done in the 

fixture and a Verifire XPZ (Zygo Corp.) interferometer was used to measure the dihedral angle 

errors, wavefront, and maximum beam deviation of the retroreflector12.  Once the mirrors had 

been properly aligned under the interferometer, a small amount of epoxy (such as Urelane or 

Urethane) was applied in small drops along the seams where the mirror and adjustment panel 

meet.  This will hold the mirrors in place while allowing the mirrors to be adjusted as they are 

bonded together.  The fixture and mirrors are left overnight to allow the epoxy to cure.  The 

overnight cure is necessary so that the epoxy has the right amount of plasticity while still 

providing enough strength to hold the mirror to the adjustable fixture.  If too rigid of an epoxy is 

used for this step, internal stresses may build in the epoxy used to bond the mirrors together 
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(along the bonding seam), while using an epoxy that isn’t rigid enough may cause the mirror 

alignment to change more when bonding.  Afterwards, the shims are taken out and the mirrors 

are aligned once again. The mirrors are now ready to be bonded as described in the Section 3. 

2.2 Master Retroreflector 

The other fixture used to bond the hollow retroreflectors consisted of a solid corner cube as a 

mandrel.  Glass panels are placed on top of the mandrel and then bonded together (Fig. 2).  The 

master cube has its corners beveled so that any bonding material that wicks through the bonding 

seam will not get in contact with the master cube and cause the glass panels to bond to it. 

 

 

 

Fig. 2 (a) Mandrel situated before the glass panels are placed, and (b) after the glass panels are secured.  In this case, 

the entire thickness of the bonding surface is placed on the adjacent glass panel. 

 

The glass panels and master cube are both cleaned with vinegar and then cleaned again with 

acetone to remove any residue.  Although vinegar was used, any mild acid should suffice.  The 

glass panels are placed on the master cube and securely held with screws that have rounded tips.  

Extreme cleanliness and care is needed when initially placing the panels or scratches on either 

surface may occur.  Alignment is done by pressing the glass panels both against the master cube 

(a) (b) 
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and against each other.  The accuracy to which the panels are aligned is judged by monitoring the 

resulting interference fringes and are adjusted until the fringes are minimized.  The screws are 

then tightened to securely hold the glass panels in place.  The interference fringes should be 

monitored overnight to check that the glass panels are not slipping or changing position.  

Afterwards, either the epoxy or hydroxide solution can be applied.   After the mirrors have been 

bonded, the mirror coating will need to be applied to the corner cube surface.   

3 Bonding Procedure 

The bonding methods described in this section can be used for either bonding fixture.  Some 

adjustments to the procedure can be done, but using a brush to paint either the epoxy or 

hydroxide solution proved to be an extremely successful technique. 

3.1 Epoxy Bonding 

In general, only a thin bonding seam is used when bonding a hollow retroreflector using an 

epoxy.  A mirror overlap of approximately 1.3 mm can be used to bond hollow retroreflectors 

with sub-arcsecond dihedral angle errors and still provide sufficient strength for most uses (see 

Fig. 1b).  To do this, a rough bonding surface sits on top of a mirrored surface and the epoxy is 

applied to the back of the bonding seam with a brush.  The epoxy will wick into the bonding 

seam to fill the gap.  Applying the epoxy at the bottom of the mirrors will cause the 

retroreflectors to “flower open” as the epoxy cures.  The amount to which this happens varies 

depending on what epoxy is used and how much is applied.  The rough surface is needed for the 

epoxy to retain its strength and the thin bonding seam provides enough rigidity without 

significant internal stresses building up within the bond itself13.  If significant internal stresses 
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are trapped within the bond, they will slowly be worked out through the movement of voids and 

dislocations over time which may cause the shape of the retroreflector to change as well14.   

     When using the master retroreflector fixture, the epoxy can be easily applied using a brush 

and a minimum amount of epoxy should be applied in an even manner.  This can often be done 

by slowly dragging the brush over the bonding seam a few times.  Using a significant amount of 

epoxy will cause the corner cube to flower open more than when less epoxy is used.  Once the 

epoxy is applied, the glass panels should stay on the fixture until the epoxy has cured. 

     If epoxy bonding is used with the adjustable fixture, the epoxy should be applied minimally 

and in an even manner as well.  As the epoxy begins to cure, the corner cube will flower open as 

can be seen with the interferometer.  While the epoxy is in its curing phase the dihedral angles 

can be adjusted.  The amount of time the mirrors can be adjusted depends on the epoxy, but care 

should be taken not to adjust for too long or stresses may build up within the bond.  For the 

corner cubes presented in Table 1, an Epon/Versimid epoxy in a 50/50 mixture was used.  It 

typically took 2-3 hours before the mirrors would begin to change shape, and then adjustments 

were made for an additional 3-5 hours.  The epoxy then cured overnight and a razor was used to 

remove the Urethane that bonded the mirrors to the fixture.  Once this was done, the corner cube 

could be removed from the fixture.  

     By situating the mirrors in the adjustable fixture with an approximate 1.3 mm bond thickness 

and using Epon/Versamid epoxy, the authors were able to routinely fabricate hollow 

retroreflectors with dihedral angle errors typically less than a few arcseconds, and in some 

instances, sub-arcsecond errors (see Table 1). 
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3.2 Hydroxide Bonding 

Although using an epoxy has been successful in bonding hollow corner cubes, the high CTE of 

most epoxies makes it difficult for the corner cube to retain its shape when subjected to 

significantly different temperatures3.  Although this distortion can be lessoned through the use of 

a tongue-and-groove design2,4, another potential method may be to use HCB.  The HCB process 

works by putting a small amount of hydroxide solution between two glass surfaces.  The 

hydroxide solution etches the surfaces that then form glass chains within the solution. As the 

liquid evaporates, the chains form a rigid structure that bonds the surfaces together which form a 

quasi-monolithic structure.  For a more complete description of the HCB process, see Ref. 15 

and Ref. 16.  The resulting bond is one that is strong, thin, and essentially glass.  Because of this, 

the bond will be one that produces less distortion in the corner cube when compared to epoxy as 

the corner cube is thermally cycled3.  For this reason, HCB was chosen to determine the 

feasibility of being used for bonding hollow corner cubes. 

     Using the epoxy bonding technique described in Sec. 3.1 with HCB proved to be ineffective.  

When the retroreflectors were bonded using a 1.3 mm bonding seam, the corner cubes would 

either flower open until they could not be measured by the interferometer, or they fell apart after 

a few days.  Leaving the retroreflector to cure for one or two weeks reduced the amount to which 

the retroreflectors would flower out after being removed from the fixture, but the retroreflectors 

that bonded without large dihedral angle errors typically lacked any significant strength and 

could be pulled apart with little effort. 

     Increasing the bond thickness such that the entire width of the mirror was on the mirrored 

surface drastically improved the results, although the dihedral angle errors were typically an 

order of magnitude worse than when an epoxy was used.  Using the same procedure from one 
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retroreflector to the next would often produce drastically different results and the authors 

attribute this to the rough bonding surface that was used.  Although it has been shown that using 

HCB on rough surfaces can produce similar strengths to those when polished surfaces are used10, 

the thickness of the bond is less than the root-mean-square (rms) roughness of the bonding 

surface which will cause bonds to form randomly on the bonding surface which, in turn, cause 

the mirrors to shift their alignment by “pivoting” on the peaks of the ground surface finish. 

     To remedy these problems, the bonding surface of the mirrors was changed from a ground 

finish to a flat and smooth surface.  These mirrors were made by taking a solid retroreflector 

(Edmund Optics, part number 49-011) and cutting a 6.25 mm slice from the corner cube and then 

coated with a protective aluminum layer.  Significantly better results were achieved when the 

entire 6.25 mm bonding width of the flat and smooth surface was used (see Table 1). 

     To bond the mirrors, a brush was dipped into a sodium silicate solution that had been 

volumetrically diluted by a factor of 1:4 with a stock solution (Sigma Aldrich, part number 

338443) and applied to the back of the bonding seam.  The solution would then wick in to fill the 

bonding area.  The retroreflector was left alone for twenty one days and then removed from the 

fixture.  When taken out of the fixture, there is often a small change in the dihedral angle errors 

of the retroreflector, and there may be some drift over the course of a few days.   

     Although using a brush to administer the hydroxide solution showed promising results, it was 

difficult to apply the same amount of solution each time.  Applying the same amount to each 

bonding surface is critical so that the mirrors will change in a uniform manner when the bond is 

curing.  When using larger bonding surfaces, it may be useful to apply the solution using a 

micropipette.  In this manner, the amount of solution that is applied can be controlled in a more 

precise manner. 



10 

4 Results 

A total of ten hollow retroreflectors were made using HCB and epoxy bonding methods.  Seven 

retroreflectors were made using the adjustable fixture, and three were made using the mandrel.  

In all cases where HCB was used, the bonding area was a flat and smooth surface as described 

above.  Although a bonding surface with a ground finish can be used (as was done with the 

epoxy bonded corner cubes), the resultant dihedral angle errors are significantly larger than when 

a flat and polished surface is used3.   

Table 1 Physical properties of the retroreflectors made using the adjustable fixture and the solid mandrel. 
Retroreflector Fixture 

Method 
Bonding 
Method 

Aperture 
(mm) 

Dihedral 
Angle Error 
(arcsec) 

Wavefront 
(PV @ 633 
nm) 

Max. Beam 
Deviation 
(arcsec) 

1 Adjustable HCB 40 -1.9,0.3,-
8.4 

2.92 19.5 

2 Adjustable HCB 40 -2.9,-10.4,-
13.4 

8.28 35.2 

3 Adjustable Epoxy 40 -0.1, 0.0, -
1.4 

1.28 5.8 

4 Adjustable Epoxy 40 -0.9, 0.0, -
1.8 

1.49 6.6 

5 Adjustable Epoxy 40 0.4, 3.7, 
2.8 

2.97 12.9 

6 Adjustable Epoxy 40 3.6, 0.3, 
3.7 

2.60 13.0 

7 Adjustable Epoxy + 
tongue and 
groove 

115 1.6,-1.7,-
0.9 

2.55 5.4 

8 Mandrel HCB 40 1.9, 1.7, 
3.1 

1.46 10.5 

9 Mandrel HCB 40 1.98, 2.32, 
-0.50 

0.91 8.61 

10 Mandrel HCB 40 0.93, 0.52, 
1.58 

0.79 6.10 

       
     From Table 1, it can be seen that there is a noticeable difference in the physical properties of 

Retroreflectors 1 and 2.  This is most likely because a slightly different method was used that 

incorporated the reversible nature of HCB15,16.  By applying a small amount of solution one day, 

letting it cure overnight, and then adding more solution the next day, stresses and misalignments 
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from the bonds can be alleviated while forming additional bonding area at the same time since 

there are more hydroxide ions now available.  In this manner, misalignments of the mirrors from 

the bonding process can be taken out while adding additional bonding area.  Unfortunately, when 

this is done, the change in room temperature from day to day may have caused the fixture to be 

in a different orientation the next time the solution was added.  This, in turn, may have caused 

the mirrors to cure in a different position from the previous day.  It is believed that this effect is 

what led to the larger values of the second retroreflector, although more statistics are needed 

before a definitive conclusion can be made. 

     As can be seen from Retroreflectors 3-6, using epoxy to bond the corner cubes is a very 

effective method.  In all cases the dihedral angle errors are less than a few arcseconds and in 

several cases, one or two dihedral angle errors were less than 1.0 arcsecond.  

4.1 Scaling-up the Retroreflector Size 

A benefit of using the adjustable fixture is that it allows for scaling-up of the retroreflector size 

in an easy manner while still obtaining similar results to the smaller retroreflectors.  To 

demonstrate this, a hollow retroreflector with an approximate 115 mm aperture was made from 

single crystal silicon (SCSi) mirrors using a Stycast epoxy.  The mirrors used a tongue-and-

groove design such that a 2.54 mm by 2.54 mm groove was machined into the SCSi mirrors (see 

Fig. 3).  The tongue-and-groove design was chosen for this particular corner cube because this 

retroreflector will potentially be used as a prototype for the CIRS-lite instrument and the corner 

cube will operate at lower temperatures17.  The tongue-and-groove design has demonstrated 

fewer distortions when used at low temperatures when compared to only a 1.3 mm overlap2.  

Although this design was chosen, the same method used for Retroreflectors 3-6 could also be 

used. 
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     Stycast epoxy was applied with a brush such that it filled the groove and then the mirrors 

were assembled and aligned in the fixture.  Urethane was applied in small amounts to bond the 

edges of the SCSi mirrors to the fixture.  The mirrors were realigned every 20-30 minutes for 

approximately five hours and then left to cure overnight.  The retroreflector was then taken out 

of the fixture the next day and the resulting physical properties are shown in Table 1. 

 

 

Fig. 3 (a) A 115 mm aperture SCSi hollow retroreflector made using the adjustable fixture, and (b) a close-up of the 

groove used to bond the retroreflector. 

4.2 Master Retroreflector Method 

In addition to making hollow retroreflectors using an adjustable fixture, three retroreflectors 

were made using a solid master as a mandrel.  The mandrel was made of BK7 glass, has a 76.2 

mm aperture, and dihedral angle errors less than 1.0 arcsecond.  Glass panels cut from solid 

corner cubes were placed around the mandrel and held in place through the use of screws (see 

Fig. 2).  A significant amount of pressure is usually required to adjust the panels such that the 

interference fringes are minimized and the lack of mirrored coating allows this to happen without 

scratching the surfaces.  Moreover, a mirrored surface all too often will wash out the interference 

fringes, making them difficult or impossible to see. 

(a) (b) 
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     A small amount of hydroxide solution was then applied with a brush along the outside 

bonding seams of the retroreflector.  If too much solution is used, the excess may leak into the 

inside of the retroreflector which could form a fillet and either distort the far field diffraction 

pattern, or cause the aluminum coating  to be uneven or not adhere properly.  Additional solution 

can be applied later on if too little solution is initially applied.  It should be noted that it may not 

always be possible to add additional solution since a fillet tends to form along the bonding seam 

which can inhibit the amount of solution that wicks into the bonding area. 

     After the solution was added, the retroreflectors were left to cure for twenty days.  During this 

time, the interference fringes changed in response to the daily change in room temperature, but 

no additional change could be inferred from the bonding process, even when additional solution 

was intermittently added over two days.  The changing fringes are most likely due to the 

difference in CTE of the BK7 mandrel and the fused silica panels.  Once the curing period was 

over, the corner cube was taken off and the aluminum coating was then applied.  The resulting 

retroreflectors have physical properties shown in the last three rows of Table 1. 

     It can be seen from Table 1 that using HCB with the mandrel produced more precisely 

aligned corner cubes than when the adjustable fixture was used.  This is most likely due to the 

fact that the adjustable fixture breathes significantly while the bonds are curing, but more 

statistics are needed before a definitive conclusion can be made. 

5 Discussion 

It can be seen from Table 1 that both the adjustable fixture and the mandrel are capable of 

producing well-aligned corner cubes.  In this section, a discussion of each fixture is presented 

along with potential improvements. 
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5.1 Adjustable Fixture 

The nature of the adjustable fixture suits itself well for being used in a mass-production setting.  

The repeatable nature to which corner cubes can be bonded, the ease to which the bonding takes 

place, the ability to be used for a range of corner cube sizes, and the ease to which the fixture can 

be modified make it ideal for repeated use.  The biggest advantage that the adjustable fixture has 

over the mandrel is that the adjustable fixture allows for the dihedral angle errors to be easily 

adjusted.  In some applications, such as next-generation retroreflectors for lunar laser ranging, an 

offset in one or more of the dihedral angle errors will need to be present18.  Even though this 

could be done with the mandrel, how well the dihedral angles are set will be determined by how 

well the offset is polished into the mandrel.  

     Although the hollow retroreflectors made using HCB were not as good as those when epoxy 

was used, the authors believe that additional improvements to the design of the fixture and 

bonding surface may give improved results.  The temperature stability of the room when bonding 

the retroreflectors was typically ±2 C, but could be as high as ±3.5 C.  This would cause the 

aluminum fixture to “breath” while the temperature in the room oscillated.  By using mirrors that 

had been epoxied to the fixture, but not yet bonded together, it was determined that a ±2 C 

change in the air temperature of the room could produce a change in dihedral angle errors as 

much as ±5 arcseconds, and changes in the wavefront by as much as 2 waves (at 633 nm).  

Although a more stable air temperature would be beneficial, a more suitable remedy would be to 

make the fixture out of an ultra-low expansion material such as ULE or Zerodur.  This would 

greatly reduce the amount to which the fixture changed when bonding with HCB. 

     While the mirrors that were cut from a solid corner cube produced promising results, the 

exact perpendicularity between the mirrored surface and the bonding surface was not precisely 



15 

known to be better than 3 arcseconds.  Having mirrors with a known perpendicularity, and less 

than 1 arcsecond should help to improve the accuracy to which the hollow retroreflectors are 

bonded when using HCB19. 

     Additionally, changes to the mirror design may also improve the bonding technique.  In one 

case, when the rough bonding surfaces were initially being tested for use with HCB, a groove 1.3 

mm x 1.3 mm was machined down the center of each bonding surface and 0.15 µL of sodium 

silicate solution was applied with a micropipette to the top of the groove which caused the 

solution to spread from the center of the bonding surface to the edges.  In this case, the dihedral 

angles changed significantly less than without the groove.  The authors believe that this may 

have to do with how the solution is applied.  When the solution is applied to the back of the 

bonding seam, a fillet forms where the two mirrors are in contact.  It is believed that this fillet 

can cause the dihedral angles to become skewed.  When a groove is machined down the middle 

of the bonding surface, two fillets will form, but the effects from each one should cancel the 

other out.  By using a smaller groove down the center of a polished bonding surface, the authors 

believe that greater precision could be achieved when bonding. 

5.2 Solid Mandrel 

The mandrel fixture is well-suited when only a few corner cubes need to be made in an 

inexpensive manner.  The total cost of the mandrel fixture was approximately a factor of five less 

while still being able to produce precision-bonded corner cubes.  This was due to the fact that 

many of the components needed are easily machined or “off-the-shelf.” 

     The primary disadvantage of using the mandrel is that the alignment of the retroreflector will 

be limited by the mandrel itself.  If an offset in only one of the dihedral angles is needed, then a 

completely new mandrel will need to be polished.  Anecdotal evidence also seems to suggest that 
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using the same mandrel repeatedly may produce corner cubes whose dihedral angles errors are 

bonded with less precision. 

     Although promising results were achieved using the mandrel, further improvements may 

produce better outcomes.  Using a mandrel made of the same material or CTE of the panels may 

help to improve the final alignment since daily changes in the room temperature will cause the 

mandrel and panels to change by differing amounts.  When using HCB, panels with a 

perpendicularity better than one arcsecond should also help to improve results since the exact 

perpendicularity of the mirrors used was only known to be better than 3 arcseconds. 

6 Conclusion 

A total of ten hollow retroreflectors were made using two different bonding fixtures.  One 

bonding fixture consisted of adjustable panels that allowed for real-time alignment of the corner 

cube mirrors while the other used a solid corner cube as a mandrel that glass panels can be 

placed on top of and held in place through screws.  Although both methods were able to produce 

hollow corner cubes with dihedral angle errors of less than a few arcseconds in a repeatable 

manner, each method presents itself for different uses.  The adjustable fixture lends itself to 

being used for mass production of corner cubes since the wear and tear of the fixture is minimal, 

while the mandrel fixture presents itself for being used when only a few corner cubes are needed.  

Modifications to each fixture were also suggested to be able to produce hollow corner cubes with 

more precisely bonded mirrors. 

     In addition to using two bonding fixtures, two bonding methods were used to construct the 

hollow retroreflectors.  Although epoxy bonding was not used with the mandrel fixture, the use 

of epoxy bonding with the adjustable fixture proved to be very effective when constructing 
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hollow corner cubes and routinely produced corner cubes with sub-arcsecond dihedral angle 

errors.   

     Although the HCB method did not produce corner cubes as precisely bonded as when epoxy 

was used, the larger dihedral angle errors are attributed to both using fixtures that changed 

considerably while the curing process was taking place as well as have mirror panels that were 

not polished to the necessary perpendicularity required to achieve sub-arcsecond dihedral angle 

errors.  Corner cubes made using the mandrel method were bonded with dihedral angle errors 

that had the same 3 arcsecond precision of the mirror panels, thus implying a limitation of the 

mirror panels and not the bonding fixture.  Using a fixture made out of a low CTE material along 

with mirrors that have a bonding surface and mirror surface perpendicular to better than 1 

arcsecond, one should be able to produce hollow corner cubes as good or better than when epoxy 

bonding was used. 
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Caption List 
 
Fig. 1 (a) Concept of the adjustable fixture, and (b) an illustration of the bonding seam when 

epoxy was used as a bonding agent. 

Fig. 2 (a) Mandrel situated before the glass panels are placed, and (b) after the glass panels are 

secured.  In this case, the entire thickness of the bonding surface is placed on the adjacent glass 

panel. 

Fig. 3 (a) A 115 mm aperture SCSi hollow retroreflector made using the adjustable fixture, and 

(b) a close-up of the groove used to bond the retroreflector. 

Table 1 Physical properties of the retroreflectors made using the adjustable fixture and the solid 

mandrel. 


